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Abstract  

With advances in machine-learning methods, fusing biomechanical data with artificial intelligence has become an efficient approach for 

motion analysis and training optimization. This study set out to develop and evaluate an intelligent system for biomechanical analysis and 

optimization of physical training among personnel of the Islamic Republic of Iran Army. Motion data collected during a battery of standard 

military exercises were recorded using inertial measurement units (IMUs) alongside synchronized video. After preprocessing, 

biomechanical features—including joint angles, angular velocity and acceleration, and ground reaction forces (GRF)—were extracted. To 

identify movement patterns and assess performance indices, AI models comprising deep neural networks (DNN/CNN–LSTM) and support 

vector machines (SVM) were employed. Results showed that the system achieved accuracy >92% in distinguishing optimal movements 

from inefficient patterns associated with increased joint loading and muscular fatigue. Incorporating the system’s outputs into personalized 

training prescriptions yielded, in pre–post evaluations, an 18% reduction in the estimated risk of musculoskeletal injury and a 15% 

improvement in physical performance indices. Overall, the findings indicate that integrating AI and biomechanics offers an effective 

pathway to intelligent military training, enhanced combat readiness, and reduced training-related injuries across the armed forces.   
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1. Introduction  

In recent years, artificial intelligence (AI)—particularly in 

combination with wearable sensing technologies—has 

advanced rapidly across engineering and biomedical 

domains [1–3]. One arena where this transformation has 

been especially impactful is sport and military 

biomechanics [4–6]. By quantifying human movement in 

terms of forces, joint angles, and spatiotemporal patterns, 

biomechanics enables deeper insight into muscle–joint 

function and load-related consequences [7]. 

In military environments, personnel are continuously 

exposed to high mechanical loads, making the concurrent 

attainment of physical readiness, endurance, and 

movement precision essential [8–10]. Consequently, 

training design and analysis must be evidence-based so as 

to enhance performance while mitigating the risk of 

musculoskeletal injury [11–13]. Whereas performance 

evaluation historically relied largely on coach 

observation—with inherently limited accuracy [14–15]—

advances in inertial measurement units (IMUs), video 

systems, and machine-learning algorithms now permit 

data-driven, high-fidelity movement analysis [16–18]. 

Integrating biomechanical data with AI models has 

yielded systems that not only assess performance but also 

recommend individualized training prescriptions [19–22]. 

A growing body of research indicates that deep neural 

networks, classical methods such as support vector 

machines (SVM), and reinforcement-learning (RL) 

paradigms can push the accuracy of optimal-movement 

detection beyond 90% and enable near-real-time feedback 

[23–29]. Within the military context, standard exercises—

running, jumping, push-ups, and strength tasks—can 

impose disproportionate loads on joints and the spine if 

performed with suboptimal technique, thereby elevating 

injury risk [30–35]. Intelligent systems have been 

reported to identify movement deficits, correct technique, 

and improve training efficiency [36–38]. Recent work 

further underscores the use of IMU data and computer 

vision for biomechanical analysis of military personnel 

and for detecting suboptimal patterns in both combat-

related and training movements [39–44]. 

The present study aims to develop and evaluate a hybrid 

intelligent system—combining machine-learning 

algorithms with biomechanical analysis—for the 

assessment and optimization of physical training in the 
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Islamic Republic of Iran Army. Leveraging real-world 

data collected from active personnel, the proposed system 

analyzes movement patterns and provides data-driven 

recommendations to enhance physical status and reduce 

injury risk [45–47]. The principal innovation lies in the 

concurrent integration of sensor-based biomechanical 

measurements with deep-learning models and their 

deployment in military training scenarios. 

2. Methods 

2.1. Participants and Data Collection 

Cohort. The study population comprised volunteers whose 

capabilities closely matched those of active personnel in 

the Islamic Republic of Iran Army across combat and 

training units. Thirty participants were recruited according 

to predefined inclusion criteria: absence of 

musculoskeletal pathology, no injury within the previous 

six months, and the ability to perform standard military 

exercises [1]. Demographics (mean ± SD) were: age 27.3 

± 2.8 years, height 177.2 ± 5.4 cm, and body mass 72.1 ± 

4.6 kg. 

