Improvement in Drought Tolerance of Dragonhead, *Dracocephalum moldavica* L. under the Sodium Nitroprusside Effects on Polyethylene Glycol

AHMAD REZA GOLPARVAR^{1*}, AMIN HADIPANAH²

1-Department of Agronomy and plant Breeding, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

2-Department of Plant Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran

*Corresponding author's E-mail: ahmad.golparvar@iau.ir

Received: 10 November 2024 Accepted: 20 January 2025

ABSTRACT

Dracocephalum moldavica L. (Lamiaceae), an annual herb native to central Asia and naturalized in parts of Europe. The aerial parts and volatile constitutes of this plant are widely utilized for their medicinal and aromatic properties. This study investigates the regeneration of D. moldavica under in vitro drought stress induced by varying concentrations of polyethylene glycol (PEG) (0%, 10%, 15%, and 20%) and evaluates the mitigating effects of sodium nitroprusside (SNP), a nitric oxide donor. SNP treatments (0, 100, and 200 µM) were incorporated into Murashige and Skoog (MS) medium to assess their impact on morpho-physiological traits under PEG-induced drought conditions. After four weeks of cultivation, several growth parameters were measured, including the number and length of shoots, number of leaves, root characteristics, and survival rates. Results revealed that 10% PEG exhibited the least adverse impact on morphological traits compared to higher PEG concentrations, suggesting this level as optimal for inducing drought stress without excessive damage. SNP at 100 µM significantly improved morphological and physiological parameters compared to the untreated control and 200 µM SNP. The application of 100 µM SNP enhanced shoot and root growth, increased antioxidant enzyme activities, and reduced hydrogen peroxide (H₂O₂) accumulation, thus mitigating oxidative stress. These findings highlight the potential of SNP to alleviate drought-induced damage in D. moldavica, particularly at 100 µM, which proved to be the most effective concentration for improving plant growth and resilience. This research provides valuable insights for optimizing the cultivation of drought-tolerant medicinal plants in arid and semi-arid regions, with implications for enhancing essential oil yields under water-deficit conditions.

Keywords: Antioxidant enzymes, *Dracocephalum moldavica* L., Drought stress, Nitric oxide (NO), Polyethylene glycol (PEG), Sodium nitroprusside (SNP).

Introduction

The genus *Dracocephalum*, belonging to the Lamiaceae family, encompasses approximately 45 species of flowering plants distributed across various regions, particularly Central Asia and parts of Europe. Among these species, *Dracocephalum*

moldavica L., commonly known as Moldavian balm or dragonhead, is an herbaceous annual plant native to Central Asia and naturalized in Eastern and Central Europe (Hashemian Ahmadi and Hadipanah, 2014). This plant is widely recognized for its medicinal and aromatic properties, with its aerial parts and essential oil being used in traditional medicine and various industries. The major volatile constituents of *D. moldavica* include geranial, geranyl acetate, neral, and geraniol, which are responsible for its characteristic aroma and bioactivity (Abdossi *et al.*, 2015; Golparvar *et al.*, 2016). These constituents have demonstrated significant antibacterial, antifungal, antioxidant, and antirheumatic properties, further emphasizing the therapeutic potential of this plant (Aprotosoaie *et al.*, 2016; Aćimović *et al.*, 2022).

Plants frequently encounter various environmental stresses, including drought, soil salinity, heavy metal toxicity, and extreme temperatures, which adversely affect their growth, development, and productivity. Among these, drought is a particularly severe abiotic stress that limits water availability, disrupts photosynthetic activity, impairs nutrient uptake, and inhibits physiological processes such as cell division and expansion. These impacts cumulatively reduce plant performance and yield (Seleiman *et al.*, 2021; El Haddad *et al.*, 2023; Hadipanah *et al.*, 2025). In response to drought stress, plants activate complex signaling networks involving molecules such as abscisic acid (ABA), calcium ions (Ca²⁺), reactive oxygen species (ROS), and nitric oxide (NO). These signals regulate the expression of functional genes (e.g., those related to proline, glycine betaine, soluble sugar, aquaporin, and late embryogenesis abundant proteins) and regulatory genes (e.g., CDPKs and MAPKs), enabling morphological and physiological adaptations to stress (Anjum *et al.*, 2017; Yang *et al.*, 2021).

Previous research has demonstrated that exogenous applications of sodium nitroprusside (SNP) (Pradhan *et al.*, 2020), salicylic acid (Chamani *et al.*, 2025), brassinosteroids (Jangid and Dwivedi, 2017), and polyamines (Sundararajan *et al.*, 2022) can alleviate the negative effects of drought stress by modulating physiological and biochemical pathways.

SNP, a well-known nitric oxide (NO) donor, has been widely used in studies to investigate the protective role of NO under various abiotic stresses, including drought. SNP releases NO upon decomposition, enhancing its bioavailability and biological activity. NO is a critical signaling molecule in plants, playing a pivotal role in growth, development, and stress responses. As a small, highly diffusible, lipophilic, and reactive molecule, NO is involved in a wide range of processes, including photosynthesis, germination, leaf expansion, flowering, and senescence. It also modulates antioxidant defense mechanisms, mitigating oxidative stress induced by ROS (Zangani *et al.*, 2023; Corpas and Palma, 2023; Allagulova *et al.*, 2023b; Ali *et al.*, 2024). Furthermore, SNP treatment during drought induced an increase in NO buildup. Exogenous SNP enhances NO buildup in safflower (Chavoushi *et al.*, 2020) and maize (Majeed *et al.*, 2020) under water stress. However, the efficacy of NO in alleviating stress depends on factors such as concentration, tissue type, plant species, and developmental stage. Specifically, SNP has been shown to regulate the activity of antioxidant enzymes, reduce ROS accumulation, and improve water-use efficiency in drought-stressed plants (Ghadakchiasl *et al.*, 2017; Ragaey *et al.*, 2022;

Chamani *et al.*, 2025). NO can act as a signalling molecule at low concentrations, or it can be toxic at high concentrations and can provoke nitro-oxidative stress. Therefore, practical use requires scrupulous study regarding the mechanisms of SNP action and those of its active derivatives—reactivenitrogen species (RNS). For example, when NO interacts with O_2^{-} , peroxynitrite (NOOO⁻) is formed, which is characterized by less toxic properties than O_2^{-} . Thus, NOOO⁻ formation can be recognized as a direct antioxidant effect of NO (Roy, 2021; Lubyanova and Allagulova, 2024).

