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Abstract

With advances in machine-learning methods, fusing biomechanical data with artificial intelligence has become an efficient approach for
motion analysis and training optimization. This study set out to develop and evaluate an intelligent system for biomechanical analysis and
optimization of physical training among personnel of the Islamic Republic of Iran Army. Motion data collected during a battery of standard
military exercises were recorded using inertial measurement units (IMUs) alongside synchronized video. After preprocessing,
biomechanical features—including joint angles, angular velocity and acceleration, and ground reaction forces (GRF)—were extracted. To
identify movement patterns and assess performance indices, Al models comprising deep neural networks (DNN/CNN-LSTM) and support
vector machines (SVM) were employed. Results showed that the system achieved accuracy >92% in distinguishing optimal movements
from inefficient patterns associated with increased joint loading and muscular fatigue. Incorporating the system’s outputs into personalized
training prescriptions yielded, in pre—post evaluations, an 18% reduction in the estimated risk of musculoskeletal injury and a 15%
improvement in physical performance indices. Overall, the findings indicate that integrating Al and biomechanics offers an effective
pathway to intelligent military training, enhanced combat readiness, and reduced training-related injuries across the armed forces.
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1. Introduction Integrating biomechanical data with Al models has
yielded systems that not only assess performance but also
recommend individualized training prescriptions [19-22].
A growing body of research indicates that deep neural
networks, classical methods such as support vector
machines (SVM), and reinforcement-learning (RL)
paradigms can push the accuracy of optimal-movement
detection beyond 90% and enable near-real-time feedback
[23-29]. Within the military context, standard exercises—
running, jumping, push-ups, and strength tasks—can
impose disproportionate loads on joints and the spine if
performed with suboptimal technique, thereby elevating
injury risk [30-35]. Intelligent systems have been
reported to identify movement deficits, correct technique,
and improve training efficiency [36-38]. Recent work
further underscores the use of IMU data and computer
vision for biomechanical analysis of military personnel

In recent years, artificial intelligence (Al)—particularly in
combination with wearable sensing technologies—has
advanced rapidly across engineering and biomedical
domains [1-3]. One arena where this transformation has
been especially impactful is sport and military
biomechanics [4-6]. By quantifying human movement in
terms of forces, joint angles, and spatiotemporal patterns,
biomechanics enables deeper insight into muscle—joint
function and load-related consequences [7].

In military environments, personnel are continuously
exposed to high mechanical loads, making the concurrent
attainment of physical readiness, endurance, and
movement precision essential [8-10]. Consequently,
training design and analysis must be evidence-based so as
to enhance performance while mitigating the risk of

musculoskeletal injury [11-13]. Whereas performance and for detecting suboptimal patterns in both combat-
evaluation  historically relied largely on coach related and training movements [39-44].

observation—with inherently limited accuracy [14-15]— The present study aims to develop and evaluate a hybrid
advances in inertial measurement units (IMUs), video intelligent system—combining machine-learning
systems, and machine-learning algorithms now permit algorithms ~ with  biomechanical ~ analysis—for  the
data-driven, high-fidelity movement analysis [16-18]. assessment and optimization of physical training in the
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Islamic Republic of Iran Army. Leveraging real-world
data collected from active personnel, the proposed system
analyzes movement patterns and provides data-driven
recommendations to enhance physical status and reduce
injury risk [45-47]. The principal innovation lies in the
concurrent integration of sensor-based biomechanical
measurements with deep-learning models and their
deployment in military training scenarios.

2. Methods
2.1. Participants and Data Collection

Cohort. The study population comprised volunteers whose
capabilities closely matched those of active personnel in
the Islamic Republic of Iran Army across combat and
training units. Thirty participants were recruited according
to predefined inclusion  criteria:  absence  of
musculoskeletal pathology, no injury within the previous
six months, and the ability to perform standard military
exercises [1]. Demographics (mean + SD) were: age 27.3
+ 2.8 years, height 177.2 £ 5.4 cm, and body mass 72.1 =
4.6 kg.
Training protocol. Each participant performed five
common military fitness tasks:

1. moderate-speed straight-line running (Run Test);
military squat;
military push-up;
vertical countermovement jump from standing;
traversal of a standard 1.5 m obstacle (Obstacle
Climb).
Each task was executed for three repetitions to ensure
statistical reliability of the recordings [3-4]. Exercise
order was randomized/rotated per participant, and
standardized rest intervals were provided between sets.
Data acquisition. Kinematic signals were recorded using
Xsens Awinda IMUs mounted on the ankles, knees,
pelvis/hip, elbows, and shoulders. Raw signals included
linear acceleration (m/s?), angular velocity (rad/s), and
joint angles (°) along the X, Y, and Z axes. A sampling
rate of 100 Hz was used to enable high-fidelity analysis of
movement patterns [5-6]. For synchronization, 120 fps
video was captured; sensor streams and video were
recorded concurrently in MVN Analyze and exported as
CSV (signals) and MP4 (video) files [7]. Environmental
conditions (surface, ambient temperature, and footwear)
were standardized across participants.
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Fig 1. Schematic illustration of inertial sensor placement on key
anatomical landmarks—ankle, knee, hip, shoulder, and elbow—
on the participant

Coding and dataset size. Each trial was coded by task
type, participant ID, and repetition number. In total, 30
participants x 5 tasks x 3 repetitions yielded 450 valid
trials, which were subsequently used for preprocessing
and intelligent modeling.

Following data collection, each trial was coded by task
type, participant identifier, and repetition count. In total,
450 valid movement trials were derived and subsequently
used for signal processing and intelligent modeling.

2.2. Instruments and Sensors

Motion data were acquired using the Xsens Awinda
wireless inertial system (IMU; Netherlands). Each IMU
comprised tri-axial accelerometers, gyroscopes, and
magnetometers, recording at 100 Hz with an approximate
angular accuracy of 0.5° [1-3]. To ensure sufficient
biomechanical coverage, five sensors were mounted on
the ankles, knees, pelvis/hip, shoulders, and elbows.
Sensor placements were selected with reference to the
Gait2392 musculoskeletal model in OpenSim to enable
accurate extraction of joint angles and kinematic
parameters [4-6].

Lateral view
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Fig 2. IMU sensor placement on the body and orientation of the

measurement axes (X/Y/Z).

Knee (IMU)

Y
F1 Ankle (IMU

Signals and data transmission. Raw signals comprised tri-
axial linear acceleration (m/s?), angular velocity (rad/s),
and joint angle (°) along the X, Y, and Z axes. Data were
streamed wirelessly at 2.4 GHz to a receiver unit and
logged in MVN Analyze. Each sensor carried a unique
digital ID to prevent interference and channel cross-talk.
Calibration. Prior to recording, static calibration (standard
anatomical pose) was performed to define the body’s
reference frame, followed by dynamic calibration using a
set of controlled limb movements to refine the kinematic
model [7].

Synchronization and video. To improve temporal
alignment and accuracy, a high-speed digital camera
(Sony RX10 IV, 120 fps) positioned ~3 m from the
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capture area was used. Key video frames were
synchronized with numerical signals in Kinovea 0.9.6,
and both data streams were integrated within MVN
Analyze [8-9].

Fig 3. Camera layout, field of view, and line-of-sight relative to
the movement execution area.

Preprocessing and quality control. Sensor (CSV) and

video (MP4) data were imported into MATLAB R2023a.

To attenuate high-frequency noise, a fourth-order

Butterworth low-pass filter with a 6 Hz cutoff was

applied. Data quality was assessed using an Angular Drift

Index; trials exceeding a 3% threshold were excluded and,

where feasible, re-acquired [10-11].

Table 1

Technical specifications of the Xsens Awinda sensors (sensor

types, measurement ranges, accuracy, noise, sampling rate,

latency, wireless band).

Sampling
Mount Ranges Wireless
Module . Sensor Type Rate
Position (AIGIM) Band
(H2)
+16 g/
IMU #1 Ankle Accel/Gyro/Mag +2000 °/s 100 2.4 GHz
[ +200 pT
+16 g/
IMU #2 Knee Accel/Gyro/Mag +2000 °/s 100 2.4 GHz
/4200 pT
+16 g/
IMU #3 Hip Accel/Gyro/Mag +2000 °/s 100 2.4 GHz
/4200 pT
+169g/
IMU #4 Elbow Accel/Gyro/Mag +2000 °/s 100 2.4 GHz
/4200 pT
+169g/
IMU #5 Shoulder Accel/Gyro/Mag +2000 °/s 100 2.4 GHz
/4200 pT

Data organization. For each participant, validated data
were archived in a structured directory (participant ID—
task—repetition) and subsequently used for feature
extraction and intelligent modeling.