Training protocol. Each participant performed five 

common military fitness tasks: 

1. moderate-speed straight-line running (Run Test); 

2. military squat; 

3. military push-up; 

4. vertical countermovement jump from standing; 

5. traversal of a standard 1.5 m obstacle (Obstacle 

Climb). 

Each task was executed for three repetitions to ensure 

statistical reliability of the recordings [3–4]. Exercise 

order was randomized/rotated per participant, and 

standardized rest intervals were provided between sets. 

Data acquisition. Kinematic signals were recorded using 

Xsens Awinda IMUs mounted on the ankles, knees, 

pelvis/hip, elbows, and shoulders. Raw signals included 

linear acceleration (m/s²), angular velocity (rad/s), and 

joint angles (°) along the X, Y, and Z axes. A sampling 

rate of 100 Hz was used to enable high-fidelity analysis of 

movement patterns [5–6]. For synchronization, 120 fps 

video was captured; sensor streams and video were 

recorded concurrently in MVN Analyze and exported as 

CSV (signals) and MP4 (video) files [7]. Environmental 

conditions (surface, ambient temperature, and footwear) 

were standardized across participants. 

Fig 1. Schematic illustration of inertial sensor placement on key 

anatomical landmarks—ankle, knee, hip, shoulder, and elbow—

on the participant 

Coding and dataset size. Each trial was coded by task 

type, participant ID, and repetition number. In total, 30 

participants × 5 tasks × 3 repetitions yielded 450 valid 

trials, which were subsequently used for preprocessing 

and intelligent modeling. 

Following data collection, each trial was coded by task 

type, participant identifier, and repetition count. In total, 

450 valid movement trials were derived and subsequently 

used for signal processing and intelligent modeling. 

2.2. Instruments and Sensors 

Motion data were acquired using the Xsens Awinda 

wireless inertial system (IMU; Netherlands). Each IMU 

comprised tri-axial accelerometers, gyroscopes, and 

magnetometers, recording at 100 Hz with an approximate 

angular accuracy of 0.5° [1–3]. To ensure sufficient 

biomechanical coverage, five sensors were mounted on 

the ankles, knees, pelvis/hip, shoulders, and elbows. 

Sensor placements were selected with reference to the 

Gait2392 musculoskeletal model in OpenSim to enable 

accurate extraction of joint angles and kinematic 

parameters [4–6]. 

Fig 2. IMU sensor placement on the body and orientation of the 

measurement axes (X/Y/Z). 

Signals and data transmission. Raw signals comprised tri-

axial linear acceleration (m/s²), angular velocity (rad/s), 

and joint angle (°) along the X, Y, and Z axes. Data were 

streamed wirelessly at 2.4 GHz to a receiver unit and 

logged in MVN Analyze. Each sensor carried a unique 

digital ID to prevent interference and channel cross-talk. 

Calibration. Prior to recording, static calibration (standard 

anatomical pose) was performed to define the body’s 

reference frame, followed by dynamic calibration using a 

set of controlled limb movements to refine the kinematic 

model [7]. 

Synchronization and video. To improve temporal 

alignment and accuracy, a high-speed digital camera 

(Sony RX10 IV, 120 fps) positioned ~3 m from the 
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capture area was used. Key video frames were 

synchronized with numerical signals in Kinovea 0.9.6, 

and both data streams were integrated within MVN 

Analyze [8–9]. 

 

Fig 3. Camera layout, field of view, and line-of-sight relative to 

the movement execution area. 

Preprocessing and quality control. Sensor (CSV) and 

video (MP4) data were imported into MATLAB R2023a. 

To attenuate high-frequency noise, a fourth-order 

Butterworth low-pass filter with a 6 Hz cutoff was 

applied. Data quality was assessed using an Angular Drift 

Index; trials exceeding a 3% threshold were excluded and, 

where feasible, re-acquired [10–11]. 

Table 1 

Technical specifications of the Xsens Awinda sensors (sensor 

types, measurement ranges, accuracy, noise, sampling rate, 

latency, wireless band). 