While NO's role as a signaling molecule in enhancing plant tolerance to various abiotic stresses has been well documented (Gupta and Seth 2023; Mariyam *et al.* 2023; Prajapati *et al.* 2023), its specific effect on under drought stress in *D. moldavica* plants remains less explored. This study aimed to evaluate the potential of SNP to mitigate PEG-induced drought stress in *D. moldavica* under in vitro conditions. By examining various morphological and physiological parameters, the research provides insights into the mechanisms through which SNP enhances drought tolerance in this medicinally important plant. The findings contribute to understanding the role of NO as a stress-alleviating agent and highlight the practical applications of SNP in promoting the cultivation of drought-tolerant crops in arid and semi-arid regions.

MATERIALS AND METHODS

Plant material

The experiment was conducted as a bi-factorial study in a completely randomized design with three replications in 2023 at Islamic Azad University, Khorasgan (Isfahan), Iran. Seeds of *Dracocephalum moldavica* L. were procured from Pakan Bazr Company, Isfahan, Iran. Seeds were first treated with 70% ethanol for one minute, followed by immersion in a 2% sodium hypochlorite solution for 10 minutes. After sterilization, seeds were thoroughly rinsed several times with sterile distilled water to eliminate any residual sterilizing agents.

In vitro drought induction

The seeds were sown on Petri dishes containing filter paper in half-strength MS medium (Murashige and Skoog, 1962) supplemented with 3% (w/v) sucrose and solidified with 0.8% (w/v) agar. The pH of the medium was adjusted to 5.8 before autoclaving at 121 °C for 15 minutes and then they were grown under illumination of 200 mmol m⁻²s⁻¹ at 16 h photoperiod and ambient temperature of 22–24 °C for 4 days. The 6-day-old seedlings were SNP-pretreated through the roots for 24 h via supplementation with SNP (0, 100, and 200 μM) into growth medium. The 6-day-old plant samples were subjected to osmotic stress through treatment with polyethylene glycol 6000 (PEG 6000) (0%, 10%, 15%, and 20%), were added to the medium. PEG-induced drought conditions were evaluated based on their effects on several morpho-physiological parameters, including the number and length of shoots, number of leaves, number and length of roots, and survival percentage. Observations were recorded 30 days after induction, with specific emphasis on identifying the PEG concentration that imposed optimal drought stress without excessive damage.

Determination of hydrogen peroxide (H_2O_2)

 H_2O_2 content was measured following the protocol by Alexieva *et al.* (2001). Briefly, fresh leaf tissues (0.2 g) were homogenized in 1.5 mL of 0.1% (v/v) trichloroacetic acid (TCA) at $^{\circ}$ C. The homogenate was centrifuged at 15,000× g for 15 minutes at $^{\circ}$ C. The supernatant (500 μ L) was mixed with 500 μ L phosphate buffer (10 mM, pH 7.0) and 1 mL of 1 M potassium iodide (KI). The absorbance of the reaction mixture was measured at 390 nm using a spectrophotometer to estimate H_2O_2 content.

Hydroxyl radical (OH) scavenging assay

The scavenging capacity of hydroxyl radicals (${}^{\bullet}OH$) was determined following the method by Manda *et al.* (2010). Briefly, a reaction mixture containing 1 mL of FeSO₂ (1.5 mM), 0.7 mL of H₂O₂ (6 mM), 0.3 mL sodium salicylate (20 mM), and 100 μ L of plant tissue extract was incubated at 37 ${}^{\circ}C$ for one hour. The absorbance of the mixture was measured at 562 nm using a UV–visible spectrophotometer to determine ${}^{\bullet}OH$ scavenging activity.

Antioxidant enzyme activities

The activities of key antioxidant enzymes were evaluated using fresh leaf tissues (0.3 g), homogenized in 3 mL of serine borate buffer (100 mM Tris-HCl, 10 mM borate, 5 mM serine, and 1 mM diethylenetriaminepentaacetic acid, pH 7.0). The homogenate was centrifuged at $5,000 \times g$ for 10 minutes at 4°C, and the supernatant was used as the enzyme source.

- Superoxide dismutase (SOD, EC 1.12.1.1): SOD activity was measured based on its ability to inhibit the photochemical reduction of nitro blue tetrazolium (NBT), following the method by Beauchamp and Fridovich (1971). The absorbance was recorded at 560 nm.
 - Catalase (CAT, EC 1.11.1.6): CAT activity was determined by measuring the decrease in absorbance at 240 nm due to the degradation of H_2 O_2 , as described by Patra *et al.* (1978).
 - **Peroxidase (POD, EC 1.11.1.7):** POD activity was assessed using the method of Nickel and Cunningham (1969), with absorbance measured at 470 nm.

Total soluble protein content

Total protein content was quantified using the Bradford (1976) method. Fresh leaf samples (0.1 g) were ground in liquid nitrogen and homogenized in 4 mL sodium phosphate buffer (pH 7.2). During grinding, 50 mg of polyvinylpyrrolidone (PVP) and 1.5 mL potassium phosphate buffer containing sodium metabisulfite (0.01 g/100 mL) were added. The homogenate was centrifuged at 15,000 × g for 20 minutes at 4°C. A mixture of 20 μL of the extract and 980 μL of Bradford reagent was prepared, and absorbance was measured at 595 nm using a spectrophotometer. The protein content was calculated using bovine serum albumin (BSA) as a standard.

Statistical analysis

All experimental data were analyzed using analysis of variance (ANOVA) in SAS software version 9.4. The least significant difference (LSD) test was applied to determine significant differences among mean values at a significance level of $p \le 0.05$.