2.3. Data Analysis Methods

Objective. The analysis aimed to quantify the effects of
physical training on biomechanical indices and to identify
movement patterns associated with  performance
optimization in military personnel.

Signal  conditioning and  segmentation.  After
synchronizing IMU streams with 120 fps video, raw
signals—Ilinear acceleration, angular velocity and
acceleration, and joint angles—were denoised using a
fourth-order Butterworth low-pass filter with a 6 Hz
cutoff to suppress high-frequency artifacts from abrupt
motion and sensor noise [22]. Signals were then
segmented into 2-s windows with 50% overlap. To
prevent information leakage, normalization was
performed post-split: z-score scaling for continuous
features and min-max scaling for bounded angular
vectors. Reference validation and EMG processing. In a
validation substudy, OptiTrack Prime 13 motion capture
served as a gold-standard comparator for estimating IMU-
based angular error. Where surface electromyography was
available, sEMG from the quadriceps, hamstrings,
gastrocnemius, and soleus was preprocessed by DC offset
removal, 20-450 Hz band-pass filtering, 50 ms RMS
smoothing, and normalization to maximal voluntary
contraction (MVC) [23].

Biomechanical modeling. Kinematic and, where
applicable, kinetic data were imported into OpenSim 4.4.
The subject-specific musculoskeletal model was scaled to
anthropometry, and joint angles (hip, knee, ankle), joint
moments, center-of-mass stability metrics, and ground
reaction forces (GRF) were extracted. In the absence of a
force platform, GRF was estimated from kinematic
features (and EMG when available), with estimation error
reported.

Feature set. In addition to time-domain indices (mean,
SD, RMS, phase durations, and peak rates) and
frequency-domain descriptors (band power and EMG
median frequency), the feature library included waveform
descriptors such as angular jerk, co-contraction index, and
gait/cycle symmetry.

Machine-learning pipeline. Modeling proceeded in three
tiers.

1. Supervised learning: SVM (RBF kernel),
Random Forest, and k-NN were trained to
discriminate optimal vs. suboptimal patterns.

2. Deep spatiotemporal modeling: a CNN-LSTM
architecture was trained on multichannel IMU
sequences (augmented, where available, with
EMG and video-derived features) to detect subtle
execution deviations and atypical behaviors.

3. Unsupervised profiling: k-means and DBSCAN
were applied for fitness profiling and cohort
stratification.

Evaluation protocol. We adopted a leave-subjects-out
strategy combined with 10-fold cross-validation. Class
imbalance, where present, was addressed via class
weighting and SMOTE augmentation. Hyperparameters
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were tuned using grid/Bayesian search. To mitigate
overfitting, early stopping and dropout were employed.
Metrics and statistics. Primary metrics included accuracy,
precision, recall, Fl-score, AUC, and the confusion
matrix. Statistical complements comprised Shapiro-Wilk
for normality and paired t-tests for pre—post comparisons
(o = 0.05). Where multiple comparisons were conducted,
Benjamini-Hochberg FDR correction was applied.
Reported effects included mean differences, 95%
confidence intervals, and effect sizes (Cohen’s d or
Hedges’ g) [25].

External validity. Model outputs were benchmarked
against reference measurements (IMU/OptiTrack/EMG)
to assess external validity. The end-to-end pipeline
ultimately enabled identification of training patterns that
improved key biomechanical indices and reduced
estimated injury risk.

SVM RF KNN CNN-LSTM

Fig 4. Flowchart of the data analysis pipeline—from acquisition
and synchronization through preprocessing, feature extraction,
biomechanical modeling, and machine-learning classification.
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Fig 5. Representative SEMG signals before and after
preprocessing: raw trace, band-pass filtered (20-450 Hz), full-
wave rectified, 50 ms RMS envelope, and amplitude normalized
to MV C (quadriceps, hamstrings, gastrocnemius, soleus).
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Fig 6. Comparative accuracy of machine-learning models for
biomechanical data analysis (SVM, k-NN, Random Forest, and
CNN-LSTM).