Module 
Mount 

Position 
Sensor Type 

Ranges 

(A/G/M) 

Sampling 

Rate 

(Hz) 

Wireless 

Band 

IMU #1 Ankle Accel/Gyro/Mag 

±16 g / 

±2000 °/s 

/ ±200 µT 

100 2.4 GHz 

IMU #2 Knee Accel/Gyro/Mag 

±16 g / 

±2000 °/s 

/ ±200 µT 

100 2.4 GHz 

IMU #3 Hip Accel/Gyro/Mag 

±16 g / 

±2000 °/s 

/ ±200 µT 

100 2.4 GHz 

IMU #4 Elbow Accel/Gyro/Mag 

±16 g / 

±2000 °/s 

/ ±200 µT 

100 2.4 GHz 

IMU #5 Shoulder Accel/Gyro/Mag 

±16 g / 

±2000 °/s 

/ ±200 µT 

100 2.4 GHz 

Data organization. For each participant, validated data 

were archived in a structured directory (participant ID–

task–repetition) and subsequently used for feature 

extraction and intelligent modeling. 

2.3. Data Analysis Methods 

Objective. The analysis aimed to quantify the effects of 

physical training on biomechanical indices and to identify 

movement patterns associated with performance 

optimization in military personnel. 

Signal conditioning and segmentation. After 

synchronizing IMU streams with 120 fps video, raw 

signals—linear acceleration, angular velocity and 

acceleration, and joint angles—were denoised using a 

fourth-order Butterworth low-pass filter with a 6 Hz 

cutoff to suppress high-frequency artifacts from abrupt 

motion and sensor noise [22]. Signals were then 

segmented into 2-s windows with 50% overlap. To 

prevent information leakage, normalization was 

performed post-split: z-score scaling for continuous 

features and min–max scaling for bounded angular 

vectors. Reference validation and EMG processing. In a 

validation substudy, OptiTrack Prime 13 motion capture 

served as a gold-standard comparator for estimating IMU-

based angular error. Where surface electromyography was 

available, sEMG from the quadriceps, hamstrings, 

gastrocnemius, and soleus was preprocessed by DC offset 

removal, 20–450 Hz band-pass filtering, 50 ms RMS 

smoothing, and normalization to maximal voluntary 

contraction (MVC) [23]. 

Biomechanical modeling. Kinematic and, where 

applicable, kinetic data were imported into OpenSim 4.4. 

The subject-specific musculoskeletal model was scaled to 

anthropometry, and joint angles (hip, knee, ankle), joint 

moments, center-of-mass stability metrics, and ground 

reaction forces (GRF) were extracted. In the absence of a 

force platform, GRF was estimated from kinematic 

features (and EMG when available), with estimation error 

reported. 

Feature set. In addition to time-domain indices (mean, 

SD, RMS, phase durations, and peak rates) and 

frequency-domain descriptors (band power and EMG 

median frequency), the feature library included waveform 

descriptors such as angular jerk, co-contraction index, and 

gait/cycle symmetry. 

Machine-learning pipeline. Modeling proceeded in three 

tiers. 

1. Supervised learning: SVM (RBF kernel), 

Random Forest, and k-NN were trained to 

discriminate optimal vs. suboptimal patterns. 

2. Deep spatiotemporal modeling: a CNN–LSTM 

architecture was trained on multichannel IMU 

sequences (augmented, where available, with 

EMG and video-derived features) to detect subtle 

execution deviations and atypical behaviors. 

3. Unsupervised profiling: k-means and DBSCAN 

were applied for fitness profiling and cohort 

stratification. 

Evaluation protocol. We adopted a leave-subjects-out 

strategy combined with 10-fold cross-validation. Class 

imbalance, where present, was addressed via class 

weighting and SMOTE augmentation. Hyperparameters 
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were tuned using grid/Bayesian search. To mitigate 

overfitting, early stopping and dropout were employed. 

Metrics and statistics. Primary metrics included accuracy, 

precision, recall, F1-score, AUC, and the confusion 

matrix. Statistical complements comprised Shapiro–Wilk 

for normality and paired t-tests for pre–post comparisons 

(α = 0.05). Where multiple comparisons were conducted, 

Benjamini–Hochberg FDR correction was applied. 

Reported effects included mean differences, 95% 

confidence intervals, and effect sizes (Cohen’s d or 

Hedges’ g) [25]. 

External validity. Model outputs were benchmarked 

against reference measurements (IMU/OptiTrack/EMG) 

to assess external validity. The end-to-end pipeline 

ultimately enabled identification of training patterns that 

improved key biomechanical indices and reduced 

estimated injury risk. 

