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Abstract 

Nanoparticles (NPs) have increasingly captured attention as high potential anticancer drugs over 

the years. A categorization of this landscape can immensely propel organized comparative research 

in the future and bring deeper understanding of nanomaterials’ comportment in biological settings. 

Although diverse, all nano platforms pursue similar goals of increasing efficacy in the four 

domains of oncology known as; diagnosis, treatment, drug delivery, and detection of biomarkers. 

In this review, we have gathered and provided a class-affiliated rendering of the most recent wet-

lab research exploring the impacts of size, surface chemistry, and morphology in various aspects 

of cancer care. Efforts here are focused on defining parameters for physicochemical properties of 

NPs and demonstrating variable attributes of them with regard to each. The said goal is achieved 

by i) grouping NPs under parameters of size, surface properties, and shape, ii) listing major types 

of NP within each group, and iii) arranging diverse and well-trusted original research done on 

cancer control over the past years. 
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1. Introduction 

The prefix nano—meaning dwarf in Greek, refers to material (particles) within the range of 1-100 

nm in at least one dimension. Nanoparticles (NPs) are engineered material at said scale with a wide 

array of applications, arguably most important of which to be oncology, birthing nanodrugs. This 

rapidly growing area of research investigates the use of the said platforms in the all domains of 

various cancers. 2843 papers were published on gynecologic cancers in this area alone through 

2004 to 2024 (Gospodinova et al., 2025). Similar studies report 3683 papers on colorectal cancer 

(M. Lu et al., 2025) and 1624 other solely focused on albumin NPs published over 24 years, 

averaging 68 papers published per year (Liu et al., 2024). The staggering extent of focus of 

researchers on this matter highlights a twinkle of hope for NPs to become our go-to tool for treating 

not only cancer but many other medical conditions. However, this enormous body of research can 

make it confusing for new audiences. Therefore, the need for an overarching, well-organized 

picture of the landscape of developed nanotechnologies in oncology is beckoning. 

Physicochemical properties of NPs determine their behavior during interface with biological 

systems. Understanding their properties is vital for fit application of varied tools. A requirement to 

that on the other hand is a comprehensive classification of said properties, arranged in such a way 

that would lay the ground work for comparative study of different NPs in each modality of cancer 

therapy based on their nature of interaction with biological systems. The current paper is expected 

to be lucrative to fresh audiences and lay the ground work for future investigations and picturing 

a higher resolution image of the research field. 
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2. Nanoparticle Properties 

What ultimately sets one research done on developing a NP apart from another is the success rate 

of the particular NP in performing the expected results, tightly associated with the content and 

arrangement of its constituent elements. The most important form of this arrangement emerges as 

the particles size being at the nanoscale as opposed to micrometer or bulk dimension. Next comes 

the morphology of NPs dictating their functionality for different purposes. Porous NPs, for 

example, are more suited for carrying loads, while different shapes of gold nanoparticles change 

their surface plasmonic resonance (SPR) value, making them more effective in photothermal 

therapy (PTT). At last, nature of constituents of NP systems—be pure or modular complexes, 

determines their chemical effects important in localized targeting and drug internalization, and 

their physical properties like magnetism and interaction with infrared (IR) light, which are 

subsequently exploited for different forms of therapy and/or diagnosis.  

2.1. Size 

At the nanoscale, the surface-to-volume ratio factor increases, meaning there is more surface area 

available compared to the volume that the number of atoms occupies in the space. This simple 

factor can lead to changes in: magnetism of iron oxides (Lavín Flores et al., 2024), optical bandgap 

of copper oxides (Zhakypov et al., 2023), black phosphorous (Guo et al., 2016), optical emission 

of semiconductor Quantum Dots (QDs) (Eroglu et al., 2023), plasmonic resonance of silver, gold, 

and their alloy (Kshirsagar et al., 2023). However, utilizing any of these effects for biomedical 

