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ABSTRACT 

 

One of the interesting subjects that engages the minds of researchers is hypothesizing 

the correct classification of a new sample by using available data. Data Envelopment 

Analysis and Discriminant Analysis can be used to classify data independently of 

each other. DEA classifies them as efficient and inefficient groups, and DA classifies 

the observations by their historical data. Merging these two methods is a powerful 

tool for classifying the data. Most of the methods represented are just useful for 

classifying observations into two groups. In this paper, we represent our new DEA-

DA method by using Goal Programming to classify data into more than two groups. 

Since, in the real world, in many cases we do not have certain data, we present a 

method that can be used for certain and interval data. Then, we present an empirical 

example of our purpose method on the Iranian stock companies' data. We divided 

stock companies into four groups with certain and interval data. Since most of the 

classical DA models are used for two groups, the advantage of the proposed model 

is highlighted. The result shows that the model can predict and classify more than 

two groups with certain and interval data completely correctly. 

 

 

1 Introduction 

Discriminant Analysis (DA) is a classification method for predicting group membership of a new 

observation. In DA, at first, the observation data are classified into the specified group by some defined 

factors. By using the memberships of these observations, we can predict the membership of new 
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observations. Data Envelopment Analysis (DEA) is a powerful tool in optimization, management, and 

decision science for classifying the units into two groups: efficient and inefficient. DEA has lots of applied 

models, such as BCC (Banker et al. [4]), CCR (Charnes et al. [5]), Additive, and so on. In (1999), the 

additive model of DEA was compared with the represented GP approach for DA. The comparison showed 

their likeness and discrepancy. Sueyoshi believed that combining DA and DEA in the framework of GP is 

so useful and helps us to specify the group membership of new observations more accurately. So, he 

represented his DEA-DA method by using GP in (1999), then he completed his model in (2001) (Sueyoshi 

[20,21]). In the real situation, sometimes we do not have access to certain data, so interval data or fuzzy 

data in these cases. In discriminant analysis, there are numerous papers in that the researcher used imprecise 

data. Some data should be expressed as an interval (Jahanshahloo et al. [11], Duarte Silva et al. [7-8], 

Angulo et al. [1]), and some data should be expressed as a fuzzy set because of their quiddity (Hosseinzadeh 

Lotfi et al. [9-10], Khalili-Damghani et al. [12], Omrani et al. [13]). DEA is one of the practical tools for 

portfolio selection and portfolio optimization. There are lots of researchers who want to find an easier and 

more accurate method in this field (Navidi et al. [14-18], and Banihashemi et al. [2-3]). 

In portfolio cases, some data are imprecise (Peykani et al. [19], Tohidi et al. [22]). The DEA-DA method 

is used in lots of management cases. Most of the represented DEA-DA methods, by using GP, classify the 

observation into two groups. But, in the real world, we have more than two groups. For example, customer 

clubs usually separate their customers into the platinum card (loyal customers), gold card (good customers), 

silver card (average customers), and blue card (new customers). This classification helps the manager to 

present the best services appropriate to each customer. Another example, consider the capitalist who wants 

to establish a company.  

The discriminant analysis helps him/her decide what is best. By using discriminant analysis, we can 

distribute available stock companies by their historical data into defined groups such as great, good, 

average, and weak stock companies. So, in this paper, we distribute available pharmaceutical stock 

companies by their historical data to defined groups (that are more than two groups) with certain and 

interval data; then, by using this information, we predict the group membership of new pharmaceutical 

stock companies. The remainder of this paper is organized as follows: In Section 2, we review some 

previous works in the DEA-DA method by using GP. Our proposed method is described in Section 3. The 

empirical example of our purpose method on the Iranian pharmaceutical stock companies is represented in 

Section 4. The conclusion is represented in section 5. 

 

2 Background 

In this section, we define previously represented models. 

Sueyoshi [20] in 1999 represented his two-stage DEA-DA method for two groups. The first stage includes 

classification and overlaps identification. The second stage includes handling overlap. 

Assume that there are 𝑛 observations 𝑗 = (1, … , 𝑛) that belong to two groups (𝐺1 𝑎𝑛𝑑 𝐺2), Each 

observation is defined by 𝑘 independent factors 𝑖 = (1, … , 𝑘) indicated by 𝑍𝑖𝑗. 

 

The first stage, which involves classification and overlap identification, is formulated as follows:  
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𝑚𝑖𝑛 ∑ 𝑆1𝑗
+

𝑗∈𝐺1

 + ∑ 𝑆2𝑗
−

𝑗∈𝐺2

 

𝑠. 𝑡.  ∑ 𝛼𝑖𝑍𝑖𝑗

𝑘

𝑖=1

+  𝑆1𝑗
+ − 𝑆1𝑗

− = 𝑑,                            𝑗 ∈ 𝐺1 

         ∑ 𝛽𝑖𝑍𝑖𝑗

𝑘

𝑖=1

+  𝑆2𝑗
+ −  𝑆2𝑗

− = 𝑑 − 𝜂,                     𝑗 ∈ 𝐺2 

         ∑ 𝛼𝑖

𝑘

𝑖=1

= 1 

         ∑ 𝛽𝑖

𝑘

𝑖=1

= 1 

𝑎𝑙𝑙 𝑠𝑙𝑎𝑐𝑘𝑠 ≥ 0   , 𝛼𝑖 ≥ 0   , 𝛽𝑖 ≥ 0   , 𝑑: 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 

  

 

(1) 

 

 

Where 𝑆1𝑗
+  , 𝑆1𝑗

− (𝑗 ∈ 𝐺1) are the positive and negative aberrations of a piecewise linear discriminant function 

∑ 𝛼𝑖𝑍𝑖𝑗
𝑘
𝑖=1  from a discriminant score 𝑑 of 𝐺1, respectively. The positive aberration(𝑆1𝑗

+ > 0 , 𝑗 ∈ 𝐺1), 

specifies an event of group misclassification on the 𝑗𝑡ℎ observation in 𝐺1, which comes in the objective of 

(1) to minimize its incorrect classification. Simultaneously, the negative aberration (𝑆1𝑗
− > 0 , 𝑗 ∈ 𝐺1), 

specifies an event of group correct classification, which comes within the constraints of (1) to avoid an 

infeasible solution. The 𝑖𝑡ℎ weight of the discriminant function is 𝛼𝑖 in (1). 

 

The above explanation for 𝐺1 expand to 𝐺2. 𝑆2𝑗
+  , 𝑆2𝑗

− (𝑗 ∈ 𝐺2) are the positive and negative aberrations of a 

piecewise linear discriminant function ∑ 𝛽𝑖𝑍𝑖𝑗
𝑘
𝑖=1  from a discriminant score 𝑑 − η of 𝐺2, respectively. The 

positive aberration (𝑆2𝑗
+ > 0 , 𝑗 ∈ 𝐺2), specifies an event of group misclassification on the 𝑗𝑡ℎ observation 

in 𝐺2, it comes in the objective of (1) to minimize its incorrect classification. Simultaneously, the negative 

aberration (𝑆2𝑗
− > 0 , 𝑗 ∈ 𝐺2), specifies an event of group correct classification, which comes within the 

constraints of (1) to avoid an infeasible solution. The 𝑖𝑡ℎ weight of the discriminant function is 𝛽𝑖 in (1). 𝜂 

depends on the decision maker's intellectual (Sueyoshi [20] considered 𝜂 = 0.1).  

