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 Traditional fuzzy clustering algorithms are considered powerful tools for 
image segmentation. However, these algorithms face two main challenges. 
First, they are sensitive to outliers. The fuzzy memberships in these 
algorithms are non-dispersive, meaning they are heavily influenced by 
outliers, largely due to the use of squared error in their objective function. 
This flaw can lead to incorrect and unreliable clustering results, reducing 
robustness. Second, they tend to produce an excessive number of clusters. 
Traditional fuzzy clustering algorithms often create too many clusters, many 
of which are unnecessary and redundant. This phenomenon, known as over-
segmentation in fuzzy clustering, occurs due to the image's loss of local 
spatial information. To address these challenges, this study presents a 
solution that enhances the robustness of the fuzzy clustering algorithm. The 
proposed algorithm includes two main components: the first involves adding 
a Gaussian-based regularizer to the objective function, which incorporates a 
Gaussian sub-criterion to calculate the distance between data points and 
cluster centres. By adding this criterion, the proposed method increases the 
dispersion of fuzzy membership functions, thereby reducing the impact of 
outliers and improving clustering accuracy. The second component involves 
using a filter to resolve the problem of excessive clustering. The proposed 
algorithm was compared with traditional fuzzy clustering methods and 
spatial information-based methods to validate its performance, yielding 
superior results. The algorithm achieves higher accuracy and cohesion in 
image segmentation while being more robust to outliers and noise. 
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Introduction 

Numerous models have been proposed for computer 

vision applications, including biometric identification, 

medical imaging, 3D object recognition, autonomous 

driving, and many more, as a result of developments in 

vision technologies [1]. Image segmentation is recognized 

as one of the essential tasks in different computer vision 

applications. Choosing an appropriate segmentation 

approach can significantly improve the accuracy of these 

applications. Image segmentation is the process in which 

similar pixels are separated based on features such as 

colour, texture, brightness, and other attributes. In other 

words, image segmentation is a vital technology in image 

processing that is a key step from processing to image 

analysis [2]. 

Image segmentation can be considered a foundation for 

a deeper understanding of image content. On the other 

hand, image segmentation can transform the original 

image into a more abstract and compact form, allowing 

for higher-level segmentation and understanding of the 

image [3]. Image segmentation is a critical component of 

image processing, primarily focused on dividing an image 

into multiple segments based on features such as texture, 

colour, brightness, or contrast according to a predefined 

criterion known as the objective.  

Image segmentation serves as the foundation for 

advanced analysis, detection, tracking, image 

understanding, and compression encoding. Accurately 
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and efficiently isolating the target image from a complex 

background is essential, as segmentation precision 

directly influences the effectiveness of subsequent tasks. 

Image segmentation is utilized to separate the 

foreground from the background, given that this 

separation at an early stage is crucial for image 

recognition and comprehension. Major applications 

where image segmentation plays an essential role include 

medical image segmentation, satellite image 

segmentation, infrared image segmentation, and more 

[4], [5]. 

While suitable segmentation of background and 

foreground objects can help separate them, this task is 

complex—and sometimes even impossible—due to 

challenges such as noise, distortion, and low contrast. 

Recent research has shown that various segmentation 

methods are widely used [5], [6], [7]. These methods 

include thresholding, edge-based segmentation, region-

based segmentation, clustering, neural network-based 

methods (ANN), and hybrid techniques [8], [9]. Among 

these, clustering-based methods are recognized as 

effective and popular for image segmentation [10]. 

Clustering involves organizing a dataset into groups with 

high intra-cluster similarity and low inter-cluster 

similarity, aiming to maximize similarity within groups 

while minimizing it between groups [11]. In contrast, 

image segmentation represents a complex, low-level 

clustering challenge where performance must adjust to 

variations in image quality influenced by factors like 

different imaging devices, environmental conditions, and 

more [12]. 

However, image segmentation is challenging, especially 

for images with noise, low contrast, etc. In image 

segmentation algorithms, noise refers to unwanted data 

introduced into the primary dataset, which can 

significantly impact the final output depending on the 

features and clustering algorithm. Noise can affect 

various aspects, such as reducing accuracy, altering 

cluster shape and location, and changing cluster sizes. 

Consequently, noise reduction in image clustering 

algorithms is a critical challenge. 

One approach used for image segmentation is fuzzy 

clustering [13]. Clustering generally distinguishes objects 

or patterns based on similarity criteria, such as Euclidean 

distance. Similar objects are typically assigned to a single 

cluster in the clustering process. Clustering is an 

important tool in pattern recognition and image analysis. 