applications requires a thorough understanding of particle behavior in live systems, referred to as 

nano-bio interactions. At the physiological level, achieving an effective concentration of NPs at 

the tumor site is a vital index of success. Numerous administration approaches of nanoparticles, 

such as subcutaneous injection (Jiang et al., 2025), pulmonary (Cojocaru et al., 2024) and oral 
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administration (Y. Lu et al., 2023), and intratumoral injection(Yue et al., 2016), have been 

developed, most prominent being intravenous (IV) injection (Deivayanai et al., 2025). However, 

each may come with a cost ranging from risk of disrupting tumor vasculature to poor absorption 

in the gastrointestinal tract; thus the correlation between nanoparticle size and suitable 

administration process is undoubtable. Apart from administration, once entered the body, NPs face 

a multitude of hurdles. Renal clearance cut-off for particles to pass through the glomerular 

filtration barrier (GFB) is known to be 6-8nm, meaning particles smaller than this size will most 

certainly not have enough blood circulation time to accumulate at the cancer inflicted tissue and 

are cleared by the kidneys (Wang & Liu, 2018). However, reports have been made on particles 

larger than 100nm to have been found in urine bypassing GFB through Proximal Convoluted 

Tubules (PCT) specialized for reabsorption of beneficial ions (Curthoys & Moe, 2014; Naumenko 

et al., 2019; Williams et al., 2015, 2018). Thus, NPs administered through systemic delivery (IV, 

pulmonary, and oral) methods face the risk of insufficient blood circulation time. Another systemic 

clearance pathway is the Reticuloendothelial System (RES), a group of phagocytic cells located in 

liver, spleen, lymph nodes and bone marrow. As the size of NPs increase, macrohpages uptake rate 

increases disproportionately with a statistically significant value (Soni et al., 2024). This leads to 

major localization of designed NPs in vital organs like liver, raising long term safety concerns for 

particles larger than 100nm. Although Korangath et al have demonstrate enhanced tumor 

accumulation mediated by innate immunity cells (Korangath et al., 2020). In this work, they 

highlight the dominating effect of RES cells absorbing and carrying these large NPs to the tumor, 

a localization that was not predominantly a result of direct interaction of antibodies functionalized 

on the surface of bionized nanoferrite (BNF) NPs and cancer membrane antigens. The diversity in 

size among different nanodrugs determine the interplay of these with the cell membrane too. There 
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are four major cellular internalization pathways: phagocytosis, macropinocytosis, Caveoleae and 

Clathrin mediated endocytosis, each of which is size and cell dependent. In a study, the best uptake 

efficiency was witnessed for 30nm particles by endothelial cells when compared to the uptake rate 

of 50 and 70 nm particles by fibroblasts and macrophages (Gimondi et al., 2023). In another 

instance, particles under 50nm were observed to be internalized via Clathrin-mediated pathway, 

while those within the 50-100nm range were internalized via Caveoleae pathway. Particles within 

200-500 were macropinocytosed, and anything beyond that phagocytosed (Murugan et al., 2015). 

However, these values can overlap and hugely depend on the nature of the NP and the type of the 

targeted cell as well (Behzadi et al., 2017). Despite these strict conditions, numerous studies have 

found 50nm spherical NPs to have optimal cellular internalization (Cybulski et al., 2025a; 

Foroozandeh & Aziz, 2018; Peng et al., 2024; H. Shin et al., 2020; H. J. Shin et al., 2022). This 

can help as a reference point for quick comparison on the uptake performance of other particles. 

Ultimately, the size of the particle determines its fate with regard to its interaction and absorption 

by biological entities, as simplified in Figure 1. 

 

 



7 

 

Fig 1. Impact of NP size on biological and chemical behavior at cellular and molecular level. Adapted from (Dolai et 

al., 2021). 

