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Abstract 

This paper presents a lecture review on the analytical solution of steady-state thermo-

mechanical behavior in a hollow infinite cylinder composed of functionally graded poro-

piezoelectric materials (2D-FGPPMs) and conventional poro-piezoelectric materials (2D-

PPMs). The study is developed within the theoretical framework of two-dimensional 

thermoelasticity and aims to provide a comprehensive understanding of the coupled 

mechanical, thermal, and electrical responses of these advanced multi physics materials. 

To simulate realistic engineering conditions, general forms of thermal and mechanical 

boundary conditions are considered on both the inner and outer cylindrical surfaces. The 

analytical approach employs a direct solution method in which the governing heat 

conduction equation is solved simultaneously with the non-homogeneous system of partial 

differential Navier equations. Complex Fourier series expansion, in combination with 

power-law functions, is used to represent the distributions and to achieve accurate 

solutions for the asymmetric thermal and mechanical fields.In this formulation, all material 

properties—except for Poisson’s ratio—are assumed to vary continuously along the radial 

and circumferential directions according to prescribed power-law distributions. This 

gradation reflects the functional nature of FGPPMs and captures the intricate coupling 

between poroelastic, piezoelectric, and thermal effects.The results of this investigation 

demonstrate the importance of FGPPMs in enhancing the design and optimization of high-

performance engineering components. In particular, the findings highlight their potential 

applications  
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in the development of reliable sensors, actuators, and energy-harvesting devices that 

operate effectively under complex thermo-electro-mechanical environments [1,2]. 

Keywords:  Functionally graded Material;Piezoelectric; Porothermoelastisity; Hollow 

cylinder. 
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1.Introduction  

Porous piezoelectric materials (PPMs) represent an important class of smart composites with the 

ability to couple mechanical, thermal, and electrical fields. Their reduced acoustic impedance 

makes them attractive for biomedical applications, such as ultrasonic imaging and sensors, while 

their multifunctionality ensures applicability in aerospace, oil and gas, and energy harvesting 

systems. Building upon these, functionally graded poro-piezoelectric materials (FGPPMs) have 

emerged as advanced structures where material properties vary continuously in two dimensions 

(radial and circumferential). This gradation enables superior stress distribution control, improved 

thermal resistance, and enhanced electromechanical coupling.The two selected studies form a 

coherent progression: from an analytical treatment of 2D-PPMs under thermo-electro-mechanical 

loading to the more advanced asymmetric mechanical and thermal stress analysis of 2D-FGPPMs 

hollow cylinders. Together, they present a significant foundation for understanding the mechanics 

of FGPPMs. 

2.Literature Background  

Early works on FGMs and piezoelectric composites have shown their potential to mitigate 

thermal stresses and improve structural performance. Jabbari et al. developed general 

solutions for hollow cylinders under mechanical and thermal stresses, while other 

researchers investigated poro elasticity (Detournay & Cheng, Cowin) and piezo 

thermoelastic coupling (Ding, Kirilyuk). The studies under review here extend these 

frameworks by combining poroelasticity and piezoelectricity in both PPMs and FGPPMs. 

        

2.1 Asymmetric Mechanical and Thermal Stresses in 2D-FGPPMs Hollow Cylinder[1]. 

Objective: To extend the PPM framework to functionally graded materials with two-dimensional 

property variation. 

Method: Analytical methods solving nonhomogeneous PDEs using complex Fourier series and 

power law functions. Material gradation is expressed via radial and circumferential power laws. 
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Key Features: 

- Inclusion of porosity, Biot’s modulus, and electromechanical coupling. 

- Material constants expressed as power functions of both radius and angle. 

- General and particular solutions obtained for displacements, stresses, and electric 

potential. 

Findings: 

FGPPMs offer improved stress distribution and reduction of stress concentration compared to 

homogeneous or non-graded PPMs. 

The effects of compressibility, porosity, and thermal expansion anisotropy are highlighted. 

Results confirm that FGPPMs can be optimized for advanced thermal and mechanical 

performance. 

 

2.2 Analytical Investigation of 2D-PPMs Hollow Cylinder under TEM Loading[2]. 

Objective: To derive analytical solutions for porous piezoelectric hollow cylinders subjected to 

thermo-electro-mechanical (TEM) asymmetric loading. 

