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Abstract

This study presents a novel Physics-Informed Neural Network (PINN) framework for fault detection and classification in
three-phase microgrids. By integrating the physical laws of the power system with simulated voltage and current
measurements, the proposed method accurately identifies single-phase, two-phase, and three-phase faults. Evaluation results
show that under noise-free conditions, the model achieves an accuracy of 98.1%, precision of 98.1%, recall of 97.8%, and F1-
score of 97.9%. Under noisy conditions (signal-to-noise ratio, SNR = 20 dB), it maintains robust performance with an accuracy
of 97.0%, precision of 97.0%, recall of 96.8%, and F1-score of 96.9%. Comparative analysis demonstrates that the proposed
PINN outperforms conventional machine learning methods, including Support Vector Machine (SVM), k-Nearest Neighbors
(KNN), Decision Tree (DT), Random Forest (RF), Artificial Neural Network (ANN), and eXtreme Gradient Boosting
(XGBoost), in terms of accuracy, stability, and robustness to noise. These results confirm that the proposed framework
provides an efficient and reliable solution for real-time monitoring and protection of multi-source microgrids, enhancing their

stability, reliability, and operational safety.
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1. Introduction

In recent years, the increasing level of
environmental pollution due to the use of fossil fuels
has led to a further increase in the use of distributed
generation (DG). The use of DGs changes the basis
of distribution networks and transforms them from
energy delivery systems to active networks [1, 2].
This change, in addition to creating protection
problems, has prevented the development of
microgrids [3]. Most of the existing fault detection
methods generally depend on the magnitude and
direction of the fault current, but the integration of
electric vehicles and DGs has caused the fault
current in microgrids to be bidirectional [4, 5]. For
this reason, the importance of studying the
protection of AC microgrids has doubled.

Microgrid protection has attracted the attention
of many researchers around the world in recent
years. Based on the type and application, microgrid
protection methods can be divided into two general
groups: methods without using telecommunication

links and methods based on telecommunication
links [6]. In the first category, protection without the
need for telecommunications, relays detect faults
only by using voltage and current samples of the
lines or equipment under protection [7]. Among the
methods used in this category are Thevenin
equivalent estimation [8], steady-state fault current
calculation [9], fault current sequence component
analysis [10], empirical mode analysis (EMD) [11]
and wavelet analysis [12]. However, the most
important weakness of these approaches is the
complexity in setting and changing the relay
parameters and also the inability to detect changes
in the microgrid topology. The combination of
wavelet analysis and cross-differential transform has
been proposed in [13]. However, these approaches
are highly sensitive to noise and transient
disturbances caused by switching operations in
microgrids. Some other researchers, like [14], have
used zero and negative sequence components for
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low impedance fault detection and transient
components for high impedance faults. Although
this method is somewhat effective, it does not fully
cover the effect of network transients and topology
changes. In [1], a deep learning method optimized
with Black Widow is presented for fault detection in
microgrids with electric vehicle chargers. Reference
[3] presents a combined method of signal processing
and deep learning for fault detection. In [15], a high
impedance fault detection method in microgrids
using the Group Method of Data Handling (GMDH)
intelligent model is presented. In [16], active power
direction, current amplitude, and instantaneous
voltage variations are used to detect low-impedance
faults in microgrids equipped with converter-based
DG sources. In [17], the phase difference and
admittance amplitude at each bus are also used for
fault detection. Traveling wave-based methods in
[18] enable high-speed fault detection, but they
require high sampling rates and complex
calculations to determine the wave propagation
speed. Reference [19] presents a method based on
second-order fuzzy logic for fault detection and
classification in power systems. Although this
method shows acceptable performance, the fuzzy
rules can be difficult to determine. Reference [20]
integrates zero-sequence components into the
inverse-time characteristics of phase overcurrent
relays (OCRs) and establishes a dynamic scheme
between two group settings for phase and ground
faults. Reference [21] proposes an improved
distance protection scheme with an artificial neural
network (ANN) to improve the accuracy of fault
detection, classification, and localization in DER-
rich microgrids. Although this method shows good
performance, it still suffers from the problem of not
considering the microgrid controller. Reference [22]
employs a combination of traveling waves (TW) and
a physics-informed machine learning approach for
fault detection and localization in DC microgrids.
One of the main limitations of this work is the lack
of modeling for various distributed energy resources
and storage units. Reference [23] provides a
comprehensive review of Physics-Informed Neural
Networks in the context of grid-connected inverters.
Reference [24] presents a hybrid optimization
approach for enhancing the DC-link voltage stability
in photovoltaic and wind-based microgrids,
addressing the challenges arising from the
intermittent nature of renewable energy sources.
Reference [25] utilizes a method based on the
integration of deep learning and machine learning
models for fault detection and localization in DC
microgrids. The major drawback of this method is
its high sensitivity to signal noise.

