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Abstract 

This study presents a novel Physics-Informed Neural Network (PINN) framework for fault detection and classification in 

three-phase microgrids. By integrating the physical laws of the power system with simulated voltage and current 

measurements, the proposed method accurately identifies single-phase, two-phase, and three-phase faults. Evaluation results 

show that under noise-free conditions, the model achieves an accuracy of 98.1%, precision of 98.1%, recall of 97.8%, and F1-

score of 97.9%. Under noisy conditions (signal-to-noise ratio, SNR = 20 dB), it maintains robust performance with an accuracy 

of 97.0%, precision of 97.0%, recall of 96.8%, and F1-score of 96.9%. Comparative analysis demonstrates that the proposed 

PINN outperforms conventional machine learning methods, including Support Vector Machine (SVM), k-Nearest Neighbors 

(KNN), Decision Tree (DT), Random Forest (RF), Artificial Neural Network (ANN), and eXtreme Gradient Boosting 

(XGBoost), in terms of accuracy, stability, and robustness to noise. These results confirm that the proposed framework 

provides an efficient and reliable solution for real-time monitoring and protection of multi-source microgrids, enhancing their 

stability, reliability, and operational safety. 
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1. Introduction 

In recent years, the increasing level of 

environmental pollution due to the use of fossil fuels 

has led to a further increase in the use of distributed 

generation (DG). The use of DGs changes the basis 

of distribution networks and transforms them from 

energy delivery systems to active networks [1, 2]. 

This change, in addition to creating protection 

problems, has prevented the development of 

microgrids [3]. Most of the existing fault detection 

methods generally depend on the magnitude and 

direction of the fault current, but the integration of 

electric vehicles and DGs has caused the fault 

current in microgrids to be bidirectional [4, 5]. For 

this reason, the importance of studying the 

protection of AC microgrids has doubled. 

Microgrid protection has attracted the attention 

of many researchers around the world in recent 

years. Based on the type and application, microgrid 

protection methods can be divided into two general 

groups: methods without using telecommunication 

links and methods based on telecommunication 

links [6]. In the first category, protection without the 

need for telecommunications, relays detect faults 

only by using voltage and current samples of the 

lines or equipment under protection [7]. Among the 

methods used in this category are Thevenin 

equivalent estimation [8], steady-state fault current 

calculation [9], fault current sequence component 

analysis [10], empirical mode analysis (EMD) [11] 

and wavelet analysis [12]. However, the most 

important weakness of these approaches is the 

complexity in setting and changing the relay 

parameters and also the inability to detect changes 

in the microgrid topology. The combination of 

wavelet analysis and cross-differential transform has 

been proposed in [13]. However, these approaches 

are highly sensitive to noise and transient 

disturbances caused by switching operations in 

microgrids. Some other researchers, like [14], have 

used zero and negative sequence components for 
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low impedance fault detection and transient 

components for high impedance faults. Although 

this method is somewhat effective, it does not fully 

cover the effect of network transients and topology 

changes. In [1], a deep learning method optimized 

with Black Widow is presented for fault detection in 

microgrids with electric vehicle chargers. Reference 

[3] presents a combined method of signal processing 

and deep learning for fault detection. In [15], a high 

impedance fault detection method in microgrids 

using the Group Method of Data Handling (GMDH) 

intelligent model is presented. In [16], active power 

direction, current amplitude, and instantaneous 

voltage variations are used to detect low-impedance 

faults in microgrids equipped with converter-based 

DG sources. In [17], the phase difference and 

admittance amplitude at each bus are also used for 

fault detection. Traveling wave-based methods in 

[18] enable high-speed fault detection, but they 

require high sampling rates and complex 

calculations to determine the wave propagation 

speed. Reference [19] presents a method based on 

second-order fuzzy logic for fault detection and 

classification in power systems. Although this 

method shows acceptable performance, the fuzzy 

rules can be difficult to determine. Reference [20] 

integrates zero-sequence components into the 

inverse-time characteristics of phase overcurrent 

relays (OCRs) and establishes a dynamic scheme 

between two group settings for phase and ground 

faults. Reference [21] proposes an improved 

distance protection scheme with an artificial neural 

network (ANN) to improve the accuracy of fault 

detection, classification, and localization in DER-

rich microgrids. Although this method shows good 

performance, it still suffers from the problem of not 

considering the microgrid controller. Reference [22] 

employs a combination of traveling waves (TW) and 

a physics-informed machine learning approach for 

fault detection and localization in DC microgrids. 