RESULTS AND DISCUSSION

Effect of in vitro drought stress induced by polyethylene glycol (PEG) on morphological parameters in D. moldavica

The results demonstrated that increasing concentrations of PEG significantly reduced the morphological parameters of D. moldavica, including the number of shoots per explant, shoot length, number of leaves, root number, root length, and survival percentage (Table 1). The results demonstrated that reduced its level in the growth medium by 25.8%, 41.5% and 81.4% for the number of shoots, 38.5%, 63.2% and 87.7% for shoot length, 26.1%, 50.9% and 82.7% for number of leaves, 38.4%, 46.5% and 72.9% for root number, 36.6%, 57.9% and 92.7% for root length, and 39%, 50% and 86% for survival percentage, in concentrations 10%, 15% and 20% PEG respectively, relative to the control. Among the tested PEG concentrations, 10% PEG induced the least reduction in these parameters compared to higher concentrations of 15% and 20%. These results indicate that 10% PEG imposed moderate drought stress that was optimal for further experiments, as it provided measurable stress effects while maintaining sufficient survival. In contrast, severe drought stress induced by 20% PEG drastically decreased plant growth, with survival rates dropping to only 14%, accompanied by significant reductions in all other morphological traits. These observations suggest that higher PEG concentrations impose excessive osmotic stress, leading to poor plant viability and limited growth.

Table 1. Effect of drought stress induced *in vitro* by polyethylene glycol (PEG) on different

morphological parameters in D. moldavica. **PEG** Number of Survival Number of Length of Number of Length of root shoots shoots (cm) leaves roots (cm) (%)0 2.48 ± 0.27^{a} 2.85 ± 0.03^{a} 12.35 ± 0.27^{a} 10.15 ± 0.36^{a} 5.76 ± 0.12^{a} 100.00 ± 0.00^{a} 1.84 ± 0.22^{ab} 10 1.75 ± 0.01^{b} 9.12 ± 0.31^{b} 6.25 ± 0.21^{b} 3.65 ± 0.04^{b} 61.00 ± 0.03^{b} 15 1.45 ± 0.00^{ab} 1.05 ± 0.02^{c} 6.06 ± 0.34^{c} 5.43 ± 0.16^{b} 2.42 ± 0.12^{c} 50.00 ± 0.12^{c} 0.46 ± 0.24^{b} 0.35 ± 0.02^{d} 2.13 ± 0.23^d 2.75 ± 0.31^{c} 0.42 ± 0.16^{d} 14.00 ± 1.25^{d} 20

where, PEG = Polyethylene glycol. All the parameters have been recorded after 30 days of transfer in rooting media. Data are in the form of mean \pm SEM, and means followed by the same letters within the columns are not significantly different at P \leq 0.05 using Duncan's multiple range test.

Environmental stress, particularly drought, poses a significant challenge to agricultural productivity by adversely affecting plant growth, physiology, and metabolism. Drought stress inhibits cellular division and elongation, leading to reduced leaf, stem, and root growth. This stress also disrupts photosynthetic efficiency by decreasing stomatal conductance and increasing stomatal resistance, ultimately lowering transpiration and photosynthetic rates (Golparvar *et al.*, 2015; Yang *et al.*, 2021). In this study, polyethylene glycol (PEG) was used to induce in vitro drought stress in *Dracocephalum moldavica*, and the alleviating effects of

sodium nitroprusside (SNP) were investigated. Drought stress significantly reduced all measured morphological parameters, including shoot and root traits and survival rates. The highest stress levels induced by 20% PEG resulted in severe growth inhibition, with survival rates dropping to 14%. These findings align with prior research indicating that severe drought stress reduces turgor pressure, impairs mitosis, and accelerates leaf senescence due to reduced water availability and nutrient absorption (Mahmood *et al.*, 2019; Seleiman *et al.*, 2021; Yang *et al.*, 2021). Meanwhile, Ali et al. (2024), found that higher concentrations of PEG (20%) resulted in adverse effects, including reduced callus mass and regeneration potential, while moderate PEG (5%) stimulated callus induction and regeneration in rice.

Effect of sodium nitroprusside (SNP) on morphological parameters under in vitro drought stress

SNP application demonstrated significant potential to mitigate the adverse effects of PEG-induced drought stress in *D. moldavica*. Morphological parameters showed marked improvements with the application of 100 μ M SNP (T2 treatment) compared to untreated controls (T1) and plants treated with 200 μ M SNP (T3). Specifically, T2-treated plants recorded the highest values for the number of shoots (1.90 \pm 0.21), shoot length (1.93 \pm 0.01 cm), number of leaves (14.12 \pm 1.04), root number (8.46 \pm 0.43), root length (4.91 \pm 0.41 cm), and survival percentage (79.21 \pm 0.34%). In comparison, plants treated with 200 μ M SNP (T3) exhibited a decline in these parameters, with significantly reduced shoot and root growth and survival rates. This indicates that excessive SNP concentrations may lead to oxidative stress, negatively affecting plant growth. Thus, 100 μ M SNP emerged as the optimal concentration for enhancing morphological traits under drought conditions (Table 2).

Table 2. Effect of sodium nitroprusside and polyethylene glycol on different morphological parameters in *D. moldavica* under *in vitro* drought condition.

