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Abstract

This paper presents an analytical and numerical study of low-velocity impact response in composite cylinders made of carbon fiber, glass
fiber, and hybrid layups. A triangular approximation was used to model the analytical force—time history [1,2], while finite element (FE)
simulations were performed using Abaqus/Explicit [7,19]. Four configurations were analyzed: carbon-only, glass-only, carbon-
outside/glass-inside, and glass-outside/carbon-inside. The analytical model derives closed-form expressions for impulse, contact duration,
displacement, and stiffness [3,5]. Results show that CFRP cylinders exhibit higher peak forces and shorter contact durations, while GFRP
cylinders undergo larger displacements and absorb more energy through deformation [4,6,23]. Hybrid specimens display intermediate
responses, with stacking sequence strongly influencing the outcome [8,9,13].
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1. Introduction gap in the study of composite cylinders. This paper

Fiber-reinforced composites are widely used in aerospace, addresses this gap.

automotive, marine, and energy applications due to their
high strength-to-weight ratio [16]. Among these, CFRP
are valued for their high stiffness but are relatively brittle 3.1 Analytical Model:
and costly [1,2]. GFRP, in contrast, are cheaper and
tougher but less stiff [3,4].

3. Materials and Methods

The impactor kinetic energy is defined as:

Cylindrical structures such as pipelines, pressure vessels, 1

and shells are often exposed to accidental low-velocity Ey = Emvz =mgh

impacts  [23,24]. Understanding the comparative Impulse:

performance of CFRP, GFRP, and hybrids is essential for tc

safe and optimized design. While several studies explored I = f F(t)dt

impact response of plates [10,12,14], fewer works 0

addres_sed cylindrical _shells. The present study combines Force—time history (triangular approximation [1]):

analytical and numerical approaches to compare CFRP,

GFRP, and hybrid cylinders. tZFmax b<t< te
. . t 2

2. Literature Review F) = o ‘.

brate [1,15] and Cantwell & Morton [2] provided the ZFnax (1 t_c) ZStstk

fundamentals of low-velocity impact modeling. Later

studies confirmed that CFRP laminates exhibit high Impulse simplifies to:

stiffness but brittle failure [6,24], whereas GFRP

laminates sustain larger deformations [3,22]. Hybrid [ = lt F = my

composites combining CFRP and GFRP have been shown 2 mex

to balance stiffness and toughness [4,8,9,13,18]. i

Experimental investigations [11,20,21] and numerical Displacement (energy balance [5]):

studies [7,19] highlight the role of impact energy, 1 2F
; ; 0

stacking sequence, and thickness on structural response. E, = 55 v OmaxFmax = 7

However, most works focus on flat plates [23], leaving a max
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Stiffness:

2

Fmax _ Fmax

k =
2E,

Smax

Hybrid modulus (rule of mixtures [25]):

n
Feq = ) ViEi
i=1

Where V; and E; are the volume fraction and modulus of
each ply.

Table 1
Mechanical properties of CFRP and GFRP:

Property CFRP GFRP
Density (kg/m?) \ 1380 2000
Young’s modulus (GPa) | 120 70
Shear modulus (GPa) | 15 5
Poisson’s ratio \ 0.24 0.23
3.2 Numerical Model:
Numerical ~ simulations  were  performed  using

Abaqus/Explicit [7,19]. The cylinder was modeled as a
shell structure. Its geometric specifications included a
radius of 24.25 mm, a length of 250 mm, and a thickness
of 3.25 mm. The cylinder was considered to consist of 9
polymeric layers, each layer being defined as either
carbon fiber-reinforced polymer (CFRP) or glass fiber-
reinforced polymer (GFRP) depending on the
configuration [22].

For the layer modeling, the Composite Layup capability
of the software was utilized. In this definition, the
mechanical properties of each layer (Young’s modulus,
shear modulus, Poisson’s ratio, and density) were input
according to the data in Table 1. The stacking sequence
was considered for four different configurations: all
CFRP, all GFRP, CFRP outer — GFRP inner, and GFRP
outer — CFRP inner.