One of the main limitations of this work is the lack 

of modeling for various distributed energy resources 

and storage units. Reference [23] provides a 

comprehensive review of Physics-Informed Neural 

Networks in the context of grid-connected inverters. 

Reference [24] presents a hybrid optimization 

approach for enhancing the DC-link voltage stability 

in photovoltaic and wind-based microgrids, 

addressing the challenges arising from the 

intermittent nature of renewable energy sources. 

Reference [25] utilizes a method based on the 

integration of deep learning and machine learning 

models for fault detection and localization in DC 

microgrids. The major drawback of this method is 

its high sensitivity to signal noise. 

In the second group, namely 

telecommunications-based protection, changes in 

the microgrid operating conditions or in its topology 

structure are detected by a central protection unit 

(CPU). This unit constantly monitors the network 

and updates the relay settings in case of changes. 

This type of protection is called adaptive protection. 

Since a large part of microgrid protection methods 

are adaptive, extensive research has been conducted 

in this area. In [26], offline adaptive methods are 

introduced in which all possible settings related to 

the microgrid structural uncertainties are stored. 

However, these approaches are not practical due to 

the need for very large storage space and the 

inability to cover all changes in the microgrid 

topology. To solve this problem, in [27 and 28], it 

has been proposed to re-run the protection 

coordination calculations after each change in the 

microgrid .Also in [29], a two-stage adaptive 

protection method is presented: in the first stage, the 

fault is detected by conventional methods; if the 

detection is correct, the system returns to normal; 

otherwise, the second stage is activated, and the 

protection coordination calculations are performed, 

and the relay settings are changed. This method is 

not practical in large networks because it requires a 

large amount of computation. Reference [30] 

introduces an end-to-end protection framework that 

provides real-time system monitoring, fault-related 

decision-making, and circuit breaker control. This is 

achieved by designing distributed data-driven 

techniques based on the support vector machine 

method, in which each relay is responsible for 

distributed data collection, fault detection, fault 

localization, and fault isolation. Local 

communication is established between neighboring 

relays, enhancing cooperative fault localization and 

isolation. Reference [31] presents an adaptive hybrid 

trip-based protection strategy for microgrids that 

enables fast and reliable response to faults using 

phase voltage and current measurements from relay 

locations. The protection coordination problem was 

addressed by optimizing relay settings for different 

microgrid operational scenarios, which ensures 

proper coordination between primary and backup 

relays. 

As mentioned, in recent years, the 

development and operation of three-phase 

microgrids as one of the key pillars of smart grids 

has received special attention. By combining 

distributed generation resources including 

photovoltaic (PV) units, wind turbines, diesel 

generators (DG) and energy storage systems 

(batteries), microgrids provide the possibility of 

increasing the efficiency, flexibility and resilience of 

power grids. However, the dynamic and 

decentralized nature of these networks creates new 

challenges in the field of protection and monitoring. 

Topology changes, the occurrence of transient 

faults, classical protection methods, and even 

conventional data-driven algorithms may not 
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perform reliably in the presence of renewable 

resources with nonlinear and variable behavior. 

These methods usually require a large volume of 

labeled data, are sensitive to noise and do not have 

sufficient generalization ability in unknown 

operating conditions. Hence, the development of 

intelligent frameworks that utilize both simulated 

data and the physical laws of the power system has 

become a research and industrial necessity. 

For this reason, in this paper, a novel 

framework based on Physics-Informed Neural 

Networks (PINN) is presented for the protection and 

monitoring of three-phase microgrids. The 

microgrid model, including PV sources, a wind 

turbine, DG and a battery, which were simulated in 

Simulink/Matlab environment, and voltage and 

current data were extracted from different points of 

the network. Then, the data is transferred to the 

Google Colab environment, and the proposed PINN 

algorithm is implemented in the Python platform. In 

addition to detecting the occurrence of the fault, the 

proposed approach is also able to correctly classify 

the type of fault. The classification includes types of 

single-phase to ground faults (AG, BG, CG), two-

phase (AB, AC, BC), three-phase (ABC) and fault-

free state. Unlike conventional machine learning 

methods that rely solely on empirical data, PINN 

reduces the need for extensive training data by 

incorporating the physical equations governing the 

power system into the cost function and increases 

the generalizability of the model to different 

operating scenarios. This makes the model more 

robust to noise and has reliable prediction 

capabilities even in situations where no data has 

been seen for them. Simulation results show that the 

developed framework is able to detect faults with 

high accuracy and correctly identify their type in real 

time, which improves protection performance and 

increases the stability and reliability of the 

microgrid. 