PEG	Number of	Length of	Number of	Number of	Length of	Survival
	shoots	shoots (cm)	leaves	roots	root (cm)	(%)
T0 (0% PEG) (control without stress)	1.95 ± 0.02^{a}	2.25 ± 0.12^{a}	13.40 ± 1.21^{a}	10.32 ± 0.16^{a}	6.12 ± 0.23^{a}	100.0 ± 0.0^{a}
T1 (10% PEG) (control with stress)	1.62 ± 0.17^{ab}	1.42 ± 0.14^{ab}	7.23 ± 0.14^{ab}	5.68 ± 0.36^{b}	2.89 ± 0.25^{b}	48.34 ± 0.31^{b}
T2 (10% PEG + 100 μ M SNP)	1.90 ± 0.21^a	1.93 ± 0.01^{a}	14.12 ± 1.04^{a}	8.46 ± 0.43^{ab}	4.91 ± 0.41^{ab}	79.21 ± 0.34^{ab}
T3 (10% PEG + 200 μ M SNP)	1.45 ± 0.29^b	0.35 ± 0.21^{b}	5.63 ± 0.31^{b}	5.78 ± 0.48^b	2.13 ± 0.15^{b}	47.43 ± 0.03^{b}

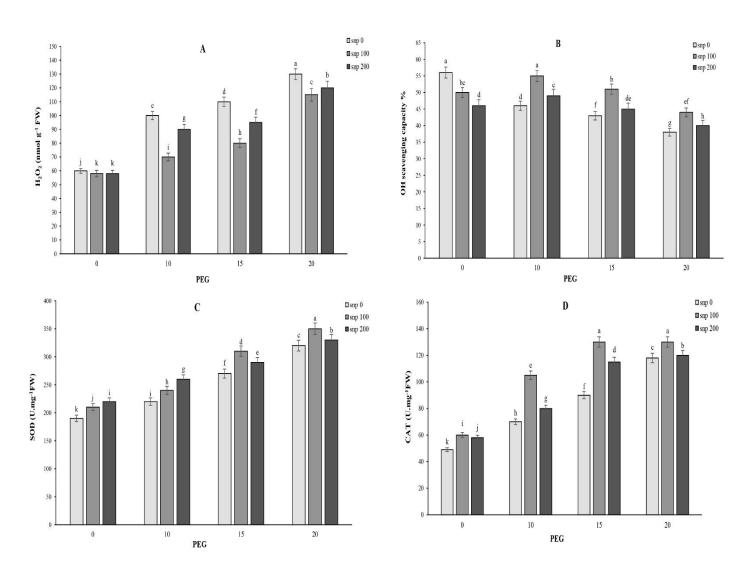
where, PEG = Polyethylene glycol, SNP = Sodium nitroprusside. Data are in the form of mean \pm SEM, and means followed by the same letters within the columns are not significantly different at $P \le 0.05$ using Duncan's multiple range test.

In the present investigation, T2 treatment showed best response with respect to number of shoots (1.90 \pm 0.21) and length of shoots (1.93 \pm 0.01 cm), as compared to control with stress (T1) under *in vitro* drought stress (Table 2). It was noted from the data that drought stress induced by 10 % PEG + 200 μ M SNP (T3) significantly reduced number of leaves by (5.63 \pm 0.31) as compared to control without stress (T0) (Table 2). Also, these data are consistent with the previously obtained data on root growth stimulation in different plant species through treatment with SNP in optimal concentrations (Kolbert *et al.*, 2019; Pradhan *et al.*, 2020; Allagulova *et al.*, 2023a).

Moderate stress levels (10% PEG), however, allowed for partial growth, making this concentration ideal for further experimentation. SNP treatment demonstrated substantial

potential to counteract the effects of drought stress, particularly at 100 μM. Plants treated with 100 μM SNP exhibited significantly improved growth indices, including higher shoot and root numbers, increased length, and enhanced survival percentages. These results indicate the effectiveness of SNP as a nitric oxide (NO) donor in mitigating drought-induced growth inhibition. By promoting cytokinin signaling, NO likely enhances cell division and elongation, leading to improved shoot and root development (Ghadakchiasl *et al.*, 2017; Ullah *et al.*, 2025). NO plays a pivotal role in the formation of root architecture, modulating the growth of the primary roots, lateral and adventitious roots, and root hair development (Lubyanova and Allagulova, 2024). There is considerable evidence demonstrating the alleviation of the negative effects of different stresses via the exogenous treatment of plants with NO donors in proper concentrations, indicating their potential practical application to improve crop growth and productivity (Lubyanova *et al.*, 2022).

Shehzad *et al.* (2023) reported pretreatment SNP under drought caused a remarkable increase in growth traits like shoot length, root length, shoot fresh weight, shoot dry weight, root dry weight in sunflower.


In research by Jafari and Shahsavar, (2022) showed that drought stress by using polyethylene glycol (PEG 6000) led to a reduction in shoot number, shoot length, leaf number, and fresh and dry weight, while the application of 25 μM SNP led to a drought stress tolerance of *Citrus aurantifolia* under in vitro conditions. Also Sundararajan *et al.* (2022) reported pretreatment with SNP in the concentrations of 150 μM resulted in effective mitigation of drought stress in *Solanum lycopersicum* seedlings. Also, in research by Allagulova *et al.* (2023a) showed that SNP pretreatment has stimulatory and protective effects on the growth of shoots and roots of wheat seedlings subjected to salinity or PEG-induced dehydration. Maslennikova *et al.* (2017) reported pretreatment with SNP or its presence in the germination medium at the concentrations of 50–200 μM promoted the subsequent increase in the linear sizes of the shoots and roots of 4–7-day-old wheat seedlings. On the other hand, it has been reported that NO is able to suppress root growth, the exogenous NO treatment of tomato plant inhibited the growth of the primary roots, indicating its concentration dependent role in the regulation of root growth (Correa-Aragunde *et al.*, 2006).

Effect of SNP on physiological parameters under in vitro drought stress

Our previous studies suggested that high concentrations of polyethylene glycol (PEG) increased the production of H_2O_2 , superoxide dismutase activity, catalase activity, peroxidase activity and a significant drop in protein content (Figure 1). Pretreatment with SNP decreased PEG-induced root and leaves damages by differently regulating the antioxidant enzymes under stress conditions (Table 2). PEG-induced osmotic stress caused a rapid and reversible increase H_2O_2 production, plants exposed to drought stress without SNP treatment (20% PEG + 0 SNP) exhibited the highest H_2O_2 levels, indicating severe oxidative stress. SNP application, particularly at 100 μ M, significantly reduced H_2O_2 accumulation compared to untreated controls, demonstrating its role in mitigating oxidative damage (Figure 1A).