In the second group, namely
telecommunications-based protection, changes in
the microgrid operating conditions or in its topology
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structure are detected by a central protection unit
(CPU). This unit constantly monitors the network
and updates the relay settings in case of changes.
This type of protection is called adaptive protection.
Since a large part of microgrid protection methods
are adaptive, extensive research has been conducted
in this area. In [26], offline adaptive methods are
introduced in which all possible settings related to
the microgrid structural uncertainties are stored.
However, these approaches are not practical due to
the need for very large storage space and the
inability to cover all changes in the microgrid
topology. To solve this problem, in [27 and 28], it
has been proposed to re-run the protection
coordination calculations after each change in the
microgrid .Also in [29], a two-stage adaptive
protection method is presented: in the first stage, the
fault is detected by conventional methods; if the
detection is correct, the system returns to normal;
otherwise, the second stage is activated, and the
protection coordination calculations are performed,
and the relay settings are changed. This method is
not practical in large networks because it requires a
large amount of computation. Reference [30]
introduces an end-to-end protection framework that
provides real-time system monitoring, fault-related
decision-making, and circuit breaker control. This is
achieved by designing distributed data-driven
techniques based on the support vector machine
method, in which each relay is responsible for
distributed data collection, fault detection, fault
localization, and  fault  isolation.  Local
communication is established between neighboring
relays, enhancing cooperative fault localization and
isolation. Reference [31] presents an adaptive hybrid
trip-based protection strategy for microgrids that
enables fast and reliable response to faults using
phase voltage and current measurements from relay
locations. The protection coordination problem was
addressed by optimizing relay settings for different
microgrid operational scenarios, which ensures
proper coordination between primary and backup
relays.

As mentioned, in recent years, the
development and operation of three-phase
microgrids as one of the key pillars of smart grids
has received special attention. By combining
distributed  generation  resources including
photovoltaic (PV) units, wind turbines, diesel
generators (DG) and energy storage systems
(batteries), microgrids provide the possibility of
increasing the efficiency, flexibility and resilience of
power grids. However, the dynamic and
decentralized nature of these networks creates new
challenges in the field of protection and monitoring.
Topology changes, the occurrence of transient
faults, classical protection methods, and even
conventional data-driven algorithms may not
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perform reliably in the presence of renewable
resources with nonlinear and variable behavior.
These methods usually require a large volume of
labeled data, are sensitive to noise and do not have
sufficient generalization ability in unknown
operating conditions. Hence, the development of
intelligent frameworks that utilize both simulated
data and the physical laws of the power system has
become a research and industrial necessity.

For this reason, in this paper, a novel
framework based on Physics-Informed Neural
Networks (PINN) is presented for the protection and
monitoring of three-phase microgrids. The
microgrid model, including PV sources, a wind
turbine, DG and a battery, which were simulated in
Simulink/Matlab environment, and voltage and
current data were extracted from different points of
the network. Then, the data is transferred to the
Google Colab environment, and the proposed PINN
algorithm is implemented in the Python platform. In
addition to detecting the occurrence of the fault, the
proposed approach is also able to correctly classify
the type of fault. The classification includes types of
single-phase to ground faults (AG, BG, CG), two-
phase (AB, AC, BC), three-phase (ABC) and fault-
free state. Unlike conventional machine learning
methods that rely solely on empirical data, PINN
reduces the need for extensive training data by
incorporating the physical equations governing the
power system into the cost function and increases
the generalizability of the model to different
operating scenarios. This makes the model more
robust to noise and has reliable prediction
capabilities even in situations where no data has
been seen for them. Simulation results show that the
developed framework is able to detect faults with
high accuracy and correctly identify their type in real
time, which improves protection performance and
increases the stability and reliability of the
microgrid.