Mesh (meshing) was performed using reduced shell
elements S4R. These elements are suitable for nonlinear
shell analyses with large deformations. The mesh size was
adaptively chosen such that the mesh was finer near the
contact region (center of the cylinder) and coarser further
away.

The impactor was modeled as a rigid spherical body
(radius 8 mm) with a mass of 3.2 kg. The initial velocity
corresponding to a drop from a height of 0.30 m was
computed and applied to the impactor.

Boundary conditions fixed the cylinder at both ends
(clamped). Contact between the impactor and the cylinder
surface was defined using a general surface-to-surface
contact formulation. Normal contact behavior was Hard
Contact and frictional behavior was modeled as penalty
with a coefficient of friction of 0.2 [14].

For monitoring results, the following outputs were
extracted from the model:

e Force-time history at the contact point,
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Central axial displacement of the cylinder,
Kinetic, internal, and contact energies,
e Von Mises stress contours and the cylinder’s
deformation.
These data were used for comparison with analytical
results and for studying the behavior of the composites
under impact.

4. Results
4.1 Analytical Results:

Results matched expected differences in stiffness and

displacement [3,4,5].

e CFRP: higher peak force, shorter contact time.

o GFRP: larger displacement, longer duration.

e Hybrids: intermediate, stacking sequence mattered
[8,9,13].

Force vs Time — Triangular pulse (hypothetical)
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Fig 1. Force-time (analytical)

Displacement vs Time — (delta(t) = delta_max * F(t)/F_max)
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Fig 2. Displacement-time (analytical)

4.2 Numerical Results:

Numerical simulations validated analytical trends [7,19].
CFRP cylinders carried higher loads but lower
displacement, while GFRP cylinders showed larger
deflection. Stress contours showed concentration near
impact site (Figure 7) [6,24].

Figure 7 - Deformed shape of CFRP cylinder under impact (schematic)
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Fig 3. Deformed CFRP cylinder under impact:
Figure 3 illustrates the deformed shape of the CFRP
cylinder under impact, showing localized displacement
near the impact point. Figure 8 presents the energy
histories for all configurations. The Kkinetic energy
decreases as the impact progresses, while internal energy
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rises as the cylinder deforms. A small contact energy peak
occurs around mid-contact, representing the transient
energy transfer at the impact interface.

Energy histories demonstrated transfer from Kkinetic to
internal energy, with minor contact energy peak (Figure
8) [18,20].
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Fig 4. Approximate energy histories for each specimen
(analytical approximation). Kinetic Energy (initial ~ 9.42 J)
decreases during contact while Internal Energy increases; a

small Contact Energy peak appears near mid-contact. Residual
kinetic energy (~0.47 J) is left to represent rebound/uncaptured
energy.

4.3 Parametric Study:

o Thickness 1 — stiffness 1, displacement | [21].
Carbon ply ratio 1 — higher peak load [22].
Impact energy 1 — displacement scales as & &,,4.+/ Eo

5. Discussion

e Results confirm CFRP are stiffer but brittle [2,6],
while GFRP are more ductile [3,23]. Hybrids offer
tunability [4,8,13].

o The role of the outer ply is critical: carbon outside —
higher stiffness; glass outside — higher absorption
[9,25].

e Analytical formulas help predict stiffness and
displacement trends without full experiments [1,5].

6. Conclusion

e CFRP — high peak load, low displacement.

e GFRP — lower load, higher displacement.

e Hybrids — balance properties, stacking sequence
matters.

e Thickness and energy significantly affect behavior
[21,25].

This combined analytical-numerical study provides

design insights for composite cylinders under accidental

impacts.

7. Discussion

e Results confirm CFRP are stiffer but brittle [2,6],
while GFRP are more ductile [3,23]. Hybrids offer
tunability [4,8,13].

e The role of the outer ply is critical: carbon outside —
higher stiffness; glass outside — higher absorption
[9,25].

e Analytical formulas help predict stiffness and
displacement trends without full experiments [1,5].

8. Conclusion

e  CFRP — high peak load, low displacement.
GFRP — lower load, higher displacement.
Hybrids — balance properties, stacking sequence
matters.
e Thickness and energy significantly affect behavior
[21,25].
This combined analytical-numerical study provides
design insights for composite cylinders under accidental
impacts.
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