Drought stress reduced the antioxidant capacity of plant tissues, reflected by decreased OH scavenging activity. However, SNP-treated plants showed significant improvements in

antioxidant capacity, with 100 μ M SNP restoring 'OH scavenging activity to near-optimal levels (Fig. 1B). SNP treatments significantly enhanced the activity of key antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Plants treated with 100 μ M SNP exhibited the highest enzyme activities compared to other treatments, underscoring the role of SNP in activating enzymatic defense mechanisms (Figure 1C, D, E). Drought stress (20% PEG) significantly reduced protein content in untreated plants. SNP application restored protein levels, with the highest content observed in plants treated with 100 μ M SNP. This indicates the role of SNP in maintaining cellular homeostasis and metabolic activity under stress conditions (Figure 1F).

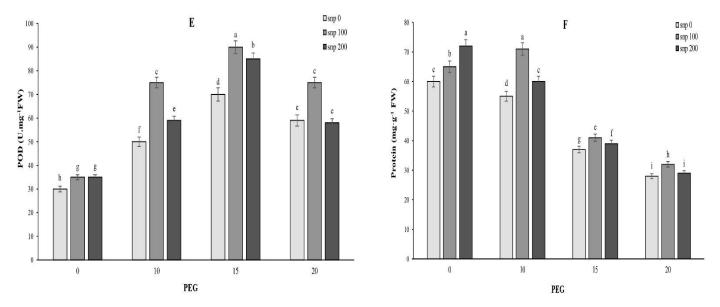


Figure 1. Effect of sodium nitroprusside (SNP) and polyethylene glycol (PEG) on H_2O_2 content (A), OH scavenging (B), superoxide dismutase (SOD) activity (S), catalase (CAT) activity (D), peroxidase (POD) activity (E) and protein content (F) in *D. moldavica* grown under *in vitro* drought condition. Different letters above the bars indicate statistically significant differences (P < 0.01).

Drought stress elevates reactive oxygen species (ROS) levels, including free radicals (superoxide anion, O₂, hydroproxyl radical HO₂, alkoxy radical RO and hydroxyl radical, OH) and nonradical molecules (hydrogen peroxide, H₂O₂, and singlet oxygen ¹O₂), which cause oxidative damage to lipids, proteins, and nucleic acids (Hasanuzzaman *et al.*, 2020; Farooq *et al.*, 2020), the present outcomes are in agreement with Farooq *et al.* (2020) and Farouk and Al-Huqail, (2020). This study found that untreated plants exposed to high PEG concentrations exhibited elevated H₂O₂levels, indicating heightened oxidative stress. SNP application, particularly at 100 μM, significantly reduced H₂O₂accumulation, highlighting its role in alleviating oxidative damage.

The improved oxidative stress response in SNP-treated plants can be attributed to enhanced antioxidant defense systems. Plants keep ROS under control by an efficient and versatile scavenging system; including antioxidant enzymes (catalase, CAT; superoxide dismutase, SOD; peroxidase, POD; ascorbate peroxidase, APX; etc.) and non-enzymatic (ascorbate, ASC; glutathione, GSH; carotenoids; phenolic acids; flavonoids; etc.). These substances can react directly with ROS or appear as substrates of enzymes in the ROS scavenging mechanism (Young and Lowe, 2018; Laxa *et al.*, 2019). SNP-treated plants exhibited higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), which are key enzymes in detoxifying ROS.

SOD activity acts to alleviate these effects by promoting the transformation of O_2^{\bullet} into less harmful H_2O_2 and O_2 (Kaya *et al.*, 2024). The study observed an enhancement in SOD activity due to drought, but SNP treatment markedly increased SOD activity in *D. moldavica*, indicating that SNP does promote SOD activity to counteract ROS generation in the presence of drought. Additionally, CAT and POD enzyme activity further degrade H_2O_2 into H_2O and O_2 , thereby maintaining cellular redox balance (Farouk and Al-Huqail 2020), increased in

response to drought and was further boosted by SNP treatment in *D. moldavica*. This suggests that SNP treatment enhances CAT activity, potentially contributing to the plant's competence to tolerate oxidative stress induced by drought. Moreover, the recorded increased in POD activity with SNP treatment may help reduce H₂O₂ accumulation, further enhancing the *D. moldavica* plant's resilience to oxidative damage. These findings corroborate previous studies indicating the role of SNP in enhancing enzymatic antioxidant activity under abiotic stress (Beligni *et al.*, 2002; Verma *et al.*, 2014).

SNP treatment increased the activity of antioxidant enzymes and upregulated the expression of APX genes in wheat plants under heat stress (Iqbal *et al.*, 2022). Spraying the soybean plants with 100 μM SNP reduced the levels of H₂O₂ accumulation and contributed to the additional activation of SOD, CAT, and APX in leaves under PEG-induced drought (Rezayian *et al.*, 2020), which is consistent with the results of this study. The decrease in PEG-induced H₂O₂ production by seedling under the influence of SNP during stress may be due to direct ROS interaction with the NO, leading to NOOO⁻ formation, which in turn may affect the catalytic activity of antioxidant enzymes (Lubyanova and Allagulova, 2024). Drought stress significantly reduced protein content in untreated plants, reflecting impaired metabolic activity. SNP application restored protein levels, with the highest content observed in plants treated with 100 μM SNP. This suggests that SNP mitigates drought-induced metabolic disruptions, enabling the maintenance of essential cellular processes. The protective effect of SNP likely involves stabilizing proteins and enzymes, enhancing stress tolerance (Farouk and Al-Huqail, 2020).

Interestingly, the study revealed a concentration-dependent effect of SNP, with 100 µM proving more effective than 200 µM in alleviating drought stress. While low concentrations of SNP promote growth and antioxidant activity, excessive concentrations may induce oxidative stress, impairing cellular function. High SNP levels may lead to ion imbalance, membrane degradation, and increased ROS production (Ghadakchiasl *et al.*, 2017), as evidenced by reduced growth and survival rates in plants treated with 200 µM SNP. It seems promising that the exogenous application of NO donors, including SNP, could increase plant stress resistance and crop productivity (Wimalasekera and Scherer, 2022). However, SNP is an unstable compound decomposing with the release of iron and cyanides, which can have a toxic effect on the plants, negating the positive effects of NO (Keisham *et al.*, 2019).