The new sample that is 𝑚𝑡ℎ observation, whose value is defined by 𝑍𝑖𝑚, can be classified by the following 

principle: 

I. If ∑ 𝛼𝑖
∗𝑍𝑖𝑚

𝑘
𝑖=1 > 𝑑∗ ≥ ∑ 𝛽𝑖

∗𝑍𝑖𝑚
𝑘
𝑖=1  or ∑ 𝛼𝑖

∗𝑍𝑖𝑚
𝑘
𝑖=1 ≤ 𝑑∗ < ∑ 𝛽𝑖

∗𝑍𝑖𝑚
𝑘
𝑖=1  then 𝑚 ∈ 𝐺1 ∩ 𝐺2 

II. If ∑ 𝛼𝑖
∗𝑍𝑖𝑚

𝑘
𝑖=1 ≥ 𝑑∗ and ∑ 𝛽𝑖

∗𝑍𝑖𝑚
𝑘
𝑖=1 ≥ 𝑑∗ then 𝑚 ∈ 𝐺1 

III. If ∑ 𝛼𝑖
∗𝑍𝑖𝑚

𝑘
𝑖=1 < 𝑑∗ and ∑ 𝛽𝑖

∗𝑍𝑖𝑚
𝑘
𝑖=1 < 𝑑∗ then 𝑚 ∈ 𝐺2 

(𝛼𝑖
∗, 𝛽𝑖

∗, 𝑑∗are the optimal solutions of (1))  

 

When the first situation happened (𝑚 ∈ 𝐺1 ∩ 𝐺2) and an overlap is identified, we go to the second stage, 

where handling overlap is formulated as follows: 
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𝑚𝑖𝑛 ∑ 𝑆1𝑗
+

𝑗∈𝐺1

 + ∑ 𝑆2𝑗
−

𝑗∈𝐺2

 

𝑠. 𝑡.  ∑ 𝛾𝑖𝑍𝑖𝑗

𝑘

𝑖=1

+  𝑆1𝑗
+ −  𝑆1𝑗

− = 𝑑,                             𝑗 ∈ 𝐺1 

         ∑ 𝛾𝑖𝑍𝑖𝑗

𝑘

𝑖=1

+ 𝑆2𝑗
+ − 𝑆2𝑗

− = 𝑑 − 𝜂,                     𝑗 ∈ 𝐺2 

         ∑ 𝛾𝑖

𝑘

𝑖=1

= 1 

𝑎𝑙𝑙 𝑠𝑙𝑎𝑐𝑘𝑠 ≥ 0   , 𝛾𝑖 ≥ 0   , 𝑑: 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 

  

 

(2) 

 

All observations that belonged to 𝐺1 ∩ 𝐺2, can be classified to 𝐺1𝑜𝑟 𝐺2 by following two principles: 

I. If ∑ 𝛾𝑖
∗𝑍𝑖𝑗

𝑘
𝑖=1 ≥ 𝑑∗ for 𝑗 ∈ 𝐺1 ∩ 𝐺2 then 𝑗 ∈ 𝐺1 

II. If ∑ 𝛾𝑖
∗𝑍𝑖𝑗

𝑘
𝑖=1 < 𝑑∗ for 𝑗 ∈ 𝐺1 ∩ 𝐺2 then 𝑗 ∈ 𝐺2 

(𝛾𝑖
∗, 𝑑∗are the optimal solutions of (2))  

Sueyoshi [21] in 2001 represented his extended DEA-DA method for two groups.  

The first stage, that is, classification and overlap identification, is formulated as follows:  

𝑚𝑖𝑛 ∑ 𝑆1𝑗
+

𝑗∈𝐺1

 + ∑ 𝑆2𝑗
−

𝑗∈𝐺2

 

𝑠. 𝑡.  ∑(𝜆𝑖
+ − 𝜆𝑖

−)𝑍𝑖𝑗

𝑘

𝑖=1

+ 𝑆1𝑗
+ −  𝑆1𝑗

− = 𝑑 + 1,                           𝑗 ∈ 𝐺1 

         ∑(𝜆𝑖
+ − 𝜆𝑖

−)𝑍𝑖𝑗

𝑘

𝑖=1

+  𝑆2𝑗
+ −  𝑆2𝑗

− = 𝑑,                                   𝑗 ∈ 𝐺2 

         ∑(𝜆𝑖
+ + 𝜆𝑖

−)

𝑘

𝑖=1

= 1 

𝑎𝑙𝑙 𝑠𝑙𝑎𝑐𝑘𝑠 ≥ 0   , 𝜆𝑖
+ ≥ 0   , 𝜆𝑖

− ≥ 0   , 𝑑: 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 

  

 

(3) 

 

All the observed factors 𝑍𝑖𝑗 are connected by ∑ 𝜆𝑖𝑍𝑖𝑗
𝑘
𝑖=1  where 𝜆𝑖 is a weight for the 𝑖𝑡ℎ factor. These 

weights are limited in the way that the sum of the total values of 𝜆𝑖 = (𝜆𝑖
+ − 𝜆𝑖

−) for all 𝑖 = 1, … , 𝑘 is unity. 

The new sample that is 𝑚𝑡ℎ observation, whose value is defined by 𝑍𝑖𝑚, can be classified by the following 

principle: 

I. If ∑ 𝜆𝑖
∗𝑍𝑖𝑚

𝑘
𝑖=1 ≥ 𝑑∗ + 1 then 𝑚 ∈ 𝐺1 

II. If 𝑑∗ + 1 > ∑ 𝜆𝑖
∗𝑍𝑖𝑚

𝑘
𝑖=1 > 𝑑∗ then 𝑚 ∈ 𝐺1 ∩ 𝐺2 

III. If 𝑑∗ ≥ ∑ 𝜆𝑖
∗𝑍𝑖𝑚

𝑘
𝑖=1  then 𝑚 ∈ 𝐺2 

(𝜆𝑖
∗ = (𝜆𝑖

+∗
− 𝜆𝑖

−∗
), 𝑑∗ are the optimal solutions of (3))  
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For using these principles, the whole set 𝐺 has been divided into the following subsets: 

𝐶1 = {𝑗 ∈ 𝐺1| ∑ 𝜆𝑖
∗𝑍𝑖𝑚

𝑘

𝑖=1

≥ 𝑑∗ + 1} 

𝐶2 = {𝑗 ∈ 𝐺2| ∑ 𝜆𝑖
∗𝑍𝑖𝑚

𝑘

𝑖=1

≤ 𝑑∗} 

𝐷1 = 𝐺1 − 𝐶1 

𝐷2 = 𝐺2 − 𝐶2 

When the overlap is identified, the second stage that handles overlap is used for two subgroups (𝐷1 ∪ 𝐷2). 