The structure of the paper is organized as 

follows: In the second section, a review of the 

theoretical foundations and concepts related to 

physically informed neural networks is presented. In 

the third section, the simulated microgrid model and 

simulation results are presented. In the fourth 

section, a comparison between the proposed method 

and existing intelligent methods is presented. 

2. Formulation 

In this paper, the aim is to present a novel 

PINN-based method for modeling and protecting 

microgrids including distributed generation 

resources such as photovoltaic (PV) systems, battery 

energy storage systems (BESS) and wind turbines. 

Due to their nonlinear nature, complex dynamics 

and the behavior dependent on environmental 

conditions, these resources pose numerous 

challenges for their accurate modeling and 

intelligent protection. The use of PINNs, by 

combining measured data and physical knowledge 

of the system, allows for training models with high 

accuracy and generalizability that cannot be 

achieved in traditional data-only methods. 

A) Microgrid Resource Modeling 

In the first part, we discussed the DG physical 

modeling of the generator type. Distributed 

generators are among the key resources whose 

voltage and current control is crucial for maintaining 

grid stability. The dynamic equations of DG voltage 

and current can be presented using equations (1) and 

(2).  
𝑑𝑉𝐷𝐺(𝑡)

𝑑𝑡
=
1

𝑉𝑇
(𝑉𝐷𝐺(𝑡) − 𝑉𝑟𝑒𝑓) + 𝛥𝑉𝑓𝑎𝑢𝑙𝑡(𝑡) (1) 

𝑑𝐼𝐷𝐺(𝑡)

𝑑𝑡
=
1

𝐼𝑇
(𝐼𝐷𝐺(𝑡) − 𝐼𝑟𝑒𝑓) + 𝛥𝐼𝑓𝑎𝑢𝑙𝑡(𝑡) (2) 

Where, 𝑉𝐷𝐺(𝑡) and 𝐼𝐷𝐺(𝑡) are the DG output 

voltage and current; 𝑉𝑇 and 𝐼𝑇 are the reference 

values set by the controller; 𝑉𝑇 and 𝐼𝑇 are the time 

constants of the voltage and current response, and 

𝛥𝑉𝑓𝑎𝑢𝑙𝑡(𝑡) and 𝛥𝐼𝑓𝑎𝑢𝑙𝑡(𝑡) are the effects of possible 

errors on voltage and current. 

In the second section, we discussed the 

modeling of the Photovoltaic (PV). The voltage and 

current output of the solar panel are nonlinear and 

depend on the intensity of solar radiation and 

temperature. Accordingly, the PV model can be 

expressed based on equations (3) and (4). 
𝑉𝑃𝑉(𝑡) = 𝛥𝑉𝑓𝑎𝑢𝑙𝑡

𝑃𝑉 (𝑡) + 𝜂𝑃𝑉. 𝐺(𝑡). 𝑉𝑛𝑜𝑚 . 𝑠𝑖𝑛( 2𝜋𝑓𝑡) (3) 

𝐼𝑃𝑉(𝑡) = 𝛥𝐼𝑓𝑎𝑢𝑙𝑡
𝑃𝑉 (𝑡) +

𝑃𝑃𝑉(𝑡)

𝑉𝑃𝑉(𝑡)
 (4) 

Where, 𝜂𝑃𝑉 is the panel efficiency, 𝐺(𝑡) the 

solar radiation intensity at time t, 𝑉𝑛𝑜𝑚 the nominal 

voltage, and 𝛥𝑉𝑓𝑎𝑢𝑙𝑡
𝑃𝑉 (𝑡) and 𝛥𝐼𝑓𝑎𝑢𝑙𝑡

𝑃𝑉 (𝑡) are the 

variations due to the error. 

Equations (5) - (7) can be used to model a wind 

turbine. 