 

 

2.2. Surface properties 

Two of the most basic attributes of NPs’ surface are charge and water affinity. Adsorption of 

proteins onto NPs in biological fluids forms a structure known as Protein Corona (PC) (Lynn et 

al., 2025). Hydrophobic and charged interactions of serum protein with NPs’ surface leads to 

reversible/irreversible attachment of proteins to them, hampering their biodistribution profile 

(Bertrand et al., 2017). Surface hydration of NPs is demonstrated to be the solution through 

different means, from dense coatings of hydrophilic polymers like Polyethylene glycol (PEG) to 

nanogels and zwitterionic shells to mitigate this effect (Barz et al., 2024). 

 

 

Fig 2. Inhibition of protein corona formation via surface engineering. Adapted from (Barz et al., 2024). 
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Surface charge of NPs—reflected in their zeta potential- can influence their behavior with cell 

membrane. In an effort, polystyrene nanoparticles (PS-NPs) were synthesized with spherical 

shapes and similar sizes ranging from ~20nm to 1 µm for positively charge particles (amine-

modified) and negatively charged (carboxylate-modified) PS-NPs ranging from ~40nm to 1.7µm. 

Expectedly, cellular uptake by human embryonic kidney (HEK 293) revealed particles with 

zetapotential of +56.7 mV were absorbed more readily due to the opposite charge attractive forces 

(negative membrane), leading to a comprehensive cytotoxicity gap between them and negative PS-

NPs with −41.3 mV electrostatic potential (Moscatiello et al., 2025). Excessive positive charge 

isn’t always beneficial either. Pang and colleagues studied the interaction of +46.5 mV silver NPs 

coated with branched polyethyleneimine (BPEI AgNPs) with nucleic acids, observing strong 

attraction due to negative phosphate groups and fragmentation, especially on DNA, leading to 

genotoxicity, regarded as an alarming side effect for nonregulated delivery of said particle (Pang 

et al., 2015). Gold nanoclusters (AuNC) of positive and negative charges were set to interact with 

20S proteosome—crucial in recycling misfolded proteins. Negative AuNCs were found to stabilize 

the enzyme’s open conformation, rendering them neuroprotective, while positive AuNCs bound to 

negative sites on the protein and inhibited its function (X. Ma et al., 2020).  
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Fig 3. Effect of NP surface charge on cellular behavior and biomolecule interaction. 

Therefore, water affinity and surface electrostatic profile of different nanoparticles governs their 

nano-bio fate in an indiscriminatory fashion, prohibit naked use of such particles, and emphasize 

the need for more complex delivery techniques. A number of studies have demonstrated enhanced 

tumor localization using pH-dependent surface charge reversal (AlSawaftah et al., 2022; Sun et 

al., 2023; Wu et al., 2018).  

2.3. Morphology and conformation 

As discussed, size is the first parameter of different materials that significantly changes the 

particles’ physicochemical properties. Particle’s 3D shape can also alter these parameters. 

Different morphologies influence NPs’ isotropy—uniformity of physicochemical characteristics 

of the particle regardless of orientation, resulting in anisotropy. This effect, in turn, can immensely 

influence NP’s behavior in biological context and therefore its purposeful applicability. 
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Spheres: Reliable cellular uptake (Y. Li et al., 2015), ease of synthesis (Singh et al., 2020), and 

least surface energy (Agudo-Canalejo & Lipowsky, 2016) make spherical NPs (S-NPs) the most 

prominent shape among nanodrugs developed so far. The extracellular matrix (ECM) of tumors is 

a dense, gel-like structure composed of fibrillar collagens (especially type I), adhesive 

glycoproteins (fibronectin, laminin), proteoglycans and other water absorbing fibers, creating 

steric hinderance for internalization of NPs. When tested on 3D A549 spheroid models, spherical 

AuNPs penetrated deeper into the ECM compared to rod-shaped particles, explained by less steric 

hindrance (Cybulski et al., 2025b). A systematic study had also observed a 2 to 5-fold increase in 

cellular uptake of S-NPs by human prostate cancer (PC-3) across different serum conditions 

compared to cubical NPs (Carnovale et al., 2019). Cytotoxicity is a role-defining property of NPs. 