Method: The governing equations are based on two-dimensional thermo- elasticity. The solution 

employs Fourier series expansion and power-exponential functions to solve heat conduction and 

Navier equations. 

Key Features: 

- Material properties vary radially and circumferentially. 

- Stress-strain relations incorporate Biot’s modulus for poro elastic effects. 

- Both compressibility and porosity are considered. 

Findings: The study demonstrated that porosity and electric potential coefficients significantly 

influence displacement, stress distribution, and electric potential. The results established a 

baseline analytical framework for porous piezoelectric materials. 

Solution Methodology: Complex Fourier series enable handling of asymmetric boundary 

conditions, while power-law or exponential grading functions represent material inhomogeneity. 

These analytical formulations produce closed-form expressions for displacement, stress, and 

electric potential distributions, serving as benchmarks for numerical methods. 
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3. Analytical Approaches and Governing Equations 

Both studies rely on the two-dimensional Navier equations of thermo-elasticity, coupled with 

Maxwell’s equations for electric fields. Key aspects include: 

Strain-Displacement Relations: Defined in radial (r) and circumferential (θ) coordinates. 

Stress-Strain Relations: Incorporating elastic constants, piezoelectric coupling coefficients, 

thermal moduli, and Biot’s modulus for pore pressure effects. 

Heat Conduction Equation: Solved under steady-state, asymmetric conditions with conductivity 

varying along r and θ. 

3.1 Basic Governing Equations for 2D-FGPPMs and 2D-PPMs [1,2] 
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M is Biot’s moduli. Also, to obtain the equilibrium equations in terms of the displacement 

components for the 2D-FGPPM and 2D-PPMs cylinder, the functional relationship of the material 

properties must be known. Because  the cylinder material is assumed to be graded along the 
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Where   r r a   ,  and  “a” is the inner radius.                                                           (3.1.2) 

3.2 Final Governing Equations for 2D-FGPPMs and 2D-PPMs [1,2] 
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4. Key Results and Comparisons 

4.1 FGPPMs and PPMs 

FGPPMs: Enabled tailored stress distribution via property variation in two dimensions. This 

reduced stress concentrations and improved thermal resistance. 
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PPMs: Showed significant dependence of stress fields on porosity and Biot’s modulus. However, 

lack of gradation limited stress mitigation. 

4.2 Thermal and Mechanical Coupling 

Both studies confirmed strong thermo-electro-mechanical coupling. Elevated porosity increased 

displacements but decreased stiffness. Gradation in FGPPMs mitigated these effects. 

4.3 Practical Implications 

FGPPMs allow customized designs for harsh environments such as oil wells, pipelines, and 

aerospace structures. 

PPMs remain attractive for biomedical sensors due to their tunable acoustic impedance. 

 

 

 

5. Applications 

 - Oil and Gas Industry: FGPPMs can be used for pressure and temperature sensors in deep 

wells, combining mechanical robustness with sensitivity. 

- Biomedical Engineering: PPM-based sensors in ultrasound imaging and diagnostics. 

- Smart Structures: Adaptive aerospace components and energy harvesting systems. 

- High-Temperature Environments: FGPPMs provide thermal shock resistance and durability. 

 

6.Result and Discussion 

6.1   2D-FGPPMs[1] 

Figure (1) shows the temperature distribution in the wall thickness along the radius and 

circumferential directions. The effect of the power-law index on the temperature distribution in the 

also shown in Figure (2).Also Figure (3,4) show the radial thermal stresses in the cross section of 

the cylinder. It is interesting to see that all components of stresses follow a harmonic pattern on 

the outside surface. The radial stresses is zero at the insider surface, due to the assumed 

boundary conditions. This figure is the plot of stresses versus   at r r .Figure (5) show the, hoop 

thermal stresses in the cross section of the cylinder. where the pore compressibility coefficient     

( B ) is changed the other parameters are fixed. Figure (6) show these stresses based on the pore 

volume fraction ( ) is pore volume per total volume. 
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Fig.(1) Temperature distribution in the cross section of cylindrical    Fig .(2) Temperature distribution of Circumferential at r r  
      