𝑃𝑤𝑖𝑛𝑑(𝑡) =
1

2
𝜌𝐴𝐶𝑃𝑉𝑤𝑖𝑛𝑑

3 (𝑡) (5) 

𝑉𝑤𝑖𝑛𝑑(𝑡) = 𝑘𝑤𝑖𝑛𝑑𝑃𝑤𝑖𝑛𝑑(𝑡) 𝑠𝑖𝑛( 2𝜋𝑓𝑡) + 𝛥𝑉𝑓𝑎𝑢𝑙𝑡
𝑤𝑖𝑛𝑑(𝑡) (6) 

𝐼𝑤𝑖𝑛𝑑(𝑡) =
𝑃𝑤𝑖𝑛𝑑(𝑡)

𝑉𝑤𝑖𝑛𝑑(𝑡)
+ 𝛥𝐼𝑓𝑎𝑢𝑙𝑡

𝑤𝑖𝑛𝑑(𝑡) (7) 

Batteries are modeled as energy storage 

sources, considering the dynamic charging and 

discharging presented in equation (8). 
𝑑𝑆𝑜𝑐

𝑑𝑡
=
𝑃𝑏𝑎𝑡(𝑡)

𝐶𝑏𝑎𝑡
 

(8) 

The battery output voltage and current can be 

calculated from equations (9) and (10). 
𝑉𝑏𝑎𝑡(𝑡) = 𝑉𝑛𝑜𝑚𝑆𝑜𝑐(𝑡) 𝑠𝑖𝑛( 2𝜋𝑓𝑡) + 𝛥𝑉𝑓𝑎𝑢𝑙𝑡

𝑏𝑎𝑡 (𝑡) (9) 
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𝐼𝑏𝑎𝑡(𝑡) =
𝑃𝑏𝑎𝑡(𝑡)

𝑉𝑏𝑎𝑡(𝑡)
+ 𝛥𝐼𝑓𝑎𝑢𝑙𝑡

𝑏𝑎𝑡 (𝑡) (10) 

 

 

B) PINN Framework for Fault Detection and 

Classification 

The PINN network receives inputs including 

time, environmental parameters (irradiance 

intensity, wind speed, battery SoC), and initial 

voltage and current data of the resources; its output 

is the voltage and current prediction as well as the 

fault class label based on equations (11) and (12). 
𝑋 = [𝑡, 𝐺(𝑡), 𝑉𝑤𝑖𝑛𝑑(𝑡), 𝑆𝑜𝑐(𝑡), . . . ] (11) 

𝑦′

= [𝑉 ′
𝐷𝐺 , 𝐼

′
𝐷𝐺 , 𝑉

′
𝑃𝑉, 𝐼

′
𝑃𝑉, 𝑉

′
𝑤𝑖𝑛𝑑, 𝐼

′
𝑤𝑖𝑛𝑑, 𝑉

′
𝑏𝑎𝑡, 𝐼

′
𝑏𝑎𝑡, 𝑦̂𝑓𝑎𝑢𝑙𝑡] (12) 

The cost function can be defined as equation 

(13): 
𝜁 = 𝜁𝑑𝑎𝑡𝑎⏟

math data

+ 𝜆1 𝜁𝑝ℎ𝑦𝑠𝑖𝑐𝑠⏟    
physics constraints

+ 𝜆2 𝜁𝑓𝑎𝑢𝑙𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛⏟          
fault class

 
(13) 

Where 𝜁𝑑𝑎𝑡𝑎 , 𝜁𝑝ℎ𝑦𝑠𝑖𝑐𝑠, and 

𝜁𝑓𝑎𝑢𝑙𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛can be calculated from equations 

(14) to (16). 

𝜁𝑑𝑎𝑡𝑎 =
1

𝑁
∑∑(‖𝑉 ′

𝑠(𝑡𝑖) − 𝑉𝑠
𝑚𝑒𝑎𝑛(𝑡𝑖)‖

2

𝑠

𝑁

𝑖=1

+ ‖𝐼′𝑠(𝑡𝑖) − 𝐼𝑠
𝑚𝑒𝑎𝑛(𝑡𝑖)‖

2) 
(14) 

𝜁𝑝ℎ𝑦𝑠𝑖𝑐𝑠 =
1

𝑁
∑∑(‖𝑁𝑣,𝑠(𝑉𝑠, 𝑡𝑖)‖

2
+ ‖𝑁𝑖,𝑠(𝐼𝑠, 𝑡𝑖)‖

2
)