Finally, the Al model outputs were benchmarked against
ground-truth measurements to verify the validity of the
analytical workflow. This procedure enabled robust
identification of the most effective training patterns for
improving biomechanical performance and reducing
injury risk in military personnel.

2.4. Al-Based Model for Optimizing Military Training

To enhance service members’ physical performance, we
designed a multilayer, end-to-end Al pipeline that ingests
biomechanical data from military exercises and outputs
individualized training recommendations.

Layer 1 — Data acquisition and preliminary analytics.
Canonical tasks from military fitness programs—military
squat, plank and core-stability drills, endurance running,
vertical jump, load-bearing run (with rucksack), and
obstacle traversal—were captured using synchronized
IMUs and video. Following synchronization and
preprocessing (Butterworth filtering, smoothing, and
normalization), kinematic and kinetic features were
extracted, including lower-limb and shoulder-girdle joint
angles, angular velocities and accelerations, center-of-
mass stability indices, and ground reaction forces (GRF)
(measured or estimated). Where available, SEMG
provided neuromuscular activation patterns for key
muscles (quadriceps, hamstrings, gastrocnemius, soleus,
and core), post-filtering and MVC normalization, and was
appended as an additional input stream.

Layer 2 — Analysis and classification. Multichannel
sequences were fed to a deep CNN-LSTM architecture
that jointly learns spatial structure (waveform morphology
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and inter-joint relations) and temporal dynamics
(movement-cycle Kkinetics). The CNN extracts spatial
descriptors from sensor time series and video-derived
features, while the LSTM models sequential dependencies
to detect subtle deviations from optimal execution. The
network produces probabilities for correct vs. incorrect
execution and risk indicators (e.g., elevated joint load or
high-risk landing mechanics). In parallel, classical
supervised models (SVM, Random Forest) were trained
on the same feature space for performance benchmarking
and improved interpretability.

Layer 3 — Training-program optimization. This layer
translates biomechanical errors into actionable coaching
cues and program adjustments. Examples include:

e Military squat: constraining knee/hip flexion to
an 85-95° safe window to reduce patellofemoral
torque;

e Endurance running: modifying heel-to-toe
contact patterns guided by GRF metrics to
reduce ~12% energy cost;

e Plank/core stability: adjusting hold duration for
lower-fitness individuals (e.g., 30 — 20 s) to
prevent early core fatigue.

Feedback and adaptation loop (RL). To assure field
effectiveness, a reinforcement learning (RL) loop wraps
the three layers. Execution quality in subsequent sessions
is returned as a reward signal, allowing the RL agent to
adapt session parameters (intensity, volume, rest intervals,
and technical emphasis) dynamically. In doing so, the
system progressively learns the most efficacious
combinations of drills and dosing, and issues personalized
training prescriptions that jointly target performance
enhancement and injury-risk reduction.

Summary. By linking quantitative biomechanical indices
to concrete training decisions, the proposed model opens a
practical pathway toward evidence-based, individualized,
and low-risk programming for combat training and
endurance/rehabilitation settings in military populations.

130
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Fig 7. Knee-angle profile during the military squat (pre vs. post),
with the optimal flexion band highlighted at 85-95°.

215 After optimization

tical GRF (x body weight)
3 & 8 u» B

5

0 20 0 &0 B0 100
Stance phase (%)

Fig 8. Vertical GRF during endurance running (pre vs. post),
showing the canonical double-peak pattern and a reduction in
peak magnitude from ~2.8xBW to ~2.2xBW; heel-strike and
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toe-off boundaries are delineated. (GRF: ground reaction force;
BW: body weight).

In sum, by linking quantitative biomechanical indices to
actionable coaching decisions, the proposed model
provides a practical pathway to evidence-based,
individualized, and low-risk program design for combat
training and endurance/rehabilitation in  military
populations.

3. Results

After training and evaluation on real data from personnel
of the Islamic Republic of Iran Army, the proposed
system produced significant improvements across
functional, biomechanical, and physiological indices.
Below we report the key biomechanics findings for
foundational tasks; subsequent sections (EMG and model
accuracy) extend these results.