The structure of the paper is organized as
follows: In the second section, a review of the
theoretical foundations and concepts related to
physically informed neural networks is presented. In
the third section, the simulated microgrid model and
simulation results are presented. In the fourth
section, a comparison between the proposed method
and existing intelligent methods is presented.

2. Formulation

In this paper, the aim is to present a novel
PINN-based method for modeling and protecting
microgrids  including  distributed  generation
resources such as photovoltaic (PV) systems, battery
energy storage systems (BESS) and wind turbines.
Due to their nonlinear nature, complex dynamics
and the behavior dependent on environmental
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conditions, these resources pose numerous
challenges for their accurate modeling and
intelligent protection. The use of PINNs, by
combining measured data and physical knowledge
of the system, allows for training models with high
accuracy and generalizability that cannot be
achieved in traditional data-only methods.

A) Microgrid Resource Modeling

In the first part, we discussed the DG physical
modeling of the generator type. Distributed
generators are among the key resources whose
voltage and current control is crucial for maintaining
grid stability. The dynamic equations of DG voltage
and current can be presented using equations (1) and

o1

Z;Gt = yT (VDG ®- Vref) + AV que (1) 1)
dl 1

l;gt(t) = 77 (Io6(®) = Ireg) + Alpaune(©) @)

Where, Vps(t) and I (t) are the DG output
voltage and current; VT and I are the reference
values set by the controller; VT and IT are the time
constants of the voltage and current response, and
AV e () and Algqy, (t) are the effects of possible
errors on voltage and current.

In the second section, we discussed the
modeling of the Photovoltaic (PV). The voltage and
current output of the solar panel are nonlinear and
depend on the intensity of solar radiation and
temperature. Accordingly, the PV model can be
expressed based on equations (3) and (4).

Vo () = AV () + 0py. G (). Vo SIn( 27f ) (3)

Ppy (t)
Vpy (8)

Where, npy is the panel efficiency, G(t) the
solar radiation intensity at time t, V,,,,, the nominal
voltage, and AV/,.(t) and AIf,,.(t) are the
variations due to the error.

Equations (5) - (7) can be used to model a wind
turbine.

Ipy (t) = Alfg (8) + 4

1
Pwind (t) = EpACPVM%ind (t) (5)
Viwina(t) = KwinaPwina (0 sin( 21ft) + Avfmxﬁfl[ti ® (6)
Pwind (t) i
I . t) = Alwmd t 7
wmd( ) Vwind(t) + fuult( ) ( )

Batteries are modeled as energy storage
sources, considering the dynamic charging and

discharging presented in equation (8).
dSoc _ Ppar(t)

dt Coat ®)

The battery output voltage and current can be
calculated from equations (9) and (10).
Vot (8) = VaomSoc(t) sin(2mft) + AV7h, (t) ©)
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Py (t
Ipat (6) = #8 + Alfg,f”(t) (10)

B) PINN Framework for Fault Detection and
Classification

The PINN network receives inputs including
time, environmental parameters (irradiance
intensity, wind speed, battery SoC), and initial
voltage and current data of the resources; its output
is the voltage and current prediction as well as the
fault class label based on equations (11) and (12).