𝑠

𝑁

𝑖=1

 (15) 

𝜁𝑓𝑎𝑢𝑙𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = −
1

𝑁
∑∑𝑦𝑖,𝑐 𝑙𝑜𝑔( 𝑦

′
𝑖,𝑐

𝐶

𝑐=1

𝑁

𝑖=1

) (16) 

Here, 𝑁𝑣,𝑠 and 𝑁𝑖,𝑠 represent the differential 

equations for each source. To train the PINN model, 

4000 data samples were generated, including error 

and non-error conditions. The model inputs include 

time, solar radiation, wind speed, battery state of 

charge (SoC), storage mode voltage and current, 

while the outputs include error labels. The network 

architecture consists of three hidden layers with 128 

neurons and a tanh activation function. Optimization 

was performed using the Adam algorithm with a 

learning rate of 0.001, batch size 64 and 2000 

training sessions. The overall cost function consists 

of three parts: data error, physical error and 

classification error. The model performance is 

evaluated using the confusion matrix. The PINN 

model settings are presented in Table (1). Figure (1) 

shows the proposed fault detection algorithm based 

on the PINN model. 

3. Simulation Results 

A) The Studied Network 

To investigate the method presented in this 

paper, the standard CIGREE network has been used, 

which includes PV, WIND, synchronous generator 

and storage. This network is shown in Figure (2) 

[32]. This system consists of an 11-node system 

connected to the main network through a 

transformer. The network operates at a voltage of 20 

kV and a frequency of 50 Hz. The switches S1, S2 

and S3 are responsible for changing the operating 

mode of the network (it is assumed that the switch 

S1 is closed and the switches S2 and S3 are open) 

[32]. The addition of a battery storage system and a 

synchronous generator is a minor modification to the 

original model. The distances are maintained, and 

the relevant parameters are adjusted accordingly. 

The overhead line parameters are estimated with the 

π model and hyperbolic corrections. For the 

balanced three-phase transmission line model, the 

parameters are integrated. The parameters R, L and 

C are positive and include zero sequence parameters 

to account for inductive and capacitive couplings 

between the three-phase conductors. The RLC 

parameters used in the simulations are as follows: 
− R0 = 0.6581 ohm/km 

− R1 = 0.5132 ohm/km 

− L0 = 0.0051 H/km 

− L1 = 0.0012 H/km 

− C0 = 4.0744 nF/km 

− C1 = 10.0971 nF/km 

Table (2) shows the branches of the system 

along with the length of overhead lines and the 

power of the loads connected to each node. Nodes 

that do not have loads are marked with “–”. 

Table.1. 
PINN model parameter settings 

Parameter Value 

Number of training data 4000 

Data ratio 70% training, 30% testing 

Inputs Time tt, Solar radiation GG, Wind speed, 

SoC, Storage status, Voltage and current 

Outputs Error label 

Network structure Dense layers with 128 neurons 

Activation function tanh 

Outputs (Heads) 3 voltage neurons, 3 current neurons, 2 

classification neurons (Softmax) 

Optimizer Adam 

Learning rate 0.001 

Batch size 64 

Number of training sessions 2000 

Cost function components Data Loss + Physics Loss + Classification 

Loss 

Evaluation criteria Confusion Matrix 
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Fig. 1. Algorithm of the proposed PINN method 

 

Fig. 2. The network under study [32]. 

Table.2. 
Length of overhead lines, branches and the power of the 

connected loads [32]. 

Node From Node To Length (km) Load Power (kVA) 

1 2 2.82 20400 
2 3 4.42 – 

3 4 0.61 560 

3 8 1.30 – 
4 5 0.56 445 

4 11 0.49 – 
5 6 1.54 750 

6 7 0.24 565 

7 8 1.67 90 
8 9 0.32 605 

9 10 0.77 675 

10 11 0.33 570 

All datasets used for training and evaluating 

the proposed PINN model were obtained from time-

domain simulations conducted in the 

MATLAB/Simulink environment. After defining 

the operating conditions and fault scenarios, the 

instantaneous three-phase voltage and current 

signals were recorded at several measurement nodes 

within the microgrid. These measurements capture 

both the steady-state behavior of the system and the 

transient signatures associated with different types 

of faults. To ensure accurate representation of fast 

dynamic events, all signals were sampled at a 

frequency of 20 kHz. Each simulation run covered a 

duration of 0.1 seconds, providing a uniform time 

window across all cases. The recorded data include 

the three-phase voltage and current waveforms at 

each measurement point. A wide range of scenarios 

was simulated to create a diverse and representative 

dataset. These scenarios include normal (fault-free) 