       
                        

    
Fig .(3)  Radial thermal stress in the cross section of cylindrical        Fig .(4) Radial distribution of Circumferential thermal stress

rr at r r  

 
                                           
 
 
 
 
 
 
 
 
 
 

1

1.05

1.1

1.15

1.2

-4

-2

0

2

4
-60

-40

-20

0

20

40

60

r/a (rad)

T
 (
 

C
)

-4 -3 -2 -1 0 1 2 3 4
-25

-20

-15

-10

-5

0

5

10

15

20

25

T
( 

 C
)

(rad) 

 

 

n=0.1

n=0

n=-0.1

1

1.05

1.1

1.15

1.2

-4

-2

0

2

4
-40

-20

0

20

40

60

r/a (rad)


rr
 (

M
p

a
)

-4 -3 -2 -1 0 1 2 3 4
-20

-15

-10

-5

0

5

10

15


rr
 (

M
p

a
)

(rad) 

 

 

n=0.1

n=0

n=-0.1



8 

 

99 Journal of Mechanical Research and Application (JMRA), Vol. 15 No.1, 1404(2025),92-101 

 

              
                   Fig .(5) Hoop thermal stress in the cross section of            Fig .(6) Hoop thermal stress in the cross section of 

                  cylindr in diffrent  compressibility coefficient.                      cylinder in diffrent porosity cofficient. 

 

 

6.2 PPM [2] 

Figure (7),(8) shows the effect of the power- exponential law index on the temperature distribution 

in the wall thickness along the radius and circumferential directions. The effect of the power-

exponential law index on the distribution of the radial thermo-electro-mechanical stresses is 

shown in Figure (9).It is shown that as ,m n  increases, the radial, hoop, shear and axial thermal 

stresses are increased. This figure is the plot of stresses versus   at 1.1r r  .where
 
r is average 

inner radius “a” and outer radius “b”. Figure (10) show the shear thermo-electro-mechanical 

stresses in the cross section of the cylinder. where the pore compressibility coefficient  ( B ) is 

changed the other parameters are fixed. Figure (11) show the radial displacement in the cross 

section of the cylinder, where the based on the pore volume fraction ( ) changing. Figure (12) 

show the circumferential displacements in the cross section of cylinder, where the based on the 

versus electric potential coefficient ( 0 ) is changing. 
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                  Fig .(7) Temperature distribution of radial at 3         Fig .(8) Temperature distribution of circumferential at r r  

                 
 Fig .(9) Circumferential distribution of  radial thermo-electro-     Fig .(10) Radial distribution of  shear thermo-electro-   

             mechanical stresses
rr at r r                                                    mechanical stresses r at 3                    

                   
                     Fig .(11) Radial distribution of  u  with                                   Fig .(12) Circumferential distribution of  v  with 

                                 Different porosity coefficient at 3                                      electric potential coefficient at r r                     

                                                    

  

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
0

5

10

15

20

25

30

35

40

45

50

r/a 

T
( 

 C
)

 

 

m=1

m=0

m=-1

-4 -3 -2 -1 0 1 2 3 4
-25

-20

-15

-10

-5

0

5

10

15

20

25

(rad) 

T
( 

 C
)

 

 

n=0.1

n=0

n=-0.1



10 

 

101 Journal of Mechanical Research and Application (JMRA), Vol. 15 No.1, 1404(2025),92-101 

 

7. Conclusion and Future Directions 

The reviewed works highlight an attempt is made to study the problem of analytical solution for 

the 2D-FGPPM and 2D-PPMs hollow cylinder where the two-dimensional Asymmetric steady-

state loads are implied. The analytical solutions provide deep insights into the coupled thermo-

electro-mechanical behavior of hollow cylinders, serving as fundamental references for further 

research.[1,2] 

8. Future Research Directions: 

- Extension to 3D geometries (spherical and conical shells). 

- Dynamic and transient thermal-electrical analyses. 

- Integration with numerical simulations (FEM, COMSOL) for complex boundary conditions. 

- Experimental validation of theoretical models. 

- Exploration of FGPPMs in multifunctional sensor and actuator design. 
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