This finding supports the hypothesis that SNP, as a source of NO, improves plant resilience to drought by regulating ROS and enzyme activities. By enhancing morpho-physiological traits, antioxidant activity, and protein content, SNP application could improve the cultivation of this medicinally important plant in arid and semi-arid regions. The use of SNP offers a promising strategy for enhancing drought tolerance and optimizing essential oil production. Future research should focus on understanding the molecular mechanisms underlying SNP-induced stress tolerance. Studies exploring different SNP concentrations, application methods, and interactions with other signaling molecules could provide deeper insights into its role in mitigating abiotic stress. Additionally, field experiments are needed to validate the efficacy of SNP under natural drought conditions, paving the way for its practical application in sustainable agriculture.

CONCLUSION

This study demonstrates the significant impact of polyethylene glycol (PEG)-induced drought stress on the growth and physiology of *Dracocephalum moldavica* L., as well as the mitigating effects of SNP, a nitric oxide (NO) donor. Drought stress severely reduced the morphological traits of D. moldavica, including shoot and root growth, number of leaves, and survival rates, with the most pronounced effects observed at higher PEG concentrations. SNP application significantly alleviated the adverse effects of drought stress, with 100 µM SNP emerging as the most effective concentration for improving plant performance. The application of 100 µM SNP not only enhanced growth parameters but also bolstered the plant's physiological defense mechanisms by reducing H₂ O₂ levels, increasing (OH) scavenging activity, and boosting the activities of key antioxidant enzymes such as (SOD), (CAT), and (POD). Moreover, SNP-treated plants exhibited higher protein content, reflecting improved metabolic activity and cellular homeostasis under drought stress. The results underscore the potential of SNP as an effective growth regulator for improving drought tolerance in D. moldavica. This finding holds practical significance for the cultivation of drought-tolerant medicinal plants, particularly in arid and semi-arid regions, where water scarcity is a major limiting factor. The enhanced stress resilience provided by SNP can contribute to increased yields of essential oils and other bioactive compounds, thereby supporting the pharmaceutical and aromatic industries. Our results indicate that SNP is able to mitigate the destructive effects of osmotic stress on D. moldavica seedlings. However, the mechanisms of SNP protective action may be different at certain periods of stress exposure. Additionally, field trials are necessary to validate these findings under natural drought conditions, enabling the development of practical applications for sustainable agriculture. Investigations into the synergistic effects of SNP with other plant growth regulators and biostimulants could also provide insights into optimizing stress management strategies.

REFERENCES

- Abdossi V, Mohammadi H, Hashemian Ahmadi SH, Hadipanah A, 2015. The response of dragon head (*Dracocephalum moldavica* L.) plant to sowing date and planting density. Biological Forum–An International Journal. 7(2): 36-42.
- Aćimović M, Šovljanski O, Šeregelj V, Pezo L, Zheljazkov VD, Ljujić J, Tomić A, Ćetković G, Čanadanović-Brunet J, Miljković A. 2022 Chemical composition, antioxidant, and antimicrobial activity of *Dracocephalum moldavica* L. essential oil and hydrolate. Plants, 11: 941. https://doi.org/10.3390/plants11070941.
- Alexieva V, Sergiev I, Mapelli S, Karanov E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment. 24(12): 1337-1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x.
- Ali A, Kumari B, Choudhury BU, Bhattacharjee B. 2024. Influence of polyethylene glycol, sodium nitroprusside, and carbon sources on *in vitro* callus induction and regeneration in drought-tolerant and drought-sensitive rice (*Oryza sativa* L.). In Vitro Cell.Dev.Biol.-Plant. 60: 659–669. https://doi.org/10.1007/s11627-024-10459-4.
- Allagulova C, Avalbaev A, Lubyanova A, Plotnikov A, Yuldashev R, Lastochkina O. 2023a. Nitric oxide (NO) improves wheat growth under dehydration conditions by regulating phytohormone levels and

- induction of the expression of the TADHN dehydrin gene. Plants, 12: 4051. https://doi.org/10.3390/plants12234051.
- Allagulova CR, Lubyanova AR, Avalbaev AM. 2023b. Multiple ways of nitric oxide production in plants and its functional activity under abiotic stress conditions. Int. J. Mol. Sci. 24: 11637. https://doi.org/10.3390/ijms241411637.
- Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF, Ali I, Wang LC. 2017. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in plant science. 8: 69. https://doi.org/10.3389/fpls.2017.00069.
- Aprotosoaie AC, Mihai CT, Vochita G, Rotinberg P, Trifan A, Luca, SV, Petreus, T, Gille E, Miron A. 2016. Antigentoxic and antioxidant activities of a polyphenolic extract from European *Dracocephalum moldavica* L. Ind. Crops. Prod. 79: 248–257. https://doi.org/10.1016/j.indcrop.2015.11.004.
- Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry. 44(1): 276-287.
- Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL. 2002. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant physiology. 129(4): 1642-1650.
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.
- Chamani F, Farahbakhsh H, Naser Alavi SM, Pasandi Pour A. 2025. Salicylic acid and sodium nitroprusside improve the drought tolerance of henna (*Lawsonia inermis* L.) by modulating its physiological and biochemical characteristics. J Soil Sci Plant Nutr. 25: 1830–1854. https://doi.org/10.1007/s42729-025-02240-2
- Chavoushi M, Najafi F, Salimi A, Angaji SA. 2020. Effect of salicylic acid and sodium nitroprusside on growth parameters, photosynthetic pigments and secondary metabolites of safflower under drought stress. Sci Hortic. 259: 108823. https://doi.org/10.1016/j.scienta.2019.108823.
- Corpas FJ, Palma JM. 2023. Functions of NO and H₂S signal molecules against plant abiotic stress. In plant abiotic stress signaling. Methods in molecular biology; Couée, I., Ed.; Humana: New York, NY, USA, 2642: 97–109. https://doi.org/10.1007/978-1-0716-3044-0 5.
- Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L. 2006. Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J. Exp. Bot. 57: 581–588. https://doi.org/10.1093/jxb/erj045.
- El Haddad N, En-Nahli Y, Choukri H, Aloui K, Mentag R, El-Baouchi A, Hejjaoui K, Rajendran K, Smouni A, Maalouf F, Kumar S. 2023. Metabolic mechanisms underlying heat and drought tolerance in Lentil accessions: Implications for stress tolerance breeding. Plants. 12(23): 3962. https://doi.org/10.3390/plants12233962.
- Farooq A, Bukhari SA, Akram NA, Ashraf M, Wijaya L, Alyemeni MN, Ahmad P. 2020. Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (*Carthamus tinctorious* L.). Plants. 9(1): 104. https://doi.org/10.3390/plants9010104.
- Farouk S, Al-Huqail AA. 2020. Sodium nitroprusside application regulates antioxidant capacity, improves phytopharmaceutical production and essential oil yield of marjoram herb under drought. Ind. Crops. Prod. 158: 113034. https://doi.org/10.1016/j.indcrop.2020.113034.
- Ghadakchiasl A, Mozafari A, Ghaderi N. 2017. Mitigation by sodium nitroprusside of the effects of salinity on the morpho-physiological and biochemical characteristics of *Rubus idaeus* under in vitro conditions. Physiol Mol Biol Plants. 23: 73–83. https://doi.org/10.1007/s12298-016-0396-5.
- Golparvar AR, Gheisari MM, Naderi D, Mehrabi AM, Hadipanah A, Salehi S. 2015. Determination of the best indirect selection criteria in Iranian durum wheat (*Triticum aestivum* L.) genotypes under irrigated and drought stress conditions. Genetika. 47(2): 549-558. https://doi: 10.2298/GENSR1502549G.