 

Fig 4. Flowchart of the data analysis pipeline—from acquisition 

and synchronization through preprocessing, feature extraction, 

biomechanical modeling, and machine-learning classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Representative sEMG signals before and after 

preprocessing: raw trace, band-pass filtered (20–450 Hz), full-

wave rectified, 50 ms RMS envelope, and amplitude normalized 

to MVC (quadriceps, hamstrings, gastrocnemius, soleus). 

 

Fig 6. Comparative accuracy of machine-learning models for 

biomechanical data analysis (SVM, k-NN, Random Forest, and 

CNN–LSTM). 

Finally, the AI model outputs were benchmarked against 

ground-truth measurements to verify the validity of the 

analytical workflow. This procedure enabled robust 

identification of the most effective training patterns for 

improving biomechanical performance and reducing 

injury risk in military personnel. 

2.4. AI-Based Model for Optimizing Military Training 

To enhance service members’ physical performance, we 

designed a multilayer, end-to-end AI pipeline that ingests 

biomechanical data from military exercises and outputs 

individualized training recommendations. 

Layer 1 — Data acquisition and preliminary analytics.  

Canonical tasks from military fitness programs—military 

squat, plank and core-stability drills, endurance running, 

vertical jump, load-bearing run (with rucksack), and 

obstacle traversal—were captured using synchronized 

IMUs and video. Following synchronization and 

preprocessing (Butterworth filtering, smoothing, and 

normalization), kinematic and kinetic features were 

extracted, including lower-limb and shoulder-girdle joint 

angles, angular velocities and accelerations, center-of-

mass stability indices, and ground reaction forces (GRF) 

(measured or estimated). Where available, sEMG 

provided neuromuscular activation patterns for key 

muscles (quadriceps, hamstrings, gastrocnemius, soleus, 

and core), post-filtering and MVC normalization, and was 

appended as an additional input stream. 

Layer 2 — Analysis and classification. Multichannel 

sequences were fed to a deep CNN–LSTM architecture 

that jointly learns spatial structure (waveform morphology 
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and inter-joint relations) and temporal dynamics 

(movement-cycle kinetics). The CNN extracts spatial 

descriptors from sensor time series and video-derived 

features, while the LSTM models sequential dependencies 

to detect subtle deviations from optimal execution. The 

network produces probabilities for correct vs. incorrect 

execution and risk indicators (e.g., elevated joint load or 

high-risk landing mechanics). In parallel, classical 

supervised models (SVM, Random Forest) were trained 

on the same feature space for performance benchmarking 

and improved interpretability. 

Layer 3 — Training-program optimization. This layer 

translates biomechanical errors into actionable coaching 

cues and program adjustments. Examples include: 

 Military squat: constraining knee/hip flexion to 

an 85–95° safe window to reduce patellofemoral 

torque; 

 Endurance running: modifying heel-to-toe 

contact patterns guided by GRF metrics to 

reduce ~12% energy cost; 

 Plank/core stability: adjusting hold duration for 

lower-fitness individuals (e.g., 30 → 20 s) to 

prevent early core fatigue. 

Feedback and adaptation loop (RL). To assure field 

effectiveness, a reinforcement learning (RL) loop wraps 

the three layers. Execution quality in subsequent sessions 

is returned as a reward signal, allowing the RL agent to 

adapt session parameters (intensity, volume, rest intervals, 

and technical emphasis) dynamically. In doing so, the 

system progressively learns the most efficacious 

combinations of drills and dosing, and issues personalized 

training prescriptions that jointly target performance 

enhancement and injury-risk reduction. 

Summary. By linking quantitative biomechanical indices 

to concrete training decisions, the proposed model opens a 

practical pathway toward evidence-based, individualized, 

and low-risk programming for combat training and 

endurance/rehabilitation settings in military populations. 

 

 

 

 

 

 

 

Fig 7. Knee-angle profile during the military squat (pre vs. post), 

with the optimal flexion band highlighted at 85–95°. 

 

 

 

 

 

 

 

Fig 8. Vertical GRF during endurance running (pre vs. post), 

showing the canonical double-peak pattern and a reduction in 

peak magnitude from ~2.8×BW to ~2.2×BW; heel-strike and 

toe-off boundaries are delineated. (GRF: ground reaction force; 

BW: body weight). 