operation, single-phase-to-ground faults (AG, BG, 

CG), line-to-line faults (AB, AC, BC), and three-

phase faults (ABC). Different fault locations and 

fault impedances were also considered to introduce 

variability and improve the generalization capability 

of the model. In addition, the dataset reflects 

different operating conditions of the distributed 

energy resources to ensure that the model remains 

robust under varying system states. 

Figure 3 shows the Simulink implementation 

of the PV, wind turbine, DG, and BESS 

components. After completing the simulations, the 

data were exported to CSV files, which were 

subsequently imported into the Python environment 

in Google Colab. These files served as the input for 

training and evaluating the proposed Physics-

Informed Neural Network (PINN) framework. This 

workflow enables a clear and efficient integration 

between MATLAB/Simulink and Python, 

combining realistic microgrid simulations with 

advanced machine learning-based fault diagnosis. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Simulink implementation of distributed energy resources 

in the microgrid: (a) PV unit, (b) WT, (c) DG, and (d) BESS. 

B) Case 1: Noiseless Network 

The results of identifying and classifying error 

types in the noiseless state are shown in Table 3 and 
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also in Figure 4 (confusion matrix). According to 

this table, the proposed PINN-based method has 

been able to provide very accurate performance in 

all error and normal states, such that the Precision, 

Recall and F1-score values are all higher than 0.97. 

This indicates the high power of the method in 

correctly separating different classes and reducing 

type I and type II errors. 

In particular, for single-phase faults such as 

AG and BG, the F1-score values are 0.979 and 

0.980, respectively, indicating a very accurate 

identification of these states. Also, for two-phase 

faults (such as AB, AC, and BC) and three-phase 

faults (ABC), the F1-score values are 0.979, 0.987, 

0.983, and 0.985, respectively, indicating the same 

and balanced performance of the model in all states. 

On the other hand, in the no-fault state, the proposed 

algorithm with an F1-score of 0.987 was able to 

correctly identify the healthy conditions of the 

network. Overall, the results of this section show 

that in noise-free conditions, the proposed method 

has an accuracy of close to 100% in identifying and 

classifying various network faults. 

C) Case 2: Noisy network 

The performance of the proposed method in 

the presence of noise with different SNR values is 

shown in Table (4) and also in Figures (5 to 7) 

(corresponding confusion matrices). The results 

indicate that the PINN-based model is able to 

accurately identify errors and the normal state of the 

network even in noisy conditions. In the case of 60 

dB noise, the values of the evaluation indices remain 

almost the same as in the case of no noise, so that 

the overall accuracy of the model is reported to be 

0.981. This shows that the proposed method is very 

robust to low-level noise, and there is no noticeable 

change in its performance.  

By reducing the signal-to-noise ratio to 40 dB, 

the F1-score values are still maintained above 0.97 

in most cases, and the overall accuracy is 0.977. 

These results show that the model has a high ability 

to classify faults even in moderate noise conditions, 

and its performance degradation is very limited. In 

more severe conditions, i.e. 20 dB, although some 

decrease in accuracy is evident, the F1-score indices 

still remain above 0.96, and the overall accuracy is 

0.970.  

These results indicate the stability of the 

proposed method against severe noise and its ability 

to correctly identify different network states. In 

general, comparing the results of three different 

noise levels shows that the proposed method has a 

stable and accurate performance not only in the 

noise-free state, but also in noisy conditions and can 

be used as an efficient tool for monitoring and 

protecting power systems. 