The handling overlap is formulated as follows: 

𝑚𝑖𝑛 ∑ 𝑆1𝑗
+

𝑗∈𝐷1

 +  ∑ 𝑆2𝑗
−

𝑗∈𝐷2

 

𝑠. 𝑡.  ∑(𝜆𝑖
+ − 𝜆𝑖

−)𝑍𝑖𝑗

𝑘

𝑖=1

≥ 𝑑 + 1,                                                   𝑗 ∈ 𝐶1 

         ∑(𝜆𝑖
+ − 𝜆𝑖

−)𝑍𝑖𝑗

𝑘

𝑖=1

+  𝑆1𝑗
+ − 𝑆1𝑗

− = 𝑐,                                   𝑗 ∈ 𝐷1 

         ∑(𝜆𝑖
+ − 𝜆𝑖

−)𝑍𝑖𝑗

𝑘

𝑖=1

+  𝑆2𝑗
+ −  𝑆2𝑗

− = 𝑐,                                   𝑗 ∈ 𝐷2 

         ∑(𝜆𝑖
+ − 𝜆𝑖

−)𝑍𝑖𝑗

𝑘

𝑖=1

≤ 𝑑,                                                           𝑗 ∈ 𝐶2 

         ∑(𝜆𝑖
+ + 𝜆𝑖

−)

𝑘

𝑖=1

= 1 

        𝑑 ≤ 𝑐 ≤ 𝑑 + 1 

𝑎𝑙𝑙 𝑠𝑙𝑎𝑐𝑘𝑠 ≥ 0   , 𝜆𝑖
+ ≥ 0   , 𝜆𝑖

− ≥ 0   , 𝑑: 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑   , 𝑐: 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 

  
 

(4) 
 

All correct classified observations are limited by constraints numbers 1 and 4 in the model (4).  

(∑ (𝜆𝑖
+ − 𝜆𝑖

−)𝑍𝑖𝑗
𝑘
𝑖=1 ≥ 𝑑 + 1,   𝑗 ∈ 𝐶1   ;   ∑ (𝜆𝑖

+ − 𝜆𝑖
−)𝑍𝑖𝑗

𝑘
𝑖=1 ≤ 𝑑,   𝑗 ∈ 𝐶2) 

The new discriminant score (𝑐) is specified by minimizing the total aberration of observations in the 

overlap. The new sample that is 𝑟𝑡ℎ observation which is identified as an overlap in the first stage can be 

classified by the following principle: 

I. If ∑ 𝜆𝑖
∗𝑍𝑖𝑟

𝑘
𝑖=1 ≥ 𝑐∗ then 𝑟 ∈ 𝐺1 

II. If ∑ 𝜆𝑖
∗𝑍𝑖𝑟

𝑘
𝑖=1 < 𝑐∗ then 𝑟 ∈ 𝐺2 

(For ∑ 𝜆𝑖
∗𝑍𝑖𝑟

𝑘
𝑖=1 = 𝑐∗ model cannot determine accurately) 

(𝜆𝑖
∗ = (𝜆𝑖

+∗
− 𝜆𝑖

−∗
), 𝑐∗are the optimal solutions of (4)) 
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3 Methodology 

In this section, first we represent our model for certain data, then we expand it for interval data. 

 

3.1 Proposed method 

Based on the Sueyoshi [21] method, we propose our method that classifies observations into more than two 

groups, and then we expand it for interval data. 

Assume that there are 𝑛 observations 𝑗 = (1, … , 𝑛) that are belong to ℎ groups (𝑔 = 1, … , ℎ), Each 

observation is defined by 𝑘 independent factors 𝑖 = (1, … , 𝑘) indicated by 𝑍𝑖𝑗. 

The GP model of DEA-DA for more than two groups is formulated as follows:  

𝑚𝑖𝑛 ∑ ∑ ∑ 𝑡𝑠𝑗

𝑗∈𝐺𝑔

2ℎ−3

𝑠=1

ℎ

𝑔=1
 +  ∑ ∑ ∑ 𝑡(𝑠+1)𝑗

𝑗∈𝐺𝑔

2ℎ−2

𝑠=1

ℎ

𝑔=1
 

𝑠. 𝑡.  ∑ 𝜆𝑖𝑍𝑖𝑗

𝑘

𝑖=1

− 𝑐𝑔 ≥ −𝑡𝑠𝑗,              𝑗 ∈ 𝐺𝑔  , 𝑔 = 1, … , ℎ − 1  , 𝑠 = 1,2, … ,2ℎ − 3 

         ∑ 𝜆𝑖𝑍𝑖𝑗

𝑘

𝑖=1

− 𝑐𝑔 ≤ 𝑡(𝑠+1)𝑗,           𝑗 ∈ 𝐺𝑔+1  , 𝑔 = 1, … , ℎ − 1  , 𝑠 = 1,2, … ,2ℎ − 2 

         ∑|𝜆𝑖|

𝑘

𝑖=1

= 1 

𝑐𝑔(𝑔 = 1, … , ℎ − 1): 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑  , 𝜆𝑖: 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑  , 𝑡𝑠𝑗 ≥ 0  , 𝑡(𝑠+1)𝑗 ≥ 0   

  

 

(5) 

 

All the observed factors 𝑍𝑖𝑗 are connected by ∑ 𝜆𝑖𝑍𝑖𝑗
𝑘
𝑖=1  where 𝜆𝑖 is a weight for the 𝑖𝑡ℎ factor. These 

weights are limited in the way that the sum of total values of |𝜆𝑖| for all 𝑖 = 1, … , 𝑘 is unity. The different 

ℎ groups are separated with discriminant scores 𝑐𝑔(𝑔 = 1, … , ℎ − 1). The variables 𝑡𝑠𝑗  , 𝑡(𝑠+1)𝑗 are the 

aberration of the discriminant function ∑ 𝜆𝑖𝑍𝑖𝑗
𝑘
𝑖=1  from a discriminant score 𝑐𝑔(𝑔 = 1, … , ℎ − 1) to 

minimize the event of group misclassification (the 𝑠 index is just used to make different, separate 

hyperplanes). 