- Golparvar AR, Hadipanah A, Gheisari MM, Khaliliazar R. 2016. Chemical constituents of essential oil of *Dracocephalum moldavica* L. and *Dracocephalum kotschyi* Boiss. from Iran. Acta Agriculturae Slovenica. 107(1): 25-31. https://doi.org/10.14720/aas.2016.107.1.03.
- Gupta P, Seth CS. 2023. 24-epibrassinolide regulates functional components of nitric oxide signalling and antioxidant defense pathways to alleviate salinity stress in *Brassica juncea* L. cv. Varuna. J Plant Growth Regul. 42(7): 4207–4222. https://doi.org/10.1016/j. niox. 2020. 01. 014.
- Hadipanah A, Shabani L, Sabzalian MR, Bagheri L. 2025. Priming effects of gamma radiation on the mitigation of drought stress: The morpho-physiological responses of *Oenothera speciosa* Nutt. Ind. Crops. Prod. 229: 121025. https://doi.org/10.1016/j.indcrop.2025.121025.
- Hasanuzzaman M, Bhuyan MB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants. 9(8): 681. https://doi.org/10.3390/antiox9080681.
- Hashemian Ahmadi SH, Hadipanah A. 2014. The effect of swoing date, planting density and bio-fertilizers on the essential oil content of dragonhead (*Dracocephalum moldavica* L.) in Sari climatic condition. Electronic Journal of Biology. 10(3): 98-106.
- Iqbal N, Sehar Z, Fatma M, Umar S, Sofo A, Khan NA. 2022. Nitric oxide and abscisic acid mediate heat stress tolerance through regulation of osmolytes and antioxidants to protect photosynthesis and growth in wheat plants. Antioxidants. 11: 372. https://doi.org/10.3390/antiox11020372.
- Jafari M, Shahsavar AR. 2022. Sodium nitroprusside: its beneficial role in drought stress tolerance of "Mexican lime" (*Citrus aurantifolia* (Christ.) Swingle) under in vitro conditions. In Vitro Cell.Dev.Biol.-Plant. 58: 155–168. https://doi.org/10.1007/s11627-021-10218-9.
- Jangid KK, Dwivedi P. 2017. Physiological and biochemical changes by nitric oxide and brassinosteroid in tomato (*Lycopersicon esculentum* Mill.) under drought stress. Acta Physiologiae Plantarum. 39: 1-10. https://doi.org/10.1007/s11738-017-2373-1.
- Kaya C, Uğurlar F, Shekhar Seth C. 2024. Sodium nitroprusside modulates oxidative and nitrosative processes in *Lycopersicum esculentum* L. under drought stress. Plant Cell Reports. 43: 152. https://doi.org/10.1007/s00299-024-03238-3
- Keisham M, Jain P, Singh N, Toerne C, Bhatla SC, Lindermayr C. 2019. Deciphering the nitric oxide, cyanide and iron-mediated actions of sodium nitroprusside in cotyledons of salt stressed sunflower seedlings. Nitric Oxide. 88: 10–26.
- Kolbert Z, Barroso JB, Brouquisse R, Corpas FJ, Gupta KJ, Lindermayr C, Loake GJ, Palma JM, Petrivalsk M, Wendehenne, D. 2019. A forty year journey: The generation and roles of NO in plants. Nitric Oxide. 93: 53. https://doi.org/10.1016/j.niox.2019.09.006.
- Laxa M, Liebthal M, Telman W, Chibani K, Dietz K-J. 2019. The role of the plant antioxidant system in drought tolerance. Antioxidants. 8(4): 94. https://doi.org/10.3390/antiox8040094.
- Lubyanova A, Allagulova C. 2024. Exogenous sodium nitroprusside affects the redox system of wheat roots differentially regulating the activity of antioxidant enzymes under short-time osmotic stress. Plants. 13: 1895. https://doi.org/10.3390/plants13141895.
- Lubyanova AR, Bezrukova MV, Shakirova FM. 2022. Involvement of nitric oxide in methyl jasmonate-mediated regulation of water metabolism in wheat plants under drought stress. Stresses, 2: 477–492. https://doi.org/10.3390/stresses2040033.
- Mahmood T, Khalid S, Abdullah M, Ahmed Z, Shah MKN, Ghafoor A, Du X. 2019. Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells. 9(1): 105. https://doi.org/10.3390/cells9010105.
- Majeed S, Nawaz F, Naeem M, Ashraf MY, Ejaz S, Ahmad KS, Tauseed S, Farid G, Khalid I, Mehmood K. 2020. Nitric oxide regulates water status and associated enzymatic pathways to inhibit nutrients imbalance in maize (*Zea mays* L.) under drought stress. Plant Physiol Biochem. 155: 147–160. https://doi.org/10.1016/j.plaphy. 2020.07.005.
- Manda KR, Adams C, Ercal N. 2010. Biologically important thiols in aqueous extracts of spices and evaluation of their in vitro antioxidant properties. Food Chemistry. 118(3): 589-593. https://doi.org/10.1016/j.foodchem.2009.05.025.