In therapy, an increase in this effect is favorable; however, makes the safe delivery of particles to 

cancer tumor vital. While in diagnostics, where NPs are used to encapsulate and deliver signaling 

probes to tumor site, cytotoxic effects might not be mandatory or even unwanted depending on the 

case. Seemingly contrary researches, have portrayed morphology-influenced effects differently. 

Based on findings of (Carnovale et al., 2019) again, at 10µM concentration spherical gold NPs 

(AuNPS) reduced cell viability of PC-3 to ~70%. Prism-like AuNPs caused cytotoxicity too, 

especially at values above 10µM, while rod and cubical particles were rendered biocompatible at 

all concentrations. Yet in the same year, Steckiewicz et al. studied sphere, rod, and star 

morphologies of AuNPs on 143B (osteosarcoma) and healthy osteoblast cells and reported 

spherical gold to be the least cytotoxic, especially in normal cells at max concentration of 5µg/ml 

(Steckiewicz et al., 2019). Concentration units of the two studies may not match, but when rod 

AuNPs are considered as a reference point, we can see a complete shift from being biocompatible 

to lowering 143B cell viability down to 50% in the second study. More recently, the toxicity of the 
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same 3 shapes of PEG coated AuNPs was tested on 3 prostate cancer cell lines: PC-3, LNCaP, and 

DU145 (Soares et al., 2023). According to cell metabolic activity results, each shape had a distinct 

cell type-dependent degree of toxicity, with spherical particles still ranking 3rd in toxicity and rods 

being the most toxic. 

Rod or cylindric NPs: Contrary studies have also been published on the superiority of the 

elongated, filamentous morphology of certain NPs over spheres in cellular uptake. Findings after 

coincubation of rod-shaped and spherical iron oxide particles with 3 cell types revealed uptake 

rates in favor of rod-like iron oxide NPs despite being 7 times larger in size (Thamizhchelvan et 

al., 2024). Other studies have demonstrated the subordination of spherical shape to others 

according to conditions and the purpose of employment. In systematic absorption of NPs by 

endothelial cells, short rod mPEG-PCL polymeric NPs showed increased blood vessel permeation 

(Uhl et al., 2018). Similarly, rod-shaped arrangement of borondipyrromethene (BDP—a 

biocompatible imaging agent) outperformed spherical micelles, attributed to increased surface area 

and higher quantum yields (C. Ma et al., 2019). Encapsulation efficiency (EE) is a relative measure 

of how well a NP is able to absorb valuable material like chemotherapeutics compared to the total 

amount added to the mixture. Paclitaxel (PTX) is an example of such a drug that is usually 

encapsulated by porous silica NPs. Over and over, rod morphology of mesoporous silica NPs has 

demonstrated promise as the most efficient drug carrier (Banerjee et al., 2016; Fan et al., 2024; 

Fang et al., 2024; Q. Li et al., 2024). Along with factors of size and solvent dielectric, a particle’s 

spatial shape can impact its constituent atoms’ conduction electrons, especially in certain metallic 

elements like gold (Kondorskiy & Lebedev, 2021). This effect becomes of critical matter in 

photothermal therapy (PTT)— the process of light to heat transformation. Unlike spherical AuNPs, 

gold nanorods have localized surface plasmonic resonance (LSPR) that resonates with 808nm 
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light. Among all rod AuNPs, only 10×38nm particles yielded ~15°C increase in temperature, 

emphasizing the importance of aspect ratio under the same conditions of concentration and light 

intensity (Vikas et al., 2023). Another element of NP’s shape is the conformation pattern of its 

elements. Certain material like carbon nanotubes (CNTs) bolden this effect. When a one-atom-

thick sheet of graphene is rolled, a cylindrical rod is achieved with open ends known as single-

walled CNT (SWCNT), and it can be enclosed to form a capsule. If multiple layers of graphene 

are rolled, then multi-walled CNTs (MWCNTs) result. In either case, the angle of rolling the sheet 

determines the spatial arrangement of carbon atoms within the body of the harvested CNT and 

yields distinct physicochemical properties of heat and electrical conductivity (Zhang & Li, 2009). 