(𝑐𝑔
∗(𝑔 = 1, … , ℎ − 1) and  𝜆𝑖

∗(𝑖 = 1, … , 𝑘) are the optimal solutions of (5)) 

The new sample that is 𝑚𝑡ℎ observation, whose value is defined by 𝑍𝑖𝑚, can be classified by the following 

principle: 

I. If ∑ 𝜆𝑖
∗𝑍𝑖𝑚

𝑘
𝑖=1 ≥ 𝑐1

∗ then 𝑚 ∈ 𝐺1 

II. If 𝑐𝑔−1
∗ ≥ ∑ 𝜆𝑖

∗𝑍𝑖𝑚
𝑘
𝑖=1 ≥ 𝑐𝑔

∗ then 𝑚 ∈ 𝐺𝑔(𝑔 = 2, … , ℎ − 1) 

III. If ∑ 𝜆𝑖
∗𝑍𝑖𝑚

𝑘
𝑖=1 ≤ 𝑐ℎ−1

∗  then 𝑚 ∈ 𝐺ℎ 

For a more comprehensive understanding, we bring Fig.1 and formulated model (5) widely for four groups 

as follows: 
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𝑚𝑖𝑛 ∑ 𝑡1𝑗

𝑗∈𝐺1

 +  ∑ 𝑡2𝑗

𝑗∈𝐺2

+  ∑ 𝑡3𝑗

𝑗∈𝐺2

+  ∑ 𝑡4𝑗

𝑗∈𝐺3

+  ∑ 𝑡5𝑗

𝑗∈𝐺3

+  ∑ 𝑡6𝑗

𝑗∈𝐺4

 

𝑠. 𝑡.  ∑ 𝜆𝑖𝑍𝑖𝑗

𝑘

𝑖=1

− 𝑐1 ≥ −𝑡1𝑗,              𝑗 ∈ 𝐺1  

         ∑ 𝜆𝑖𝑍𝑖𝑗

𝑘

𝑖=1

− 𝑐1 ≤ 𝑡2𝑗,                 𝑗 ∈ 𝐺2   

         ∑ 𝜆𝑖𝑍𝑖𝑗

𝑘

𝑖=1

− 𝑐2 ≥ −𝑡3𝑗,             𝑗 ∈ 𝐺2   

         ∑ 𝜆𝑖𝑍𝑖𝑗

𝑘

𝑖=1

− 𝑐2 ≤ 𝑡4𝑗,                 𝑗 ∈ 𝐺3   

         ∑ 𝜆𝑖𝑍𝑖𝑗

𝑘

𝑖=1

− 𝑐3 ≥ −𝑡5𝑗,             𝑗 ∈ 𝐺3   

         ∑ 𝜆𝑖𝑍𝑖𝑗

𝑘

𝑖=1

− 𝑐3 ≤ 𝑡6𝑗,                 𝑗 ∈ 𝐺4   

         ∑|𝜆𝑖|

𝑘

𝑖=1

= 1 

𝑐1, 𝑐2, 𝑐3: 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑   , 𝜆𝑖: 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑   , 

 𝑡1𝑗 ≥ 0  , 𝑡2𝑗 ≥ 0  , 𝑡3𝑗 ≥ 0  , 𝑡4𝑗 ≥ 0  , 𝑡5𝑗 ≥ 0  , 𝑡6𝑗 ≥ 0   

  

 

(6) 

 

The new sample that is 𝑚𝑡ℎ observation, whose value is defined by 𝑍𝑖𝑚, can be classified by the following 

principle: 

I. If ∑ 𝜆𝑖
∗𝑍𝑖𝑚

𝑘
𝑖=1 ≥ 𝑐1

∗ then 𝑚 ∈ 𝐺1 

II. If 𝑐1
∗ ≥ ∑ 𝜆𝑖

∗𝑍𝑖𝑚
𝑘
𝑖=1 ≥ 𝑐2

∗ then 𝑚 ∈ 𝐺2 

III. If 𝑐2
∗ ≥ ∑ 𝜆𝑖

∗𝑍𝑖𝑚
𝑘
𝑖=1 ≥ 𝑐3

∗ then 𝑚 ∈ 𝐺3 

IV. If ∑ 𝜆𝑖
∗𝑍𝑖𝑚

𝑘
𝑖=1 ≤ 𝑐3

∗ then 𝑚 ∈ 𝐺4 

 

 

Fig. 1: Classification of four groups 
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As you see in Fig. 1, the observations of the first group (𝐺1) must be on the left side of its separator 

hyperplane (𝑐1) but we allow them to have a little tolerance (𝑡1𝑗
). The observations of the second group 

(𝐺2) must be between its separator hyperplanes (𝑐1 and 𝑐2) but we allow them to have a little tolerance (be 

between 𝑡2𝑗
 and 𝑡3𝑗

). The observations of the third group (𝐺3) must be between its separator hyperplanes 

(𝑐2 and 𝑐3) but we allow them to have a little tolerance (be between 𝑡4𝑗
 and 𝑡5𝑗

). The observations of the 

fourth group (𝐺4) must be on the right side of its separator hyperplane (𝑐3) but we allow them to have a 

little tolerance (𝑡6𝑗
).Consider that we can use model (5) for how many groups as we want (𝑔 = 1, … , ℎ). 

Theorem 1. The optimal value of the objective function of the model (5) is finite. 

Proof. Let 

𝜆 = 𝑒1 

𝑐𝑔 = 0  ,   (𝑔 = 1, … , ℎ − 1) 

𝑡𝑠𝑗 = −𝑍𝑖𝑗    ,   (𝑗 = 1, … , 𝑛)   ,   (𝑖 = 1, … , 𝑘)   ,   𝑠 = 1,2, … ,2ℎ − 3 

𝑡(𝑠+1)𝑗 = 𝑍𝑖𝑗    ,   (𝑗 = 1, … , 𝑛)   ,   (𝑖 = 1, … , 𝑘)   ,   𝑠 = 1,2, … ,2ℎ − 2 

Then, with this select model (5), there is a feasible solution. On the other hand, we always have: 

0 ≤ 𝜃 = 𝑚𝑖𝑛 ∑ ∑ ∑ 𝑡𝑠𝑗

𝑗∈𝐺𝑔

2ℎ−3

𝑠=1

ℎ

𝑔=1
 +  ∑ ∑ ∑ 𝑡(𝑠+1)𝑗

𝑗∈𝐺𝑔

2ℎ−2

𝑠=1

ℎ

𝑔=1
 

Therefore, model (5) has a bounded optimal solution, and the proof is completed. 