X = [t, G(t), Vyina(t), Soc(t),...] (1)
y

= [V,DG' I’DG' V’PV! I’PV! V’WL'TLd! Ilwindr V’batr I’batl yfault] (12)

The cost function can be defined as equation

(13):
( = (data + Al {physics + )‘2 (fault classification
math data hysi i (13)
physics constraints fault class
Where (data ’ (physics ’ and

{fauit classificationCan be calculated from equations
(14) to (16).
N

1 ! mean
Caata = ﬁz Z(uvs(ti) A Ol ”
I8 = e (e

N
(physics = %ZZ (”Nv,s(VSl ti)”z + ”Ni,s(ls' ti)”z) (15)

i=1 s

N C
$raut cassification = — %Z Z Vi lOg(yli_c) (16)
i=1c=1

Here, N, and N;; represent the differential
equations for each source. To train the PINN model,
4000 data samples were generated, including error
and non-error conditions. The model inputs include
time, solar radiation, wind speed, battery state of
charge (SoC), storage mode voltage and current,
while the outputs include error labels. The network
architecture consists of three hidden layers with 128
neurons and a tanh activation function. Optimization
was performed using the Adam algorithm with a
learning rate of 0.001, batch size 64 and 2000
training sessions. The overall cost function consists
of three parts: data error, physical error and
classification error. The model performance is
evaluated using the confusion matrix. The PINN
model settings are presented in Table (1). Figure (1)
shows the proposed fault detection algorithm based
on the PINN model.

3. Simulation Results
A) The Studied Network

To investigate the method presented in this
paper, the standard CIGREE network has been used,
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which includes PV, WIND, synchronous generator
and storage. This network is shown in Figure (2)
[32]. This system consists of an 11-node system
connected to the main network through a
transformer. The network operates at a voltage of 20
kV and a frequency of 50 Hz. The switches S1, S2
and S3 are responsible for changing the operating
mode of the network (it is assumed that the switch
S1 is closed and the switches S2 and S3 are open)
[32]. The addition of a battery storage system and a
synchronous generator is a minor modification to the
original model. The distances are maintained, and
the relevant parameters are adjusted accordingly.
The overhead line parameters are estimated with the
n model and hyperbolic corrections. For the
balanced three-phase transmission line model, the
parameters are integrated. The parameters R, L and
C are positive and include zero sequence parameters
to account for inductive and capacitive couplings
between the three-phase conductors. The RLC
parameters used in the simulations are as follows:
— R0 =0.6581 ohm/km
-  R1=0.5132 ohm/km
-~ L0=0.0051 H/km
-~ L1=0.0012 H/km
—  CO=4.0744 nF/km
- C1=10.0971 nF/km

Table (2) shows the branches of the system
along with the length of overhead lines and the
power of the loads connected to each node. Nodes
that do not have loads are marked with “—.

Table.1.
PINN model parameter settings
Parameter Value
Number of training data 4000
Data ratio 70% training, 30% testing
Inputs Time tt, Solar radiation GG, Wind speed,
SoC, Storage status, Voltage and current
Outputs Error label
Network structure Dense layers with 128 neurons
Activation function tanh
Outputs (Heads) 3 voltage neurons, 3 current neurons, 2
classification neurons (Softmax)
Optimizer Adam
Learning rate 0.001
Batch size 64

Number of training sessions 2000

Cost function components Data Loss + Physics Loss + Classification
Loss

Evaluation criteria Confusion Matrix

Data PINN
Generation
tann

Laata=1Vpred = Viue l

Nirain=4000 (" Dense ) +orea=Tirue
L;‘);’ﬂts Loss
inputs m
Classification Loss
] =
cls

wind speed l

SoC

st_state Training Optimizer
Adam
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Fig. 1. Algorithm of the proposed PINN method
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Fig. 2. The network under study [32].

Table.2.
Length of overhead lines, branches and the power of the

connected loads [32].

Node From  Node To Length (km)

Load Power (kVA)