An example of chiral semiconducting SWCNT is used for combinational photo-chemotherapy of 

multi drug resistant (MDR) ovarian cell lines (Bhirde et al., 2014). 

Miscellaneous shapes: Nonconventional morphologies of NPs of different nature are seen 

scattered through the research literature more often than not. Their sizes, purpose of application, 

and type of cell line they interact with vary and avoid multifunctionality. In drug delivery, for 

example, Iqbal et al. reports lipid-coated cubical MSN to achieve 84% EE with a huge margin 

compared to spheres as a result of a higher surface-to-volume ratio but a decrease in cellular uptake 

due to sharp edges (Iqbal et al., 2024). In magnetic hyperthermia—magnetic NP-mediated 

generation of localized heat via alternating magnetic field, the same sharp edges have proven 

helpful by enhancing the specific absorption rate (SAR) value of Iron oxide NPs (Mai et al., 2019). 

However, in PTT using AuNPs, the LSPR of cubes is incomparable to prisms, ellipsoids, and 

especially rods, neither in absorption wavelength nor in intensity (Khajegi & Rashidi-Huyeh, 

2021).  

 



13 

 

 

Fig 4. NIR-I absorption and scattering profile of differently shaped gold NPs at different wavelengths. Adapted from 

(Khajegi & Rashidi-Huyeh, 2021). 

 

In drug deliver, dendrimers appear in various therapeutic and diagnostic studies (Pérez-Ferreiro et 

al., 2023). Their intense branching sets them apart from conventional tangled bulbs of linear 

polymers creating well-organized extending space for compartmentalization of various cargo 

(WOLINSKY & GRINSTAFF, 2008). They are named based on their constituent monomer and 

the number of branch rings extending outwards, called generation (G), starting with G0 for the 

core branch. Size grows with generation, thus impacting NP internalization kinetics (Avila et al., 

2025). Dendrimers are hydrophilic, which makes them suitable carriers for hydrophobic agents. 

However, the ratio of loaded hydrophobic material impacts carriers over all water affinity and 

decreases uptake in a cell-dependent fashion (Vaidyanathan et al., 2016). Ultimately, the 

motivation behind the development of the mentioned shapes and many more remains the 

heterogeneous nature of cancer research, a multiplication of variety in cancer cell lines and 

treatment/diagnostic methods. The goal is to find essential properties that give rise to the favored 
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quality in different practices. Sharp edges in AuNPs, for example, are correlated with LSPR thus, 

studies focus on going beyond rods, creating prisms (Carnovale et al., 2019), stars (Su et al., 2023), 

and bipyramids (Campu et al., 2020) of AuNPs for PTT and photoacoustic (PA) imaging.  

 

3. Conclusion 

In oncology, modern nanodrugs provide remarkable tunability, enabling unprecedented control 

over their effects compared to conventional agents. As demonstrated, the 3 parameters of shape, 

surface chemistry, and morphology govern NPs’ fate at the biological interface at physiological 

and cellular levels. Altered size and shape, in particular, also define NPs’ reaction to physical 

triggers like NIR, yielding on-command activation of agents while surface engineering localized 

them at designated sites. The importance of the nature of constituent atoms of NPs is also self-

evident; however, detailed examination of this factor would exhaust this current work and beckon 

future investigations. In the final analysis, modifying these characteristics enables targeted but 

interdependent design of smarter and safer drugs, paving the way for more potent treatments with 

least side effects.  
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