 

3.2 Proposed method for interval data 

Since in the real world, we do not access certain data, the data might be an interval. Also, some data is 

expressed as an interval because of its properties. We can expand our model (5) for interval data. Assume 

that there are 𝑛 observations 𝑗 = (1, … , 𝑛) that belong to ℎ groups (𝑔 = 1, … , ℎ), Each observation is 

defined by 𝑘 independent factors 𝑖 = (1, … , 𝑘) indicated by 𝑍𝑖𝑗𝜖[𝑍𝑖𝑗
𝐿  , 𝑍𝑖𝑗

𝑈] with permanent lower and upper 

bounds of the interval (for more explanation of imprecise data in DEA, see Cooper et al. [6]). Then we will 

have: 

𝜃 = 𝑚𝑖𝑛 ∑ ∑ ∑ 𝑡𝑠𝑗

𝑗∈𝐺𝑔

2ℎ−3

𝑠=1

ℎ

𝑔=1
 + ∑ ∑ ∑ 𝑡(𝑠+1)𝑗

𝑗∈𝐺𝑔

2ℎ−2

𝑠=1

ℎ

𝑔=1
 

𝑠. 𝑡.  ∑ 𝜆𝑖𝑍𝑖𝑗

𝑘

𝑖=1

− 𝑐𝑔 ≥ −𝑡𝑠𝑗,              𝑗 ∈ 𝐺𝑔  , 𝑔 = 1, … , ℎ − 1  , 𝑠 = 1,2, … ,2ℎ − 3 

         ∑ 𝜆𝑖𝑍𝑖𝑗

𝑘

𝑖=1

− 𝑐𝑔 ≤ 𝑡(𝑠+1)𝑗,           𝑗 ∈ 𝐺𝑔+1  , 𝑔 = 1, … , ℎ − 1  , 𝑠 = 1,2, … ,2ℎ − 2 

         ∑|𝜆𝑖|

𝑘

𝑖=1

= 1 

𝑐𝑔(𝑔 = 1, … , ℎ − 1): 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑  , 𝜆𝑖: 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑  , 𝑡𝑠𝑗 ≥ 0  , 𝑡(𝑠+1)𝑗 ≥ 0   

  
 

(7) 
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Where 𝑍𝑖𝑗𝜖[𝑍𝑖𝑗
𝐿  , 𝑍𝑖𝑗

𝑈].  

All the observed factors 𝑍𝑖𝑗𝜖[𝑍𝑖𝑗
𝐿  , 𝑍𝑖𝑗

𝑈] are connected by ∑ 𝜆𝑖[𝑍𝑖𝑗
𝐿  , 𝑍𝑖𝑗

𝑈]𝑘
𝑖=1  where 𝜆𝑖 is a weight for the 𝑖𝑡ℎ 

factor. These weights are limited in the way that the sum of the total values of |𝜆𝑖| for all 𝑖 = 1, … , 𝑘 is 

unity. The different ℎ groups are separated with discriminant scores 𝑐𝑔(𝑔 = 1, … , ℎ − 1). The variables 𝑡𝑠𝑗 

, 𝑡(𝑠+1)𝑗 are the aberration of the discriminant function ∑ 𝜆𝑖[𝑍𝑖𝑗
𝐿  , 𝑍𝑖𝑗

𝑈]𝑘
𝑖=1  from a discriminant score 𝑐𝑔(𝑔 =

1, … , ℎ − 1) to minimize the event of group misclassification (The 𝑠 index (𝑠 = 1,2, . ..) is just used to make 

different separate hyperplanes). 

For solving model (7), we can solve models (8) and (9) that are its upper and lower bounds: 

𝜃𝐿 = 𝑚𝑖𝑛 ∑ ∑ ∑ 𝑡𝑠𝑗

𝑗∈𝐺𝑔

2ℎ−3

𝑠=1

ℎ

𝑔=1
 + ∑ ∑ ∑ 𝑡(𝑠+1)𝑗

𝑗∈𝐺𝑔

2ℎ−2

𝑠=1

ℎ

𝑔=1
 

𝑠. 𝑡.  ∑ 𝜆𝑖𝑍𝑖𝑗
𝐿

𝑘

𝑖=1

− 𝑐𝑔 ≥ −𝑡𝑠𝑗,              𝑗 ∈ 𝐺𝑔  , 𝑔 = 1, … , ℎ − 1  , 𝑠 = 1,2, … ,2ℎ − 3 

         ∑ 𝜆𝑖𝑍𝑖𝑗
𝐿

𝑘

𝑖=1

− 𝑐𝑔 ≤ 𝑡(𝑠+1)𝑗,           𝑗 ∈ 𝐺𝑔+1  , 𝑔 = 1, … , ℎ − 1  , 𝑠 = 1,2, … ,2ℎ − 2 

         ∑|𝜆𝑖|

𝑘

𝑖=1

= 1 

𝑐𝑔(𝑔 = 1, … , ℎ − 1): 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑  , 𝜆𝑖: 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑  , 𝑡𝑠𝑗 ≥ 0  , 𝑡(𝑠+1)𝑗 ≥ 0   

  

 

(8) 

 

 

𝜃𝑈 = 𝑚𝑖𝑛 ∑ ∑ ∑ 𝑡𝑠𝑗

𝑗∈𝐺𝑔

2ℎ−3

𝑠=1

ℎ

𝑔=1
 +  ∑ ∑ ∑ 𝑡(𝑠+1)𝑗

𝑗∈𝐺𝑔

2ℎ−2

𝑠=1

ℎ

𝑔=1
 

𝑠. 𝑡.  ∑ 𝜆𝑖𝑍𝑖𝑗
𝑈

𝑘

𝑖=1

− 𝑐𝑔 ≥ −𝑡𝑠𝑗,              𝑗 ∈ 𝐺𝑔  , 𝑔 = 1, … , ℎ − 1  , 𝑠 = 1,2, … ,2ℎ − 3 

         ∑ 𝜆𝑖𝑍𝑖𝑗
𝑈

𝑘

𝑖=1

− 𝑐𝑔 ≤ 𝑡(𝑠+1)𝑗,           𝑗 ∈ 𝐺𝑔+1  , 𝑔 = 1, … , ℎ − 1  , 𝑠 = 1,2, … ,2ℎ − 2 

         ∑|𝜆𝑖|

𝑘

𝑖=1

= 1 

𝑐𝑔(𝑔 = 1, … , ℎ − 1): 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑  , 𝜆𝑖: 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑  , 𝑡𝑠𝑗 ≥ 0  , 𝑡(𝑠+1)𝑗 ≥ 0   

  

 

(9) 

 

The objective function 𝜃 ∈ [𝜃𝐿 , 𝜃𝑈] is to minimize group misclassification. 

The new sample that is 𝑚𝑡ℎ observation, whose value is defined by 𝑍𝑖𝑚𝜖[𝑍𝑖𝑚
𝐿  , 𝑍𝑖𝑚

𝑈 ], can be classified by 

the following principle: 

I. If ∑ 𝜆𝑖
𝐿∗

𝑍𝑖𝑚
𝐿𝑘

𝑖=1 ≥ 𝑐1
𝐿∗

 then 𝑚 ∈ 𝐺1 

II. If 𝑐𝑔−1
𝐿∗

≥ ∑ 𝜆𝑖
𝐿∗

𝑍𝑖𝑚
𝐿𝑘

𝑖=1 ≥ 𝑐𝑔
𝐿∗

 & 𝑐𝑔−1
𝑈∗

≥ ∑ 𝜆𝑖
𝑈∗

𝑍𝑖𝑚
𝑈𝑘

𝑖=1 ≥ 𝑐𝑔
𝑈∗

 then 𝑚 ∈ 𝐺𝑔(𝑔 = 2, … , ℎ − 1) 
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III. If 𝑐𝑔−1
𝐿∗