3.1. Improvements in biomechanical indices during
foundational movements

Kinematic and Kkinetic analyses showed that the Al-
assisted  workflow  shifted  execution  toward
biomechanically safer regions while reducing nonessential
loads.
Military squat. Pre-intervention, the mean knee angle
during the descent phase was 110 + 8° a pattern
associated with elevated patellofemoral torque. Following
deployment of the model, the optimized knee flexion
settled at 91 + 5°, and the peak ground reaction force
(GRF) during landing decreased by an average of 18%
[39]. Together, these changes indicate improved motor
control, more balanced load distribution in the lower limb,
and reduced tissue stress at the knee.
Vertical jJump. At baseline, the peak vertical GRF at initial
contact averaged ~2.8x body weight (BW); after
algorithm-guided refinement, it fell to ~2.2x BW. This
peak reduction—along with adjusted activation timing of
the hamstrings and gastrocnemius—suggests more
effective energy absorption on landing and a lower risk of
knee/ankle injury [40].
Load-bearing sprint (Load Run). The model reduced
mediolateral center-of-mass oscillations by approximately
25% and stabilized vertical alignment, yielding better
mechanical efficiency and less energy wastage during the
acceleration phase.
Summary of biomechanical effects. Overall, the system:
e aligned joint angles with safe operating bands

(e.g., 85-95° knee flexion in squats);

reduced GRF peaks in dynamic tasks;

improved center-of-mass (CoM) stability; and

e consequently lowered the injury risk in high-

stress military training.
These outcomes are consistent with recent reports on the
utility of machine learning for analyzing complex
movement patterns and preventing injury in military
cohorts [41-44].



M. S. Karimzadeh, M. Naderi Nasab, M. Taheri, S. A. Biniyaz / Application of Al-Driven Systems ...

Before

F18% after
07 |
‘ 25%

1

RMS (mV, MVC-normalized)
o
=

Quadriceps Hamstrings

Fig 9. Comparison of peak vertical GRF in the
countermovement jump (pre vs. post algorithm-guided
correction).

Value {unit as labeled)

183 )
RAJES Ratio

MINF (%)

Fig 10. Changes in CoM stability during the load-bearing run
(Load Run), showing a 25% reduction in mediolateral
oscillation.

To elucidate the neuromuscular mechanisms underpinning
the biomechanical improvements, surface
electromyography (SEMG) was recorded from selected
lower-limb and trunk muscles: rectus femoris, biceps
femoris, gastrocnemius, soleus, gluteus maximus, rectus
abdominis, and erector spinae. Signals were DC-offset
corrected, band-pass filtered (20-450 Hz), smoothed
using a moving window, and normalized to maximal
voluntary contraction (MVC). From these traces, we
extracted RMS amplitude, mean/median frequency
(MNF), and onset time of activation.

Findings indicated that deploying the Al system
significantly improved co-ordination among synergists
while reducing unnecessary co-contractions. During the
military squat, mean RMS of the quadriceps increased by
~18%, whereas nonessential hamstring activity declined
by ~25%—a pattern consistent with shifting load from
compensatory strategies to the intended knee/hip
extension mechanics. In plank and core-stability tasks, the
activity ratio of rectus abdominis to erector spinae
decreased from 1.45 to 1.17, reflecting more balanced
anterior—posterior trunk engagement and reduced lumbar
loading. In the vertical jump, gastrocnemius activation
onset during landing shortened from 65 ms to 42 ms,
indicating a faster neuromuscular response for shock
absorption and improved eccentric control.

Spectral analysis further showed an average 14%
reduction in the MNF-shift associated with fatigue across
repeated-effort protocols. This aligns with lower muscular
fatigue and more stable firing patterns late in the session,
likely driven by technique refinement, more equitable
load sharing among synergists, and diminished
maladaptive co-contraction. Biomechanically, these
adaptations yield more balanced forces and moments at
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the knee and hip, lessen nonlinear loading on antagonists,
and thereby create conditions conducive to reduced injury
risk and improved mechanical efficiency. The observed
patterns are consistent with recent reports on the role of
machine learning in optimizing muscle activation during
military and athletic training, lending further credence to
our results [46-49].
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Fig 11. Paired columns (before/after) for RMS of the Quadriceps
and Hamstrings muscles (with error bars).
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Fig 12. Paired columns of the Rectus Abdominis / Erector
Spinae ratio and a small panel for AMNF = —14%.