1 2 2.82 20400
2 3 4.42 -

3 4 0.61 560
3 8 1.30 -

4 5 0.56 445
4 11 0.49 -

5 6 1.54 750
6 7 0.24 565
7 8 1.67 90
8 9 0.32 605
9 10 0.77 675
10 11 0.33 570

All datasets used for training and evaluating
the proposed PINN model were obtained from time-
domain  simulations  conducted in  the
MATLAB/Simulink environment. After defining
the operating conditions and fault scenarios, the
instantaneous three-phase voltage and current
signals were recorded at several measurement nodes
within the microgrid. These measurements capture
both the steady-state behavior of the system and the
transient signatures associated with different types
of faults. To ensure accurate representation of fast
dynamic events, all signals were sampled at a
frequency of 20 kHz. Each simulation run covered a
duration of 0.1 seconds, providing a uniform time
window across all cases. The recorded data include
the three-phase voltage and current waveforms at
each measurement point. A wide range of scenarios
was simulated to create a diverse and representative
dataset. These scenarios include normal (fault-free)
operation, single-phase-to-ground faults (AG, BG,
CG), line-to-line faults (AB, AC, BC), and three-
phase faults (ABC). Different fault locations and
fault impedances were also considered to introduce
variability and improve the generalization capability
of the model. In addition, the dataset reflects
different operating conditions of the distributed
energy resources to ensure that the model remains
robust under varying system states.

Figure 3 shows the Simulink implementation
of the PV, wind turbine, DG, and BESS
components. After completing the simulations, the
data were exported to CSV files, which were
subsequently imported into the Python environment
in Google Colab. These files served as the input for
training and evaluating the proposed Physics-
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Informed Neural Network (PINN) framework. This
workflow enables a clear and efficient integration
between  MATLAB/Simulink and  Python,
combining realistic microgrid simulations with
advanced machine learning-based fault diagnosis.

(b)

Rotor speed (..}

L
T
m »{ 1_Bat
B
——
Battery Converter
Ql_Bat —P
s
b
@2_Bal —( [02_5]|
B

Battery Contraller

(d)
Fig. 3. Simulink implementation of distributed energy resources
in the microgrid: (a) PV unit, (b) WT, (c) DG, and (d) BESS.

B) Case 1: Noiseless Network

The results of identifying and classifying error
types in the noiseless state are shown in Table 3 and
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also in Figure 4 (confusion matrix). According to
this table, the proposed PINN-based method has
been able to provide very accurate performance in

all error and normal states, such that the Precision, Table.3.
Recall and F1-score values are all higher than 0.97. Fault classification results in noise-free mode
This indicates the high power of the method in Fault type Precision Recall F1-score
correctly separating different classes and reducing AG 0.978 0.980 0.979
type | and type Il errors. BG 0.974 0.986 0.980
In particular, for single-phase faults such as cG 0.985 0.982 0.984
AG and BG, the Fl-score values are 0.979 and e 0982 0978 0.979
o SLOTE . AC 0.992 0.982 0.987
0.980, respectively, indicating a very accurate BC 0.984 0.982 0.983
identification of these states. Also, for two-phase ABC 0.982 0.988 0.985
faults (such as AB, AC, and BC) and three-phase No fault 0.986 0.988 0.987
faults (ABC), the F1-score values are 0.979, 0.987, : Confusion Matrx
0.983, and 0.985, respectively, indicating the same
and balanced performance of the model in all states. =
On the other hand, in the no-fault state, the proposed co w
algorithm with an F1-score of 0.987 was able to

correctly identify the healthy conditions of the
network. Overall, the results of this section show
that in noise-free conditions, the proposed method
has an accuracy of close to 100% in identifying and
classifying various network faults. Ho Fault

C) Case 2: Noisy network

Predicted Class

The performance of the proposed method in Fig. 4. Confusion matrix from the noise-free test
the presence of noise with different SNR values is
shown in Table (4) and also in Figures (5 to 7) Table.4.
(corresponding confusion matrices). The results Fault classification results in noisy conditions (SNR = 60, 40,
indicate that the PINN-based model is able to and 20 dB)
accurately identify errors and the normal state of the - Y e o e .
network even in noisy conditions. In the case of 60 Fault 3 - 5§ 3 = § 2 = §
dB noise, the values of the evaluation indices remain e g g L g g L & 8 1
almost the same as in the case of no noise, so that R TS T

the overall accuracy of the model is reported to be
0.981. This shows that the proposed method is very
robust to low-level noise, and there is no noticeable
Change in |ts performance_ CG 0.982 0.990 0.986 0.974 0.980 0.977 0.968 0.972 0.970

By reducing the signal-to-noise ratio to 40 dB, AB 0986 0984 0985 0972 0988 0980 0.986 0966 0.976
the F1-score values are still maintained above 0.97
in most cases, and the overall accuracy is 0.977.
These results show that the model has a high ability