≥ ∑ 𝜆𝑖
𝐿∗

𝑍𝑖𝑚
𝐿𝑘

𝑖=1 ≥ 𝑐𝑔
𝐿∗

 & 𝑐𝑔
𝑈∗

≥ ∑ 𝜆𝑖
𝑈∗

𝑍𝑖𝑚
𝑈𝑘

𝑖=1 ≥ 𝑐𝑔+1
𝑈∗

 then 𝑚 ∈ 𝐺𝑔(𝑔 = 2, … , ℎ − 1) 

IV. If ∑ 𝜆𝑖
𝑈∗

𝑍𝑖𝑚
𝑈𝑘

𝑖=1 ≤ 𝑐ℎ−1
𝑈∗

 then 𝑚 ∈ 𝐺ℎ 

(𝜆𝑖
𝐿∗

and 𝑐𝑔
𝐿∗

 are the optimal solutions of model (8), 𝜆𝑖
𝑈∗

and 𝑐𝑔
𝑈∗

 are the optimal solutions of model (9)) 

Theorem 2. Let 𝜃∗, 𝜃𝐿∗
, 𝜃𝑈∗

 be the optimal solution for model (7), (8), (9) respectively. Then 𝜃𝐿∗
≤ 𝜃∗ ≤

𝜃𝑈∗
. 

Proof. Let 𝜃∗ , 𝑐𝑔
∗ , 𝑡𝑠𝑗

∗  , 𝑡(𝑠+1)𝑗
∗  be the optimal solution of model (7). Because of 𝑍𝑖𝑗 ≤ 𝑍𝑖𝑗

𝑈 and 

∑ 𝜆𝑖𝑍𝑖𝑗
𝑘
𝑖=1 ≤ 𝑐𝑔 + 𝑡(𝑠+1)𝑗 

We have   

∑ 𝜆𝑖𝑍𝑖𝑗

𝑘

𝑖=1

≤ 𝑐𝑔
∗ + 𝑡(𝑠+1)𝑗

∗  

∑ 𝜆𝑖𝑍𝑖𝑗
𝑈

𝑘

𝑖=1

≤ 𝑐𝑔
𝑈 + 𝑡(𝑠+1)𝑗

𝑈  

𝑐𝑔
∗ + 𝑡(𝑠+1)𝑗

∗ ≤ 𝑐𝑔 + 𝑡(𝑠+1)𝑗 ≤ 𝑐𝑔
𝑈 + 𝑡(𝑠+1)𝑗

𝑈  

∑ 𝜆𝑖𝑍𝑖𝑗

𝑘

𝑖=1

≤ ∑ 𝜆𝑖𝑍𝑖𝑗
𝑈

𝑘

𝑖=1

 

So 

∑ 𝜆𝑖𝑍𝑖𝑗

𝑘

𝑖=1

≤ 𝑐𝑔
𝑈 + 𝑡(𝑠+1)𝑗

𝑈  

Therefore 𝜃∗ ≤ 𝜃𝑈, we can prove 𝜃𝐿 ≤ 𝜃∗ likewise. 

 

4 Empirical examples 

In this section, we apply our model to certain data and interval data separately.  

 

4.1 Data collection for certain data 

The dataset was collected from the 24 Iranian pharmaceutical stock companies from 2023 to 2024. The 

dataset was obtained from http://www.fipiran.com. All the stock companies are shown by their company’s 

symbol. Table 2 represents 𝑍𝑖𝑗 from Iranian pharmaceutical stock companies. In this research, we used 10 

financial indices (𝑖1, . . . , 𝑖10) that are expressed in Table 1, to distribute the 24 Iranian pharmaceutical stock 

companies to 4 groups. More details are in section 4.2.  

 

Table 1: The Financial Indices 

𝑖1 Total Current Assets 𝑖6 Total Assets 

𝑖2 Total Current Liabilities 𝑖7 Total Liabilities 

𝑖3 Total Stockholder Equity 𝑖8 Capital 

𝑖4 Profit Margin 𝑖9 Retained Earnings 

𝑖5 Gross Profit Ratio 𝑖10 Cash 
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Table 2: Financial Data of Iranian Pharmaceutical Stock Companies 

Obs. 

 

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6 𝑖7 𝑖8 𝑖9 𝑖10 

𝑍1𝑗 𝑍2𝑗 𝑍3𝑗 𝑍4𝑗 𝑍5𝑗 𝑍6𝑗 𝑍7𝑗 𝑍8𝑗 𝑍9𝑗 𝑍10𝑗 

DSOB1 0.102 0.016 0.477 0.376 0.116 0.216 0.015 0.293 0.427 0.047 

FTIR1 0.058 0.029 0.126 0.125 0.114 0.068 0.029 0.07 0.117 0.095 

PDRO1 0.178 0.165 0.158 0.435 0.589 0.144 0.149 0.037 0.22 0.306 

JAMD1 0.018 0.008 0.022 0.019 0.015 0.014 0.007 0.021 0.022 0.072 

DRZK1 0.281 0.244 0.164 0.237 0.217 0.21 0.221 0.104 0.212 0.505 

IRDR1 0.083 0.067 0.059 0.03 0.049 0.064 0.064 0.093 0.025 0.118 

AMIN1 0.15 0.112 0.162 0.129 0.121 0.144 0.11 0.146 0.157 0.171 

ROZD1 0.072 0.066 0.068 0.018 0.027 0.082 0.078 0.123 0.039 0.129 

DSIN1 0.143 0.177 0.149 0.192 0.184 0.173 0.163 0.07 0.223 0.34 

ABDI1 0.355 0.281 0.297 0.278 0.45 0.306 0.265 0.295 0.275 0.282 

DSNZ1 0.137 0.139 0.095 0.026 0.074 0.129 0.132 0.151 0.029 0.236 

DALZ1 0.415 0.319 0.369 0.344 0.271 0.351 0.285 0.326 0.384 0.292 

DJBR1 0.287 0.192 0.274 0.217 0.157 0.237 0.175 0.133 0.345 0.063 

KIMI1 0.134 0.108 0.14 0.146 0.077 0.109 0.102 0.042 0.173 0.015 

KSPZ1 0.157 0.16 0.085 0.139 0.126 0.122 0.144 0.026 0.144 0.155 

DTDZ1 0.098 0.086 0.055 0.061 0.065 0.091 0.107 0.065 0.051 0.027 

DDPK1 0.094 0.087 0.044 0.037 0.044 0.072 0.08 0.045 0.037 0.024 

DLGM1 0.077 0.079 0.094 0.029 0.041 0.087 0.093 0.079 0.056 0.053 

EXIR1 0.259 0.254 0.146 0.238 0.234 0.19 0.238 0.079 0.206 0.114 

BRKT1 0.096 0.236 0.456 0.238 0 0.489 0.443 0.597 0.244 0.123 

DPAK1 0.332 0.396 0.18 0.261 0.274 0.293 0.372 0.11 0.238 0.266 

DFRB1 0.245 0.266 0.153 0.233 0.185 0.21 0.242 0.07 0.233 0.316 

DZAH1 0.317 0.452 0.098 0.124 0.159 0.272 0.403 0.439 0.139 0.082 

DAML1 0.082 0.107 0.059 0.031 0.045 0.076 0.097 0.161 0.025 0.022 

 

4.2 Apply the proposed method on certain data 

In this section, we apply our represented model (5) to our data. Table 3 presents the 𝜆𝑖
∗(𝑖 = 1, … ,10) and 

𝑐𝑔
∗(𝑔 = 1,2,3). 