3.2. Accuracy of the Al Model in Detecting Correct
Technique

We developed a hybrid CNN-LSTM model to identify
and quantify the correctness of foundational exercise
execution from a biomechanical standpoint. Model inputs
combined plantar-pressure signals, video of selected tasks
(squat, lunge, and balance tests), and OpenSim-derived
biomechanical parameters. The CNN extracted spatial
image features (joint/segment configurations), while the
LSTM captured temporal dynamics of the movement
sequence—an interplay that enabled precise tracking of
knee, ankle, and hip kinematics over the full cycle.
Overall accuracy for classifying “correct” vs. “incorrect”
execution was 94%. Evaluation with precision, recall, F1-
score, and the confusion matrix indicated the highest
class-specific accuracy for correct squats (96%) and the
lowest for incorrect lunges (91%), the latter plausibly
reflecting the wide variability in lunge technique and
individual hip-angle strategies. Learning curves showed
stable convergence: after 40 epochs, validation loss fell
below 0.08, with validation accuracy plateauing
thereafter.
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To improve robustness under real-world conditions, we
introduced motion-noise perturbations and illumination
variations during training, and we included “minor-error”
executions as a separate class. This augmentation strategy
enhanced  generalization to  non-ideal  inputs.
Biomechanical error analysis further showed that the
system reliably detected knee-angle deviations > 5° and
pelvic-axis deviations > 3°  supporting practical
deployment in sport and rehabilitation settings where
continuous expert supervision is not always feasible.
Finally, sensor fusion increased performance: integrating
plantar pressure + video improved overall accuracy by
~7% relative to video-only inputs, underscoring the
benefit of multi-source data.

Improvement (%)

Strength Endurance Speed

Fig 13. Training and validation loss trend over epochs for the
CNN-LSTM model. The uniform decrease and Validation Loss
reaching less than 0.08 after 40 epochs indicates stable model
convergence and overfitting control.
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Fig 14. Training and validation accuracy trend in terms of
epoch. The validation accuracy stabilized at around 0.94 at the
end of training, and the reasonable distance between the two
curves indicates that the model has reached a good balance
between fit and generalizability.
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Fig 15. Four-class (Squat-OK, Squat-NOK, Lunge-OK, Lunge-NOK)
confusion matrix for the validation set. Overall accuracy = 93.9%; lower
accuracy in the Lunge-NOK class reflects the variation in lunge form
and hip angular variation between individuals.
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3.2. Comparative Performance Against Baseline
Methods

To evaluate efficacy, the hybrid CNN-LSTM model was
benchmarked against three common baselines: a plain
CNN, a classical LSTM, and an SVM using hand-crafted
features. Evaluation followed a leave-subjects-out plus
10-fold protocol to prevent inter-subject information
leakage and to assess generalizability.

Results showed a consistent and significant advantage for
the proposed model across all metrics. Overall accuracy
reached 94.2%, versus 88.5% (CNN), 86.7% (LSTM),
and 84.9% (SVM). Correspondingly, weighted F1-scores
were 0.942 (proposed), 0.887 (CNN), 0.864 (LSTM), and
0.842 (SVM). In biomechanical error quantification, the
hybrid model reduced the mean knee-angle error to 2.1°
0.7, compared with 4.0° + 1.2 (CNN), 4.3° + 1.3 (LSTM),
and 4.6° £ 1.4 (SVM). Independent-samples t-tests
confirmed the between-model differences for both
accuracy and F1 at p < 0.05, with Cohen’s d = 0.8-1.1
relative to the best competing baseline.

0 5 10 15 20 25 30 35 40
Epoch

0.90

o
@
o

Accuracy

0.80

0.75

Training Accuracy
0.70 Validation Accuracy

0 5 10 15 20 25 30 35 40
Epoch

Fig 16. A bar chart comparison to show the accuracy and F1-
score of the models should be included in this section.