AG 0.986 0.988 0.987 0.982 0.968 0.975 0.955 0.966 0.960

BG 0.972 0.980 0.976 0.982 0.98 0.984 0.970 0.968 0.969

AC 0.980 0.978 0.979 0.974 0.978 0976 0.978 0.972 0.975

BC 0.982 0.968 0.975 0.978 0.968 0.973 0.968 0.970 0.969

to classify faults even in moderate noise conditions, ABC 0072 0982 0077 0980 0978 0979 0970 0976 0.973
and its performance degradation is very limited. In NoFault 0.988 0078 0983 0074 0.970 0972 0.966 0.970 0.968
more severe conditions, i.e. 20 dB, although some Total 0.981 0077 0970

accuracy

decrease in accuracy is evident, the F1-score indices
still remain above 0.96, and the overall accuracy is
0.970.

These results indicate the stability of the
proposed method against severe noise and its ability
to correctly identify different network states. In
general, comparing the results of three different
noise levels shows that the proposed method has a
stable and accurate performance not only in the
noise-free state, but also in noisy conditions and can
be used as an efficient tool for monitoring and
protecting power systems.

Confusion Matrix
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Fig. 5. Confusion matrix resulting from the 60 dB noise mode

Confusion Matrix
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Fig. 6. Confusion matrix resulting from the 40 dB noise mode
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Fig. 7. Confusion matrix from the 20 dB noise test case

D) Case 3: Simultaneous Faults

In order to evaluate the model’s ability to cope
with more complex conditions, a scenario of the
simultaneous occurrence of multiple faults in a
microgrid was investigated. In this case, faults were
applied simultaneously on lines 3-8 and 10-9, as
well as on lines 4-5 with switch S3 closed. For each
combination, single-phase, two-phase and three-
phase faults (AG, BG, CG, AB, AC, BC, ABC) were
applied, and the proposed model was able to
correctly identify the fault occurrence and
accurately classify the fault type in all scenarios. The
results of this investigation are presented in Table
(5). This result shows that the PINN-based
framework has stable and reliable performance in
multiple fault conditions in addition to simple
scenarios and can be used as an effective protection
solution in operational microgrids.

E) Case 4: Transients

One of the important criteria in the design of
protection systems is the ability to distinguish
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between real faults and transient phenomena that
should not lead to relay operation. For this purpose,
in this scenario, several transient states were
examined, including load connection and
disconnection, sudden changes in the generated
power of DG and PV sources, topology changes
with the opening and closing of switches, as well as
transient voltage drops and increases (sag/swell).
The results of this analysis are presented in Table
(6). The results showed that the proposed model did
not recognize any of these transient phenomena as
faults, and the false trip rate was equal to zero. This
confirms the high accuracy and reliability of the
proposed framework under variable operating
conditions of the microgrid.

Table.5.
Results when applying multiple simultaneous faults
Faults Fault Fault Model Model
location Type Detection  Classification
. Line 3-8 and
Simultaneous fault 1 Line 10-9 AG Correct Correct
Simultaneous fault 2 Line 3-8 and BG Correct Correct
Line 10-9
Simultaneous fault 3 L|n_e 3-8 and CG Correct Correct
Line 10-9
Simultaneous fault 4 Line 3-8and AB Correct Correct
Line 10-9
Simultaneous fault 5 Line 3-8and AC Correct Correct
Line 10-9
Simultaneous fault 6 Line 3-8and BC Correct Correct
Line 10-9
Simultaneous fault 7 Line 3-8and ABC Correct Correct
Line 10-9
Simultaneous fault 8 Line 4-5 AG Correct Correct
(S3 closed)
Simultaneous fault 9 Line 4-5 BG Correct Correct
(S3 closed)
Simultaneous fault 10 Line 4-5 CG Correct Correct
(S3 closed)
Simultaneous fault 11 Line 4-5 AB Correct Correct
(S3 closed)
. Line 4-5
Simultaneous fault 12 (S3 closed) AC Correct Correct
. Line 4-5
Simultaneous fault 13 (S3 closed) BC Correct Correct
. Line 4-5
Simultaneous fault 14 (S3 closed) ABC Correct Correct
Table.6.
Results when applying transient states to the network
Test Transient type Location Fault
No. detection
1 Sudden load connection  Bus 4 No fault
2 Sudden load disconnection Bus 6 No fault
3 Sudden DG power change Near Bus2  No fault
4 PV output power change Bus7 No fault
(radiation reduction)
5 S3 switch opening Line 4-5 No fault
6 S3 switch closing Line 4-5 No fault
7 Transient voltage drops Main Bus No fault
(Voltage Sag)
8 Transient voltage increase Main Bus No fault