 

 

Table.3. 
Fault classification results in noise-free mode 

Fault type Precision Recall F1-score 

AG 0.978 0.980 0.979 
BG 0.974 0.986 0.980 

CG 0.986 0.982 0.984 

AB 0.982 0.976 0.979 
AC 0.992 0.982 0.987 

BC 0.984 0.982 0.983 

ABC 0.982 0.988 0.985 
No fault 0.986 0.988 0.987 

 

Fig. 4. Confusion matrix from the noise-free test 

Table.4. 
Fault classification results in noisy conditions (SNR = 60, 40, 

and 20 dB) 
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60 dB 40 dB 20 dB 

AG 0.986 0.988 0.987 0.982 0.968 0.975 0.955 0.966 0.960 

BG 0.972 0.980 0.976 0.982 0.98 0.984 0.970 0.968 0.969 

CG 0.982 0.990 0.986 0.974 0.980 0.977 0.968 0.972 0.970 

AB 0.986 0.984 0.985 0.972 0.988 0.980 0.986 0.966 0.976 

AC 0.980 0.978 0.979 0.974 0.978 0.976 0.978 0.972 0.975 

BC 0.982 0.968 0.975 0.978 0.968 0.973 0.968 0.970 0.969 

ABC 0.972 0.982 0.977 0.980 0.978 0.979 0.970 0.976 0.973 

No Fault 0.988 0.978 0.983 0.974 0.970 0.972 0.966 0.970 0.968 

Total 

accuracy 
0.981 0.977 0.970 
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Fig. 5. Confusion matrix resulting from the 60 dB noise mode  

 

Fig. 6. Confusion matrix resulting from the 40 dB noise mode 

 

Fig. 7. Confusion matrix from the 20 dB noise test case 

D)  Case 3: Simultaneous Faults 

In order to evaluate the model’s ability to cope 

with more complex conditions, a scenario of the 

simultaneous occurrence of multiple faults in a 

microgrid was investigated. In this case, faults were 

applied simultaneously on lines 3–8 and 10–9, as 

well as on lines 4–5 with switch S3 closed. For each 

combination, single-phase, two-phase and three-

phase faults (AG, BG, CG, AB, AC, BC, ABC) were 

applied, and the proposed model was able to 

correctly identify the fault occurrence and 

accurately classify the fault type in all scenarios. The 

results of this investigation are presented in Table 

(5). This result shows that the PINN-based 

framework has stable and reliable performance in 

multiple fault conditions in addition to simple 

scenarios and can be used as an effective protection 

solution in operational microgrids. 

E) Case 4: Transients 

One of the important criteria in the design of 

protection systems is the ability to distinguish 

between real faults and transient phenomena that 

should not lead to relay operation. For this purpose, 

in this scenario, several transient states were 

examined, including load connection and 

disconnection, sudden changes in the generated 

power of DG and PV sources, topology changes 

with the opening and closing of switches, as well as 

transient voltage drops and increases (sag/swell). 

The results of this analysis are presented in Table 

(6). The results showed that the proposed model did 

not recognize any of these transient phenomena as 

faults, and the false trip rate was equal to zero. This 

confirms the high accuracy and reliability of the 

proposed framework under variable operating 

conditions of the microgrid. 

Table.5. 
Results when applying multiple simultaneous faults 

Faults 
Fault 

location 

Fault 

Type 

Model 

Detection 

Model 

Classification 

Simultaneous fault 1 
Line 3–8 and 

Line 10–9 
AG Correct Correct 

Simultaneous fault 2 
Line 3–8 and 

Line 10–9 
BG Correct Correct 

Simultaneous fault 3 
Line 3–8 and 

Line 10–9 
CG Correct Correct 

Simultaneous fault 4 
Line 3–8 and 

Line 10–9 
AB Correct Correct 

Simultaneous fault 5 
Line 3–8 and 

Line 10–9 
AC Correct Correct 

Simultaneous fault 6 
Line 3–8 and 

Line 10–9 
BC Correct Correct 

Simultaneous fault 7 
Line 3–8 and 

Line 10–9 
ABC Correct Correct 

Simultaneous fault 8 
Line 4–5 

(S3 closed) 
AG Correct Correct 

Simultaneous fault 9 
Line 4–5 

(S3 closed) 
BG Correct Correct 

Simultaneous fault 10 
Line 4–5 

(S3 closed) 
CG Correct Correct 

Simultaneous fault 11 
Line 4–5 

(S3 closed) 
AB Correct Correct 

Simultaneous fault 12 
Line 4–5 

(S3 closed) 
AC Correct Correct 

Simultaneous fault 13 
Line 4–5 

(S3 closed) 
BC Correct Correct 

Simultaneous fault 14 
Line 4–5 

(S3 closed) 
ABC Correct Correct 

Table.6. 
Results when applying transient states to the network 

Test 

No. 