This superiority is attributable to two factors: (i) joint
learning of spatiotemporal features by the CNN-LSTM,
which aligns with the inherently dynamic, cyclical nature
of human movement; and (ii) multi-source data fusion
(plantar pressure + video, and in some protocols
EMG/OpenSim parameters), providing complementary
information on loading, timing, and movement symmetry.
Together, these factors enable more accurate
discrimination of optimal vs. suboptimal patterns and
lower angular-error estimates for risk indices.

3.3. Statistical Analysis

Statistical analyses were conducted in SPSS v26 and
Python (NumPy, SciPy). Normality of biomechanical
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variables and model outputs was assessed using the
Shapiro-Wilk test; most variables conformed to normal
distributions (p > 0.05). Paired t-tests compared pre—post
values for key indices—Kknee flexion angle in the squat,
peak GRF in the vertical jump, and mediolateral CoM
deviation in the load-bearing run. For example, mean
knee flexion improved by 3.8°, with the mean difference
statistically significant (p < 0.05). Agreement between
model estimates and sensor-based ground truth was high
(Pearson r = 0.91). A one-way ANOVA comparing
improvements across three training groups (strength,
endurance, speed) revealed a significant advantage for the
endurance group (p < 0.01). Collectively, these results
indicate that the proposed system not only enhances
movement-classification accuracy but also yields
statistically meaningful gains in biomechanical indices
and training efficiency.

Measurement Analysis Training Plan

CNN-LSTM + SYM/RF
Angles, CoM stability, GRF
Risk/Pattern scores

Technique cues
Volume/intensity
Rest intervals; progression

IMU 100 Hz; Video 120 fps ==

Optional: SEMG, OptiTrack

Execution

Model Update & Feedback {RL)

Reward: 1Accuracy/F1, LGRF peak, }CoM sway
Palicy update - next-session parameters

Fig 17. Comparison of group improvements (strength,
endurance, speed) in the composite biomechanical index after
model-based optimization. Dots indicate mean and bars indicate
confidence interval; the greatest improvement was observed in
the endurance group (p<0.01, one-way ANOVA).

4. Discussion and Interpretation of Findings

The present findings demonstrate that integrating
biomechanical data with Al models can meaningfully
enhance the quality and efficiency of physical training in
military personnel. The hybrid CNN-LSTM architecture
employed here, by jointly extracting spatial and temporal
features, accurately characterized movement execution
and yielded actionable technique corrections—in line with
prior reports underscoring the value of spatiotemporal
data and deep learning for human performance
enhancement [12, 23, 36]. Notably, the convergence of
joint-angle metrics toward safe operating ranges and the
reduction of lower-limb GRF peaks substantiate Al’s
potential in preventing musculoskeletal injuries. The
model’s ability to detect fine angular deviations and
deliver near-real-time feedback is particularly salient for
applied military biomechanics, where timely correction
can forestall early fatigue and chronic overuse injuries
[18, 27, 41].
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Conversely, our results indicate that deploying Al-driven
systems in military settings can vyield individual
performance profiles for each service member. Such
profiles furnish coaches and sports-medicine clinicians
with practical tools to track physical progress, pinpoint
weaknesses or risk factors, and design targeted
interventions. Moreover, combining data mining with
predictive modeling enables training prescriptions tailored
to physiological status, fatigue level, and even
psychological components [7, 19, 37]. Taken together, the
evidence suggests that integrating Al with sports
biomechanics constitutes a novel pathway to enhance
military  physical readiness: data-driven platforms
improve real-time situational awareness of bodily status,
elevate coaching decision quality, and thereby increase
training efficiency.

5. Conclusion

This study demonstrates that integrating artificial
intelligence with biomechanical analysis can effectively
optimize physical training in military personnel. The
hybrid.  CNN-LSTM  model accurately identified
foundational movement patterns and delivered near—real-
time feedback for technique correction, thereby reducing
nonessential joint loading, improving intersegmental
coordination, and enhancing physiological performance.
Biomechanically, shifts in joint kinematics toward safer
ranges, greater whole-body stability, and lower ground
reaction forces underscore AI’s direct value for
musculoskeletal injury prevention. Statistical analyses
further confirmed that pre—post differences were
significant (p < 0.05). Deployed in training and field
settings, such systems enable continuous movement
monitoring, automated performance analytics, and
personalized training prescriptions, ultimately improving

physical readiness, lowering injury incidence, and
increasing operational efficiency.
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