(Voltage Swell)

4. Comparison

To comprehensively evaluate the performance
of the proposed method, its results under both
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noiseless and noisy conditions (SNR = 40 dB) were
compared with several common machine learning
algorithms, including Support Vector Machine
(SVM), k-Nearest Neighbors (KNN), Decision Tree
(DT), Random Forest (RF), Artificial Neural
Network (ANN), and eXtreme Gradient Boosting
(XGBoost). All comparative methods were fully
implemented by the authors using the same dataset
as the proposed PINN method, ensuring a fair and
reliable evaluation.

The results of this comparison are presented in
Table 7. In the noiseless condition, the proposed
PINN-based method achieved an overall accuracy of
0.985, outperforming all other algorithms. Its closest
competitors were ANN (accuracy 0.971), RF
(0.965), and XGBoost (0.974). Under noisy
conditions (SNR = 40 dB), the PINN method still
provided the best performance with an overall
accuracy of 0.977, followed by ANN (0.958), RF
(0.950), and XGBoost (0.960), while SVM, KNN,
and DT showed a notable decrease in performance.
These results indicate that the proposed PINN
method is the most stable and accurate approach,
demonstrating significant robustness and superiority
over classical machine learning algorithms in both
ideal and noisy environments.

Table.7.
Comparison of the performance of the proposed method with
other machine learning methods in noise-free and noisy
conditions (SNR = 40 dB)

- ce _ @ ET-T 5\’53 S . _ 2~
8 2% T8 5% 8% 228 T8 £g &1
g 8T &c SC 55 8g &g %g 8%
= &2 2z z2z&¥ T pE T
PINN 0.985 0.984 0.985 0.985 0.978 0.976 0.977 0.977

SVM 0.962 0.960 0.961 0.961 0.950 0.944 0.947 0.945
KNN 0.948 0.944 0.946 0.945 0.938 0.932 0.935 0.933
DT 0.936 0.930 0.933 0.932 0.922 0.918 0.920 0.919
RF 0.968 0.964 0.966 0.965 0.957 0.950 0.953 0.952
ANN 0.972 0.970 0.971 0.971 0.962 0.956 0.959 0.958
XGBoost  0.975 0.973 0.974 0.974 0.964 0.958 0.961 0.960

5. Conclusion

In this paper, a novel framework based on
Physics-Informed Neural Networks (PINN) was
developed for fault detection and classification in
three-phase  microgrids. Unlike conventional
methods that rely solely on experimental or
simulation data, the proposed approach effectively
integrates physical knowledge of the power system
with numerical measurements, enabling improved
performance under practical operating conditions.
Simulation results demonstrate that the proposed
PINN model can accurately identify all types of fault
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states as well as normal operating conditions,
achieving nearly 99% accuracy in noise-free
scenarios. In the presence of measurement noise, the
method maintains stable and reliable performance,
with overall accuracy exceeding 97% even under
challenging conditions (SNR =20 dB). Comparative
analysis with other machine learning algorithms,
including SVM, KNN, DT, RF, ANN, and
XGBoost, shows that the proposed method
consistently outperforms these approaches in terms
of precision, recall, F1-score, and overall accuracy,
both in noise-free and noisy conditions. This
highlights the capability of PINN to learn complex
network dynamics while remaining robust to noise.
Overall, the results confirm that the proposed PINN-
based framework is a reliable and efficient solution
for real-time protection and monitoring of multi-
source microgrids. Its application can significantly
enhance the reliability, safety, and sustainability of
future power systems, providing a practical tool for
smart grid operations.
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