In sum, by linking quantitative biomechanical indices to 

actionable coaching decisions, the proposed model 

provides a practical pathway to evidence-based, 

individualized, and low-risk program design for combat 

training and endurance/rehabilitation in military 

populations. 

3. Results 

After training and evaluation on real data from personnel 

of the Islamic Republic of Iran Army, the proposed 

system produced significant improvements across 

functional, biomechanical, and physiological indices. 

Below we report the key biomechanics findings for 

foundational tasks; subsequent sections (EMG and model 

accuracy) extend these results. 

3.1. Improvements in biomechanical indices during 

foundational movements 

Kinematic and kinetic analyses showed that the AI-

assisted workflow shifted execution toward 

biomechanically safer regions while reducing nonessential 

loads. 

Military squat. Pre-intervention, the mean knee angle 

during the descent phase was 110 ± 8°, a pattern 

associated with elevated patellofemoral torque. Following 

deployment of the model, the optimized knee flexion 

settled at 91 ± 5°, and the peak ground reaction force 

(GRF) during landing decreased by an average of 18% 

[39]. Together, these changes indicate improved motor 

control, more balanced load distribution in the lower limb, 

and reduced tissue stress at the knee. 

Vertical jump. At baseline, the peak vertical GRF at initial 

contact averaged ~2.8× body weight (BW); after 

algorithm-guided refinement, it fell to ~2.2× BW. This 

peak reduction—along with adjusted activation timing of 

the hamstrings and gastrocnemius—suggests more 

effective energy absorption on landing and a lower risk of 

knee/ankle injury [40]. 

Load-bearing sprint (Load Run). The model reduced 

mediolateral center-of-mass oscillations by approximately 

25% and stabilized vertical alignment, yielding better 

mechanical efficiency and less energy wastage during the 

acceleration phase. 

Summary of biomechanical effects. Overall, the system: 

 aligned joint angles with safe operating bands 

(e.g., 85–95° knee flexion in squats); 

 reduced GRF peaks in dynamic tasks; 

 improved center-of-mass (CoM) stability; and 

 consequently lowered the injury risk in high-

stress military training. 

These outcomes are consistent with recent reports on the 

utility of machine learning for analyzing complex 

movement patterns and preventing injury in military 

cohorts [41–44]. 
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Fig 9. Comparison of peak vertical GRF in the 

countermovement jump (pre vs. post algorithm-guided 

correction). 

 

 

 

 

 

 

Fig 10. Changes in CoM stability during the load-bearing run 

(Load Run), showing a 25% reduction in mediolateral 

oscillation. 

To elucidate the neuromuscular mechanisms underpinning 

the biomechanical improvements, surface 

electromyography (sEMG) was recorded from selected 

lower-limb and trunk muscles: rectus femoris, biceps 

femoris, gastrocnemius, soleus, gluteus maximus, rectus 

abdominis, and erector spinae. Signals were DC-offset 

corrected, band-pass filtered (20–450 Hz), smoothed 

using a moving window, and normalized to maximal 

voluntary contraction (MVC). From these traces, we 

extracted RMS amplitude, mean/median frequency 

(MNF), and onset time of activation. 

Findings indicated that deploying the AI system 

significantly improved co-ordination among synergists 

while reducing unnecessary co-contractions. During the 

military squat, mean RMS of the quadriceps increased by 

~18%, whereas nonessential hamstring activity declined 

by ~25%—a pattern consistent with shifting load from 

compensatory strategies to the intended knee/hip 

extension mechanics. In plank and core-stability tasks, the 

activity ratio of rectus abdominis to erector spinae 

decreased from 1.45 to 1.17, reflecting more balanced 

anterior–posterior trunk engagement and reduced lumbar 

loading. In the vertical jump, gastrocnemius activation 

onset during landing shortened from 65 ms to 42 ms, 

indicating a faster neuromuscular response for shock 

absorption and improved eccentric control. 

Spectral analysis further showed an average 14% 

reduction in the MNF-shift associated with fatigue across 

repeated-effort protocols. This aligns with lower muscular 

fatigue and more stable firing patterns late in the session, 

likely driven by technique refinement, more equitable 

load sharing among synergists, and diminished 

maladaptive co-contraction. Biomechanically, these 

adaptations yield more balanced forces and moments at 

the knee and hip, lessen nonlinear loading on antagonists, 

and thereby create conditions conducive to reduced injury 

risk and improved mechanical efficiency. The observed 

patterns are consistent with recent reports on the role of 

machine learning in optimizing muscle activation during 

military and athletic training, lending further credence to 

our results [46–49]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 11. Paired columns (before/after) for RMS of the Quadriceps 

and Hamstrings muscles (with error bars). 