Transient type Location Fault 

detection 

1 Sudden load connection Bus 4 No fault  

2 Sudden load disconnection Bus 6 No fault  
3 Sudden DG power change Near Bus 2 No fault  

4 PV output power change 

(radiation reduction) 

Bus 7 No fault  

5 S3 switch opening Line 4–5 No fault  

6 S3 switch closing Line 4–5 No fault  

7 Transient voltage drops 
(Voltage Sag) 

Main Bus No fault  

8 Transient voltage increase 

(Voltage Swell) 

Main Bus No fault  

4. Comparison 

To comprehensively evaluate the performance 

of the proposed method, its results under both 



276                                    International Journal of  Smart Electrical Engineering, Vol.14, No.4, Fall 2025                   ISSN:  2251-9246 

EISSN: 2345-6221 

 

noiseless and noisy conditions (SNR = 40 dB) were 

compared with several common machine learning 

algorithms, including Support Vector Machine 

(SVM), k-Nearest Neighbors (KNN), Decision Tree 

(DT), Random Forest (RF), Artificial Neural 

Network (ANN), and eXtreme Gradient Boosting 

(XGBoost). All comparative methods were fully 

implemented by the authors using the same dataset 

as the proposed PINN method, ensuring a fair and 

reliable evaluation. 

The results of this comparison are presented in 

Table 7. In the noiseless condition, the proposed 

PINN-based method achieved an overall accuracy of 

0.985, outperforming all other algorithms. Its closest 

competitors were ANN (accuracy 0.971), RF 

(0.965), and XGBoost (0.974). Under noisy 

conditions (SNR = 40 dB), the PINN method still 

provided the best performance with an overall 

accuracy of 0.977, followed by ANN (0.958), RF 

(0.950), and XGBoost (0.960), while SVM, KNN, 

and DT showed a notable decrease in performance. 

These results indicate that the proposed PINN 

method is the most stable and accurate approach, 

demonstrating significant robustness and superiority 

over classical machine learning algorithms in both 

ideal and noisy environments. 

Table.7. 
Comparison of the performance of the proposed method with 

other machine learning methods in noise-free and noisy 

conditions (SNR = 40 dB) 
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PINN 0.985 0.984 0.985 0.985 0.978 0.976 0.977 0.977 

SVM 0.962 0.960 0.961 0.961 0.950 0.944 0.947 0.945 

KNN 0.948 0.944 0.946 0.945 0.938 0.932 0.935 0.933 

DT 0.936 0.930 0.933 0.932 0.922 0.918 0.920 0.919 

RF 0.968 0.964 0.966 0.965 0.957 0.950 0.953 0.952 

ANN 0.972 0.970 0.971 0.971 0.962 0.956 0.959 0.958 

XGBoost 0.975 0.973 0.974 0.974 0.964 0.958 0.961 0.960 

5. Conclusion 

In this paper, a novel framework based on 

Physics-Informed Neural Networks (PINN) was 

developed for fault detection and classification in 

three-phase microgrids. Unlike conventional 

methods that rely solely on experimental or 

simulation data, the proposed approach effectively 

integrates physical knowledge of the power system 

with numerical measurements, enabling improved 

performance under practical operating conditions. 

Simulation results demonstrate that the proposed 

PINN model can accurately identify all types of fault 

states as well as normal operating conditions, 

achieving nearly 99% accuracy in noise-free 

scenarios. In the presence of measurement noise, the 

method maintains stable and reliable performance, 

with overall accuracy exceeding 97% even under 

challenging conditions (SNR = 20 dB). Comparative 

analysis with other machine learning algorithms, 

including SVM, KNN, DT, RF, ANN, and 

XGBoost, shows that the proposed method 

consistently outperforms these approaches in terms 

of precision, recall, F1-score, and overall accuracy, 

both in noise-free and noisy conditions. This 

highlights the capability of PINN to learn complex 

network dynamics while remaining robust to noise. 

Overall, the results confirm that the proposed PINN-

based framework is a reliable and efficient solution 

for real-time protection and monitoring of multi-

source microgrids. Its application can significantly 

enhance the reliability, safety, and sustainability of 

future power systems, providing a practical tool for 

smart grid operations. 
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