Table 3: Weight Estimates and Discriminant Scores 

𝑐1
∗ 0.01 

𝑐2
∗ 0 

𝑐3
∗ -0.005 

𝜆1
∗  0.12 

𝜆2
∗  -0.32 

𝜆3
∗  0.05 

𝜆4
∗  0.02 

𝜆5
∗  0.03 

𝜆6
∗  -0.17 

𝜆7
∗  0.21 

𝜆8
∗  0.03 

𝜆9
∗  0 

𝜆10
∗  0.05 
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In this research, we used 10 financial indices to distribute the 24 Iranian pharmaceutical stock companies 

into 4 groups:  

𝐺1= {Great pharmaceutical stock companies} 

𝐺2= {Good pharmaceutical stock companies} 

𝐺3= {Average pharmaceutical stock companies} 

𝐺4= {Weak pharmaceutical stock companies} 

Table 4 presents the group membership and prediction of the group membership of Iranian pharmaceutical 

stock companies that were achieved from using model (5). 

 

Table 4: Classification 

 

As you see in Table 4, all 24 pharmaceutical stock companies are classified as 100% correct. Model (5) is 

a simple and convenient model that can correctly predict group membership. By using model (5), we can 

predict the group membership of new pharmaceutical stock companies easily. 

 

 

 

Obs Group Prediction 

DSOB1 𝐺1 𝐺1 

FTIR1 𝐺1 𝐺1 

PDRO1 𝐺1 𝐺1 

JAMD1 𝐺2 𝐺2 

DRZK1 𝐺2 𝐺2 

IRDR1 𝐺2 𝐺2 

AMIN1 𝐺2 𝐺2 

ROZD1 𝐺2 𝐺2 

DSIN1 𝐺2 𝐺2 

ABDI1 𝐺2 𝐺2 

DSNZ1 𝐺2 𝐺2 

DALZ1 𝐺2 𝐺2 

DJBR1 𝐺2 𝐺2 

KIMI1 𝐺3 𝐺3 

KSPZ1 𝐺3 𝐺3 

DTDZ1 𝐺3 𝐺3 

DDPK1 𝐺3 𝐺3 

DLGM1 𝐺3 𝐺3 

EXIR1 𝐺3 𝐺3 

BRKT1 𝐺3 𝐺3 

DPAK1 𝐺4 𝐺4 

DFRB1 𝐺4 𝐺4 

DZAH1 𝐺4 𝐺4 

DAML1 𝐺4 𝐺4 
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4.3 Data collection for interval data 

    The dataset was collected from the 24 Iranian pharmaceutical stock companies from 2020 to 2024. The 

dataset was obtained from http://www.fipiran.com. All the stock companies are shown by their company 

symbols. Table 5 presents 𝑍𝑖𝑚𝜖[𝑍𝑖𝑚
𝐿  , 𝑍𝑖𝑚

𝑈 ] from Iranian pharmaceutical stock companies. In this research, 

we used 10 financial indices (𝑖1, . . . , 𝑖10) to distribute the 24 Iranian pharmaceutical stock companies to 4 

groups described in section 4.2.  

 

Table 5: Financial Data of Iranian Pharmaceutical Stock Companies by Interval Data 

Obs. 

 

𝑖1 

 

𝑖2 

 

𝑖3 

 

𝑖4 

 

𝑖5 

 

𝑍1𝑗
𝐿  𝑍1𝑗

𝑈  𝑍2𝑗
𝐿  𝑍2𝑗

𝑈  𝑍3𝑗
𝐿  𝑍3𝑗

𝑈  𝑍4𝑗
𝐿  𝑍4𝑗

𝑈  𝑍5𝑗
𝐿  𝑍5𝑗

𝑈  

DSOB1 0.111 0.112 0.006 0.006 0.382 0.436 0.47 0.492 0 0 

FTIR1 0.062 0.067 0.02 0.024 0.089 0.105 0.115 0.124 0.106 0.157 

PDRO1 0.183 0.222 0.152 0.163 0.115 0.139 0.215 0.365 0.555 0.58 

JAMD1 0.015 0.017 0.007 0.008 0.02 0.023 0.024 0.029 0.017 0.018 

DRZK1 0.281 0.306 0.244 0.274 0.164 0.166 0.237 0.267 0.217 0.232 

IRDR1 0.07 0.083 0.057 0.065 0.045 0.046 0.029 0.038 0.051 0.054 

AMIN1 0.116 0.125 0.09 0.114 0.145 0.153 0.084 0.098 0.099 0.1 

ROZD1 0.045 0.06 0.065 0.072 0.076 0.087 0.004 0.016 0.028 0.031 

DSIN1 0.139 0.163 0.078 0.158 0.154 0.176 0.25 0.259 0.206 0.21 

ABDI1 0.246 0.265 0.207 0.215 0.182 0.242 0.181 0.233 0.365 0.432 

DSNZ1 0.135 0.141 0.158 0.161 0.074 0.084 0.024 0.025 0.081 0.089 

DALZ1 0.241 0.337 0.128 0.222 0.256 0.329 0.397 0.407 0.317 0.351 

DJBR1 0.302 0.323 0.222 0.234 0.264 0.309 0.277 0.372 0.198 0.231 

KIMI1 0.138 0.14 0.117 0.123 0.094 0.105 0.123 0.155 0.081 0.095 

KSPZ1 0.15 0.17 0.142 0.15 0.079 0.092 0.119 0.139 0.153 0.154 

DTDZ1 0.105 0.107 0.089 0.095 0.062 0.073 0.049 0.076 0.081 0.088 

DDPK1 0.082 0.086 0.078 0.079 0.034 0.051 0.032 0.037 0.046 0.052 

DLGM1 0.088 0.097 0.09 0.104 0.063 0.089 0.025 0.035 0.032 0.05 

EXIR1 0.293 0.304 0.307 0.32 0.078 0.085 0.089 0.09 0.211 0.225 

BRKT1 0.11 0.131 0.232 0.285 0.572 0.705 0.264 0.284 0 0 

DPAK1 0.376 0.392 0.399 0.474 0.144 0.146 0.161 0.17 0.287 0.333 

DFRB1 0.265 0.322 0.311 0.313 0.172 0.199 0.185 0.222 0.19 0.198 

DZAH1 0.361 0.363 0.38 0.455 0.061 0.102 -0.189 0.169 0.17 0.204 

DAML1 0.083 0.088 0.116 0.12 -0.039 0.008 -0.036 -0.017 0.047 0.052 
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Table 5: Continued 

Obs. 