Fig 12. Paired columns of the Rectus Abdominis / Erector 

Spinae ratio and a small panel for ΔMNF ≈ −14%. 

3.2. Accuracy of the AI Model in Detecting Correct 

Technique 

We developed a hybrid CNN–LSTM model to identify 

and quantify the correctness of foundational exercise 

execution from a biomechanical standpoint. Model inputs 

combined plantar-pressure signals, video of selected tasks 

(squat, lunge, and balance tests), and OpenSim-derived 

biomechanical parameters. The CNN extracted spatial 

image features (joint/segment configurations), while the 

LSTM captured temporal dynamics of the movement 

sequence—an interplay that enabled precise tracking of 

knee, ankle, and hip kinematics over the full cycle. 

Overall accuracy for classifying ―correct‖ vs. ―incorrect‖ 

execution was 94%. Evaluation with precision, recall, F1-

score, and the confusion matrix indicated the highest 

class-specific accuracy for correct squats (96%) and the 

lowest for incorrect lunges (91%), the latter plausibly 

reflecting the wide variability in lunge technique and 

individual hip-angle strategies. Learning curves showed 

stable convergence: after 40 epochs, validation loss fell 

below 0.08, with validation accuracy plateauing 

thereafter. 
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To improve robustness under real-world conditions, we 

introduced motion-noise perturbations and illumination 

variations during training, and we included ―minor-error‖ 

executions as a separate class. This augmentation strategy 

enhanced generalization to non-ideal inputs. 

Biomechanical error analysis further showed that the 

system reliably detected knee-angle deviations > 5° and 

pelvic-axis deviations > 3°, supporting practical 

deployment in sport and rehabilitation settings where 

continuous expert supervision is not always feasible. 

Finally, sensor fusion increased performance: integrating 

plantar pressure + video improved overall accuracy by 

~7% relative to video-only inputs, underscoring the 

benefit of multi-source data. 

 

 

 

 

 

 

 

 

 

 

Fig 13. Training and validation loss trend over epochs for the 

CNN–LSTM model. The uniform decrease and Validation Loss 

reaching less than 0.08 after 40 epochs indicates stable model 

convergence and overfitting control. 

 

 

 

 

 

 

 

 

 

 

Fig 14. Training and validation accuracy trend in terms of 

epoch. The validation accuracy stabilized at around 0.94 at the 

end of training, and the reasonable distance between the two 

curves indicates that the model has reached a good balance 

between fit and generalizability. 

 

 

 

 

 

 

 

 

 

Fig 15. Four-class (Squat-OK, Squat-NOK, Lunge-OK, Lunge-NOK) 

confusion matrix for the validation set. Overall accuracy ≈ 93.9%; lower 

accuracy in the Lunge-NOK class reflects the variation in lunge form 

and hip angular variation between individuals. 

3.2. Comparative Performance Against Baseline 

Methods 

To evaluate efficacy, the hybrid CNN–LSTM model was 

benchmarked against three common baselines: a plain 

CNN, a classical LSTM, and an SVM using hand-crafted 

features. Evaluation followed a leave-subjects-out plus 

10-fold protocol to prevent inter-subject information 

leakage and to assess generalizability. 

Results showed a consistent and significant advantage for 

the proposed model across all metrics. Overall accuracy 

reached 94.2%, versus 88.5% (CNN), 86.7% (LSTM), 

and 84.9% (SVM). Correspondingly, weighted F1-scores 

were 0.942 (proposed), 0.887 (CNN), 0.864 (LSTM), and 

0.842 (SVM). In biomechanical error quantification, the 

hybrid model reduced the mean knee-angle error to 2.1° ± 

0.7, compared with 4.0° ± 1.2 (CNN), 4.3° ± 1.3 (LSTM), 

and 4.6° ± 1.4 (SVM). Independent-samples t-tests 

confirmed the between-model differences for both 

accuracy and F1 at p < 0.05, with Cohen’s d ≈ 0.8–1.1 

relative to the best competing baseline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 16. A bar chart comparison to show the accuracy and F1-

score of the models should be included in this section. 