Among the different clustering methods, the Fuzzy C-

Means (FCM) clustering algorithm is a well-known and 

popular technique due to its simplicity [14]. The 

traditional FCM algorithm is a computational method 

widely used in data clustering analysis. In its standard 

form, it performs efficiently and effectively for noise-free 

data. However, data are often subject to transformations 

and distortions during collection and transmission, which 

may introduce noise or outliers. These alterations and 

artifacts challenge the FCM algorithm, potentially 

reducing its performance. Moreover, the FCM objective 

function is based on a squared error measure that is 

unsuitable for non-spherical data distributions. As a 

result, several modified versions of the FCM algorithm 

have been developed to enhance robustness against such 

artifacts. 

In this study, we enhance image segmentation by 

leveraging underutilized image features and advancing 

fuzzy clustering algorithms. This research introduces 

significant innovations to fuzzy clustering algorithms, 

addressing two primary limitations of traditional methods 

in image segmentation: sensitivity to outliers and over-

segmentation. 

The first innovation involves incorporating a Gaussian-

based regularizer into the objective function of fuzzy 

clustering algorithms. This integration disperses fuzzy 

memberships, improving clustering outcomes by 

reducing the influence of noisy features. As a result, the 

method effectively mitigates sensitivity to outliers and 

handles non-spherical data, which has been a 

fundamental challenge in traditional FCM algorithms. 

The second innovation employs a connected component 

filter based on regional density balance to alleviate over-

segmentation. Unlike complex, time-intensive methods 

that embed local spatial information into objective 

functions, this approach is more efficient and rapidly 

removes small, irrelevant regions. Together, these two 

advancements significantly improve image segmentation 

results and enhance the accuracy and efficiency of fuzzy 

clustering algorithms. 

In the following sections of this paper, we provide a 

comprehensive structure for understanding our 

approach. Section 2 reviews related work and discusses 

previous research in the field. Section 3 presents our 

proposed algorithm in detail. Section 4 focuses on the 

experimental results and analysis. Finally, Section 5 offers 
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conclusions and recommendations for future research 

directions. 

Related Works 

Fuzzy clustering is a method in which each data point can 

belong to multiple clusters simultaneously. In traditional 

clustering methods, each data point is assigned 

exclusively to a specific cluster, with its membership to 

other clusters being zero. However, in fuzzy clustering, 

each data point is assigned a membership degree to each 

cluster, with values ranging between zero and one. Fuzzy 

clustering has various applications, including data 

classification, image segmentation, pattern recognition, 

and natural language processing. Fuzzy clustering 

demonstrates optimal performance in image 

segmentation due to its fundamental characteristics [15]. 

This method offers high flexibility in modelling data, 

allowing image points to simultaneously belong to 

multiple clusters, which is particularly effective in 

addressing the complexities inherent in diverse images. 

Among clustering methods, the FCM algorithm is one of 

the most popular clustering techniques used in image 

segmentation. FCM is an unsupervised classification 

algorithm designed to partition data into distinct subsets 

based on their features[16].  

Although FCM represents a significant improvement 

over earlier clustering algorithms, it still encounters 

challenges such as suboptimal clustering of images 

affected by noise, outliers, and other artifacts. The most 

substantial issue is that the segmentation results 

produced by FCM heavily rely on the choice of cluster 

centres, the number of selected clusters, and the distance 

metric employed. Consequently, several enhancements 

have been proposed to address these limitations[17]. 

Building on this work, the researchers in [18] proposed a 

Non-Pure Dense Fuzzy C-Means (DSFCM) that employs a 

constraint-based denoiser to reduce BCFCM's deficiencies 

significantly. While DSFCM can provide accurate 

clustering centres, it is sensitive to denoising parameters, 

resulting in low robustness. Inspired by the sequential 

network presented in[19]، the researchers in  [20] further 

explored correlation-based regression and proposed the 

Membership Correlation Dense Regression (MalFCM) for 

fuzzy clustering. MalFCM yields better classification 

results compared to DSFCM; however, due to the use of 

the Alternating Direction Method of Multipliers (ADMM) 

[21] for optimizing the correlation matrix, it requires high 

computational complexity. Nonetheless, both DSFCM and 

MalFCM depend on the condition that the sum of 

membership values for each pixel equals 1. To mitigate 

this constraint, the researchers in [14] introduced a 

Possible Fuzzy C-Means (PFCM) that combines the 

concepts of memberships and their possibilities, 

integrating FCM and Possibilistic C-Means with a softer 

constraint on memberships. Although PFCM [22] can 

extract richer informational descriptions from the data, it 

exhibits poor robustness against non-spherical 

distributed data. To address this issue, the researchers in 

[23] proposed a similarity measurement-based method. A 

Membership Scale FCM (MSFCM) based on the triangle 

inequality was described by Zhou et al. [24]. MSFCM 

successfully improves the model's rate of convergence 

while maintaining the data's clustering accuracy. The 

authors of [25] proposed a Fast and Robust FCM (FRFCM) 

based on morphological reconstruction and membership 

filtering. FRFCM achieves good classification results for 

various types of grayscale images and has a short 

execution time. 