 

𝑖6 

 

𝑖7 

 

𝑖8 

 

𝑖9 

 

𝑖10 

 

𝑍6𝑗
𝐿  𝑍6𝑗

𝑈  𝑍7𝑗
𝐿  𝑍7𝑗

𝑈  𝑍8𝑗
𝐿  𝑍8𝑗

𝑈  𝑍9𝑗
𝐿  𝑍9𝑗

𝑈  𝑍10𝑗
𝐿  𝑍10𝑗

𝑈  

DSOB1 0.159 0.188 0.005 0.006 0.264 0.371 0.429 0.443 0.031 0.036 

FTIR1 0.057 0.064 0.021 0.023 0.055 0.089 0.102 0.106 0.066 0.112 

PDRO1 0.149 0.17 0.132 0.166 0.047 0.055 0.209 0.218 0.108 0.143 

JAMD1 0.012 0.013 0.006 0.007 0.011 0.018 0.024 0.025 0.083 0.098 

DRZK1 0.21 0.221 0.221 0.239 0.104 0.108 0.212 0.239 0.442 0.505 

IRDR1 0.051 0.066 0.051 0.068 0.042 0.067 0.021 0.029 0.03 0.08 

AMIN1 0.112 0.127 0.082 0.1 0.153 0.184 0.074 0.091 0.202 0.308 

ROZD1 0.076 0.078 0.068 0.074 0.156 0.168 0.001 0.037 0.046 0.062 

DSIN1 0.12 0.162 0.09 0.14 0.053 0.089 0.241 0.245 0.421 0.535 

ABDI1 0.201 0.219 0.186 0.195 0.088 0.149 0.181 0.299 0.141 0.345 

DSNZ1 0.121 0.125 0.136 0.146 0.1 0.1 0.027 0.033 0.075 0.12 

DALZ1 0.175 0.257 0.111 0.19 0.119 0.207 0.367 0.403 0.101 0.164 

DJBR1 0.238 0.251 0.193 0.204 0.1 0.168 0.406 0.414 0.064 0.08 

KIMI1 0.109 0.114 0.103 0.109 0.053 0.063 0.123 0.132 0.019 0.03 

KSPZ1 0.12 0.122 0.123 0.13 0.033 0.04 0.114 0.133 0.214 0.367 

DTDZ1 0.084 0.099 0.082 0.116 0.061 0.082 0.031 0.061 0.023 0.033 

DDPK1 0.06 0.065 0.069 0.07 0.022 0.057 0.036 0.037 0.026 0.046 

DLGM1 0.1 0.111 0.104 0.115 0.059 0.1 0.049 0.058 0.035 0.073 

EXIR1 0.208 0.215 0.263 0.275 0.04 0.1 0.068 0.082 0.106 0.148 

BRKT1 0.553 0.626 0.494 0.529 0.756 0.895 0.231 0.261 0.029 0.059 

DPAK1 0.327 0.33 0.363 0.417 0.111 0.132 0.128 0.152 0.138 0.373 

DFRB1 0.218 0.254 0.273 0.275 0.079 0.089 0.259 0.268 0.331 0.38 

DZAH1 0.262 0.274 0.327 0.405 0.053 0.063 -0.32 0.138 0.066 0.076 

DAML1 0.072 0.074 0.113 0.116 0.025 0.028 -0.114 -0.081 0.009 0.017 

 

4.4 Apply the proposed method on interval data 

In this section, we apply our represented model (8), (9) to our interval data. Table 6 presents the 𝜆𝑖
∗(𝑖 =

1, … ,10) and 𝑐𝑔
∗(𝑔 = 1,2,3). 

In this research, we used 10 financial indices to distribute the 24 Iranian pharmaceutical stock companies 

into 4 described groups.  
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Table 6: Weight Estimates and Discriminant Scores for Interval Data 

𝑐1
∗ 0.01 

𝑐2
∗ 0 

𝑐3
∗ -0.01 

𝜆1
∗  0.1 

𝜆2
∗  -0.11 

𝜆3
∗  -0.08 

𝜆4
∗  0.01 

𝜆5
∗  0.04 

𝜆6
∗  -0.29 

𝜆7
∗  0.13 

𝜆8
∗  0.19 

𝜆9
∗  0.05 

𝜆10
∗  0 

 

Table 7 presents the group membership and prediction of the group membership of Iranian pharmaceutical 

stock companies. 

 

Table 7: Classification of Interval Data 

Obs. Group Prediction 

DSOB1 𝐺1 𝐺1 

FTIR1 𝐺1 𝐺1 

PDRO1 𝐺1 𝐺1 

JAMD1 𝐺2 𝐺2 

DRZK1 𝐺2 𝐺2 

IRDR1 𝐺2 𝐺2 

AMIN1 𝐺2 𝐺2 

ROZD1 𝐺2 𝐺2 

DSIN1 𝐺2 𝐺2 

ABDI1 𝐺2 𝐺2 

DSNZ1 𝐺2 𝐺2 

DALZ1 𝐺2 𝐺2 

DJBR1 𝐺2 𝐺2 

KIMI1 𝐺3 𝐺3 

KSPZ1 𝐺3 𝐺3 

DTDZ1 𝐺3 𝐺3 

DDPK1 𝐺3 𝐺3 

DLGM1 𝐺3 𝐺3 

EXIR1 𝐺3 𝐺3 

BRKT1 𝐺3 𝐺3 

DPAK1 𝐺4 𝐺4 

DFRB1 𝐺4 𝐺4 

DZAH1 𝐺4 𝐺4 

DAML1 𝐺4 𝐺4 
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As you see in Table 7, all 24 pharmaceutical stock companies are classified as 100% correct. Models (8) 

(9) are simple and convenient models that are used instead of solving model (7), which can correctly predict 

group membership. By using these models, we can predict the group membership of new pharmaceutical 

stock companies easily. 

 

5 Conclusions 

As we know, one of the important and useful subjects is hypothesizing the correct classification of a new 

sample by using available data. There are lots of models and methods represented in this field. But most of 

them are just useful for classifying observations into two groups. In this paper, we presented a simple and 

convenient model by using the DEA-DA method with GP that can classify observations into more than two 

groups, as many groups as we want. Also, it can be used for certain and interval data. We applied our 

purpose model on the Iranian pharmaceutical stock companies with certain and interval data. As shown in 

Table 4, our represented method predicted all the pharmaceutical stock companies' group membership 

100% correctly for certain data. Also, our represented method predicted all of the pharmaceutical stock 

companies' group membership 100% correctly with interval data (Table 7).Future work can expand our 

framework to other alterations of the DEA methods. Besides, it can be expanded into an integrated 

numerical optimization using our framework. 
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