- Mariyam S, Bhardwaj R, Khan NA, Sahi SV, Seth CS. 2023. Review on nitric oxide at the forefront of rapid systemic signaling in mitigation of salinity stress in plants: crosstalk with calcium and hydrogen peroxide. Plant Sci. https://doi.org/10.1016/j.plantsci.2023.111835.
- Maslennikova DR, Allagulova CR, Fedorova KA, Plotnikov AA, Avalbaev AM, Shakirova FM. 2017. Cytokinins contribute to realization of nitric oxide growth-stimulating and protective effects on wheat plants. Russ. J. Plant Physiol. 64: 665–671. https://doi.org/10.1134/S1021443717040094.
- Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum. 15(3): 473-497.
 - Nickel KS, Cunningham B. 1969. Improved peroxidase assay method using leuco 2, 3', 6-trichloroindophenol and application to comparative measurements of peroxidatic catalysis. Analytical Biochemistry. 27(2): 292-299.
 - Patra H, Kar M, Mishra D. 1978. Catalase activity in leaves and cotyledons during plant development and senescence. Biochemie und Physiologie der Pflanzen. 172(4): 385-390.
 - Pradhan N, Singh P, Dwivedi P, Pandey DK. 2020. Evaluation of sodium nitroprusside and putrescine on polyethylene glycol induced drought stress in *Stevia rebaudiana* Bertoni under in vitro condition. Ind. Crops. Prod. 154: 112754. https://doi.org/10.1016/j.indcrop.2020.112754.
 - Prajapati P, Gupta P, Kharwar RN, Seth CS. 2023. Nitric oxide mediated regulation of ascorbate-glutathione pathway alleviates mitotic aberrations and DNA damage in *Allium cepa* L. under salinity stress. Int J Phytoremediation. 25(4): 403–414. https://doi.org/ 10. 1080/ 15226 514. 2022. 20862
 - Ragaey MM, Sadak MS, Dawood MF, Mousa NH, Hanafy RS, Latef AAHA. 2022. Role of signaling molecules sodium nitroprusside and arginine in alleviating salt-induced oxidative stress in wheat. Plants. 11(14): 1786. https://doi.org/10.3390/plants11141786.
 - Rezayian M, Ebrahimzadeh H, Niknam V. 2020. Nitric oxide stimulates antioxidant system and osmotic adjustment in soybean under drought stress. J. Soil Sci. Plant Nutr. 20: 1122–1132. https://doi.org/10.1007/s42729-020-00198-x.
 - Roy S. 2021. Role of nitric oxide as a double edged sword in root growth and development. In rhizobiology: Molecular physiology of plant roots. Signaling and communication in plants; Mukherjee, S., Baluška, F., Eds.; Springer International Publishing AG: Cham, Switzerland, 167–193. https://doi.org/10.1007/978-3-030-84985-6_11.
- Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10(2), 259. https://doi.org/10.3390/plants10020259.
 - Shehzad MA, Hussain I, Akhtar G, Ahmad KS, Nawaz F, Faried, HN, Mehmood A. 2023. Insights into physiological and metabolic modulations instigated by exogenous sodium nitroprusside and spermidine reveals drought tolerance in *Helianthus annuus* L. Plant Physiology and Biochemistry. 202: 107935. https://doi.org/10.1016/j.plaphy.2023.107935.
 - Sundararajan S, Shanmugam R, Rajendran V, Sivakumar HP, Ramalingam S. 2022. Sodium nitroprusside and putrescine mitigate PEG-induced drought stress in seedlings of *Solanum lycopersicum*. J Soil Sci Plant Nutr. 22: 1019–1032. https://doi.org/10.1007/s42729-021-00710-x.
 - Ullah F, Saqib S, Khan W, Zhao L, Khan W. Li M-Y, Xiong Y-C. 2025. Sodium nitroprusside and melatonin improve physiological vitality and drought acclimation via synergistically enhancing antioxidant response in dryland maize. J Plant Growth Regul. 44: 891–908. https://doi.org/10.1007/s00344-024-11498-2.
 - Verma A, Malik C, Gupta V. 2014. Sodium nitroprusside-mediated modulation of growth and antioxidant defense in the in vitro raised plantlets of peanut genotypes. Peanut Science. 41(1): 25-31.
 - Wimalasekera R, Scherer GFE. 2022. Nitric oxide (NO) and lateral root development in plants under stress. In nitric oxide in plant biology: An ancient molecule with emerging roles; Singh VP, Singh S, Sandalio LM. Eds.; Academic Press: Cambridge, MA, USA. 319–329. https://doi.org/10.1016/B978-0-12-818797-5.00003-0.
 - Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. 2021. Response mechanism of plants to drought stress. Horticulturae. 7(3): 50. https://doi.org/10.3390/ horticulturae7030050.

- Young AJ, Lowe GL. 2018. Carotenoids-antioxidant properties. MDPI 28. https://doi.org/10.3390/antiox7020028.
- Zangani E, Angourani HR, Andalibi B, Rad SV, Mastinu A. 2023. Sodium nitroprusside improves the growth and behavior of the stomata of *Silybum marianum* L. subjected to different degrees of drought. Life. 13(4): 875. https://doi.org/10.3390/life13040875.