The choice of the fuzzification exponent plays a crucial 

role in determining the performance of Fuzzy C-Means 

(FCM) algorithms for image segmentation tasks. Although 

it is often set to a fixed value of 2, this parameter can 

significantly impact clustering results. The sensitivity to 

the fuzzification exponent necessitates the development 

of algorithms that can dynamically adjust its value or 

mitigate its influence on the segmentation outcome. 

Further advancements in FCM algorithms have been 

achieved by integrating relative entropy and kernel 

distance into the objective function. These modifications 

aim to enhance the algorithms' adaptability to various 

image characteristics and segmentation challenges. 

However, a persistent concern regarding entropy-

based FCM algorithms is their potential for misclassifying 

outliers due to the lack of consideration for membership 

density. Xenaki et al. [26] addressed this issue by 

introducing density criteria in the objective function, 

demonstrating that density can effectively counteract the 

effects of closely situated clusters and reduce 

misclassification. Chen et al. [27] further validated the 

benefits of density by confirming its capability to prevent 

performance degradation in clustering algorithms. 

 

Proposed Method 

In this study, we introduce modifications to the traditional 

FCM algorithm in a two-stage process designed to 

overcome its inherent limitations. Initially, the algorithm 

incorporates Gaussian-based regularization methods to 

function as a sparse fuzzy clustering technique, which is 
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effective for obtaining sparse fuzzy memberships. The 

updated algorithm, leveraging regularization methods, 

successfully produces the dispersed fuzzy memberships 

required for precise clustering. 

Following this, we apply a density-balancing strategy to 

merge small, insignificant regions. This implementation 

allows the proposed algorithm to effectively mitigate 

sensitivity to outliers and reduce over-segmentation, 

thereby enhancing the segmentation results. 

Error! Reference source not found. further illustrates 

the differences and similarities between the improved 

and traditional FCM algorithms. As illustrated in Figure 3, 

the base algorithm undergoes modifications in two 

stages. These two stages, called FCM optimization based 

on regularization for sparse clustering and reduction of 

over-segmentation through applying a filter, are detailed 

in the following sections. 

 

Fig. 1. Steps of the Proposed Method 

Based on the analysis presented in the previous chapter, 

the DSFCM [18],  MalFCM [20], and MEFCM [28] 

algorithms are unable to achieve sparse fuzzy 

membership functions. A squared error function in these 

algorithms’ objective functions makes them sensitive to 

outliers and non-spherical data. To address this, the 

proposed algorithm integrates a Gaussian-based 

regularizer into the objective function of fuzzy clustering 

algorithms, enabling it to achieve sparse clustering. This 

integration ensures the dispersion of fuzzy memberships, 

effectively reducing the impact of noisy features and 

enhancing clustering results. Therefore, we introduce a 

novel regularization approach that incorporates 𝑢𝑖𝑗  as a 

cost term. Consequently, the objective function is defined 

as follows: 

𝐽 = ∑ ∑ 𝑢𝑖𝑗Φ(𝑥𝑖|𝑣𝑗 , ∑𝑗  ) +

𝑐

𝑗=1

𝑛

𝑖=1

𝛼 ∑ ∑ 𝑢𝑖𝑗
2

𝑐

𝑗=1

𝑛

𝑖=1

 

  

In this expression, Φ(𝑥𝑖|𝑣𝑗 , ∑𝑗  )denotes the distance 

function between 𝑥𝑖  and 𝑣𝑗, with 𝛼 acting as a balancing 

factor to regulate the sparsity of membership functions. 

Adjusting 𝛼, allows the objective function to exhibit 

varying levels of robustness against outliers or noisy data.  

When the fuzzy membership is sparse in this equation, 

the first term 𝐽 will be relatively small, while the second 

term will be larger. The proposed algorithm typically 

requires more iterations than k-means to reach optimal 

calculations but fewer iterations compared to FCM.  