This superiority is attributable to two factors: (i) joint 

learning of spatiotemporal features by the CNN–LSTM, 

which aligns with the inherently dynamic, cyclical nature 

of human movement; and (ii) multi-source data fusion 

(plantar pressure + video, and in some protocols 

EMG/OpenSim parameters), providing complementary 

information on loading, timing, and movement symmetry. 

Together, these factors enable more accurate 

discrimination of optimal vs. suboptimal patterns and 

lower angular-error estimates for risk indices. 

3.3. Statistical Analysis 

Statistical analyses were conducted in SPSS v26 and 

Python (NumPy, SciPy). Normality of biomechanical 
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variables and model outputs was assessed using the 

Shapiro–Wilk test; most variables conformed to normal 

distributions (p > 0.05). Paired t-tests compared pre–post 

values for key indices—knee flexion angle in the squat, 

peak GRF in the vertical jump, and mediolateral CoM 

deviation in the load-bearing run. For example, mean 

knee flexion improved by 3.8°, with the mean difference 

statistically significant (p < 0.05). Agreement between 

model estimates and sensor-based ground truth was high 

(Pearson r = 0.91). A one-way ANOVA comparing 

improvements across three training groups (strength, 

endurance, speed) revealed a significant advantage for the 

endurance group (p < 0.01). Collectively, these results 

indicate that the proposed system not only enhances 

movement-classification accuracy but also yields 

statistically meaningful gains in biomechanical indices 

and training efficiency. 

 

Fig 17. Comparison of group improvements (strength, 

endurance, speed) in the composite biomechanical index after 

model-based optimization. Dots indicate mean and bars indicate 

confidence interval; the greatest improvement was observed in 

the endurance group (p<0.01, one-way ANOVA). 

4. Discussion and Interpretation of Findings 

The present findings demonstrate that integrating 

biomechanical data with AI models can meaningfully 

enhance the quality and efficiency of physical training in 

military personnel. The hybrid CNN–LSTM architecture 

employed here, by jointly extracting spatial and temporal 

features, accurately characterized movement execution 

and yielded actionable technique corrections—in line with 

prior reports underscoring the value of spatiotemporal 

data and deep learning for human performance 

enhancement [12, 23, 36]. Notably, the convergence of 

joint-angle metrics toward safe operating ranges and the 

reduction of lower-limb GRF peaks substantiate AI’s 

potential in preventing musculoskeletal injuries. The 

model’s ability to detect fine angular deviations and 

deliver near-real-time feedback is particularly salient for 

applied military biomechanics, where timely correction 

can forestall early fatigue and chronic overuse injuries 

[18, 27, 41]. 

Conversely, our results indicate that deploying AI-driven 

systems in military settings can yield individual 

performance profiles for each service member. Such 

profiles furnish coaches and sports-medicine clinicians 

with practical tools to track physical progress, pinpoint 

weaknesses or risk factors, and design targeted 

interventions. Moreover, combining data mining with 

predictive modeling enables training prescriptions tailored 

to physiological status, fatigue level, and even 

psychological components [7, 19, 37]. Taken together, the 

evidence suggests that integrating AI with sports 

biomechanics constitutes a novel pathway to enhance 

military physical readiness: data-driven platforms 

improve real-time situational awareness of bodily status, 

elevate coaching decision quality, and thereby increase 

training efficiency. 

5. Conclusion 

This study demonstrates that integrating artificial 

intelligence with biomechanical analysis can effectively 

optimize physical training in military personnel. The 

hybrid CNN–LSTM model accurately identified 

foundational movement patterns and delivered near–real-

time feedback for technique correction, thereby reducing 

nonessential joint loading, improving intersegmental 

coordination, and enhancing physiological performance. 

Biomechanically, shifts in joint kinematics toward safer 

ranges, greater whole-body stability, and lower ground 

reaction forces underscore AI’s direct value for 

musculoskeletal injury prevention. Statistical analyses 

further confirmed that pre–post differences were 

significant (p < 0.05). Deployed in training and field 

settings, such systems enable continuous movement 

monitoring, automated performance analytics, and 

personalized training prescriptions, ultimately improving 

physical readiness, lowering injury incidence, and 

increasing operational efficiency. 
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