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Extended Abstract
Introduction

Flow behavior in meandering rivers is fundamental to predicting sediment transport, bank erosion, and morphological
changes. Curvature-induced secondary currents and pressure gradients create complex flow patterns, further
complicated by natural irregularities such as boulders. In particular, boulders attached to the outer bend alter flow
resistance, induce localized constriction, and modify velocity distribution. Despite their significance, the specific
hydraulic effects of such isolated outer-bank boulders remain inadequately studied, with most research focusing on bed
roughness or clustered boulders. Numerical models like HEC-RAS 2D are widely used for river engineering
applications due to their computational efficiency, but their ability to capture the highly three-dimensional flows
generated by discrete boulder obstructions is uncertain. This study addresses this gap by integrating laboratory
experiments and numerical modeling to investigate velocity distribution in a meandering channel with and without an
outer-bank boulder. The objectives are to:

(1) characterize the boulder’s influence on flow patterns,

(2) evaluate the accuracy of HEC-RAS 2D in simulating this scenario, and

(3) identify the limitations of depth-averaged modeling under such complex hydraulic conditions.

Materials and Methods

Experiments were conducted in a laboratory flume consisting of two straight reaches upstream and downstream of a
standard meander segment. The channel geometry was designed to replicate typical conditions observed in natural
meandering rivers while maintaining experimental control. Flow velocities were measured using a 16 MHz Micro
Acoustic Doppler Velocimeter (Micro ADV), providing high-resolution three-dimensional velocity data. Measurements
were taken at 24 cross-sections, each sampled at three vertical levels, to adequately capture the vertical and lateral
variability of the flow field.

Three steady discharges—30, 40, and 50 liters per second—were tested to evaluate the sensitivity of flow behavior and
model accuracy under increasing discharge and turbulence intensity. The quality of velocity data was ensured through
rigorous filtering based on Signal-to-Noise Ratio (SNR) thresholds, removing unreliable measurements and preserving
valid flow structures.

Numerical simulations were performed using HEC-RAS 2D, employing a detailed reconstruction of the flume
geometry. The model solves the depth-averaged shallow-water equations using a finite-volume scheme. Boundary
conditions were defined to match the experimental setup, and mesh resolution was refined near the bend and around the
boulder to improve model sensitivity to localized hydraulic variations. Model accuracy was assessed using Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE), comparing depth-averaged numerical velocities
with corresponding depth-averaged experimental measurements.

Two hydraulic scenarios were evaluated:

Baseline Scenario: Flow through the meander without any obstruction.

Boulder Scenario: Flow with a large boulder attached to the outer bank, creating partial lateral constriction of the cross-
section and inducing strong hydrodynamic disturbance.
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Results and Discussion

Baseline Flow (No Boulder)

In the unobstructed case, HEC-RAS 2D successfully reproduced the overall pattern of velocity distribution
characteristic of meandering flows. The model captured the concentration of high velocities along the inner bank of the
upstream bend, the deflection of this high-velocity core toward the outer bank downstream, and the gradual
redistribution of flow in the exit reach. The numerical results aligned well with measurements, with error values ranging
from RMSE = 0.023—-0.074 m/s and MAPE = 4.9-9.5% across the tested discharges.

However, discrepancies emerged at specific locations—particularly in sections experiencing strong helical motion.
Differences were most pronounced near the mid-bend area, where the combined effects of curvature and secondary
circulation produce vertical motions and shear layers that cannot be fully resolved by depth-averaged models. These
deviations highlight the inherent limitations of SWE-based numerical tools when simulating flow fields dominated by
pronounced three-dimensional effects.

Obstructed Flow (With Outer-Bank Boulder)

The installation of the boulder dramatically modified the flow structure. The obstacle imposed lateral constriction,
accelerating the flow around its upstream face, creating a low-pressure zone downstream, and producing a distinct
separation and recirculation region. These effects altered the velocity profile both laterally and vertically, intensifying
secondary currents and generating localized turbulence with strong three-dimensional characteristics.

The numerical model exhibited reduced accuracy under this scenario. HEC-RAS 2D was unable to capture the strength
and geometry of the separation zone, misrepresented the redistribution of velocities in the contraction area, and
underestimated vertical accelerations and localized vortices generated by the boulder. As a result, model errors
increased significantly in the vicinity of the obstacle, reflecting the limitations of depth-averaged formulations in
simulating obstacle-induced turbulence and vortex shedding.

Conclusion

This study demonstrates that while HEC-RAS 2D is reasonably effective in simulating general velocity patterns in
meander bends under unobstructed conditions, its performance deteriorates considerably in the presence of a large
bank-attached boulder. Such obstacles generate intense three-dimensional flow structures—including separation zones,
vortex shedding, and strong secondary currents—that exceed the representational capacity of depth-averaged shallow-
water models.

Key conclusions include:

Outer-bank boulders significantly alter flow structure, creating complex turbulence patterns and localized distortions in
velocity distribution.

Depth-averaged numerical models struggle to capture the detailed hydraulics of obstacle-induced flow, leading to
increased prediction errors.

Higher discharge intensifies turbulence and further degrades the accuracy of 2D simulations.

These findings suggest that applications involving meander—obstacle interactions require advanced three-dimensional
CFD models (e.g., RANS or LES) or enhanced parameterizations within 2D models to account for three-dimensional
turbulence effects. Laboratory measurements remain essential for validating and improving numerical tools used in
morph dynamic and hydraulic engineering analyses.
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Fig 5. Spatial distribution of velocity - modeling and measured values - Q40 test
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