Clearly, the new objective function 𝐽 achieves a 

balance between k-means and FCM. The resulting fuzzy 

memberships are sparser than those produced by FCM. 

Unlike k-means, some fuzzy membership values are not 

exactly 0 or 1. The distance function Φ(𝑥𝑖|𝑣𝑗 , ∑𝑗 ) is 

defined as follows: 

 

1 
 

Φ(𝑥𝑖|𝑣𝑗 , ∑𝑗  ) = ln(−𝜌(𝑥𝑖|𝑣𝑗 , ∑𝑗  )) 

To achieve image segmentation, pixel classification is 

employed, where each pixel in the image is treated as an 

independent sample. Consequently, FCM often results in 

over-segmentation, producing many small, disjointed 

regions in the segmentation output. Due to inappropriate 

scatter deviation, DSFCM[18] misclassifies pixels more 

frequently than FCM and MEFCM[28]. Although our 

proposed algorithm partially reduces the interference of 

non-uniform pixels and achieves improved visual quality, 

it does not fully prevent the over-segmentation issue. 

Conversely, enhanced FCM algorithms incorporating local 

spatial information can alleviate over-segmentation by 

removing small regions, yet this approach alone remains 

insufficient. 

As we know, the mean-shift method can effectively 

reduce over-segmentation by eliminating small regions 

with fewer than 𝑀 pixels, though the value of 𝑀 is often 

manually adjusted for different images. In the current 

paper, we apply a connected component filter algorithm 

based on a true density-balancing strategy to enhance the 

proposed algorithm’s performance in mitigating over-

segmentation. The initial results show numerous small, 

redundant regions that reduce final segmentation 

accuracy. 

With the proposed filter, we first calculate the area of 

all connected components and then sort these 

components in descending order. Since determining an 

appropriate threshold value 𝑀merging regions based on 

this ordering is challenging, so we employ a density-

balancing strategy to improve the sorting outcome. This 
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enhancement allows for easy identification of the 

maximum interval corresponding to a region whose area 

is considered as the 𝑀 threshold. Regions with areas 

above this density-balancing threshold are identified for 

elimination. After establishing an optimal threshold 𝑀, 

connected components smaller than the obtained 𝑀 can 

be removed. We effectively locate the cut-off region 

through this process using the density-balancing strategy. 

 

Results 

This section will describe the evaluation metrics and the 

dataset used and then examine the results. 

The Berkeley Segmentation Dataset (BSDS500) [29] is 
widely utilized in computer vision, designed for edge 
detection and image segmentation tasks. It contains 500 
carefully labelled images of various sizes collected from 
diverse sources like movies, digital media, and medical 
imaging. Divided into training and testing sets, BSDS500 
provides a reliable standard for evaluating segmentation 
algorithms and has become a popular open-source tool 
for computer vision research. Each image includes 
multiple human-annotated ground truth segmentations, 
offering precise pixel-level labels essential for developing 
and benchmarking segmentation methods. Fig. 2 shows 
some examples of images from this dataset. 

  

Fig. 2. Examples of images in BSDS500 
 

The Microsoft Research Cambridge Dataset (MSRC) 
consists of 591 images, each in vertical or horizontal 
orientation, and supports 23 object classes, enhancing 
diversity for object detection tasks. A notable feature of 
this dataset is its use of two-colour spaces: images are 
originally in RGB format, while test images are converted 
to CIELAB, a colour space designed to align with human 
colour perception. This conversion aids object detection 
algorithms in distinguishing objects based on perceptually 
accurate colours, improving detection precision. 

The evaluation metrics introduced to assess the accuracy 

of the proposed algorithm are as follows: 

Probabilistic Rand Index (PRI) The Probabilistic Rand Index 
(PRI) is an evaluation metric used in image segmentation 
to measure the degree of agreement between an 
algorithm’s segmentation output and the ground truth. 
PRI considers the number of pairs that are consistently 

classified in both segmentations. It has two main 
components: True Positives (TP), which is the count of 
pairs that belong to the same category in both the 
algorithm's segmentation and the ground truth. Mixed 
Pairs (False Positives + False Negatives, FP + FN): The 
count of pairs that are categorized differently in the 
algorithm's result and the ground truth. The PRI is 
calculated as: 

2 
𝑃𝑅𝐼 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

Its value ranges from 0 to 1, where 1 indicates complete 

agreement, and 0 indicates no agreement. 

The Coverage Index (CV) is another evaluation metric in 

image segmentation, which calculates the ratio of pixels 

that belong to the same category in both the algorithm's 

segmentation and the ground truth. It is computed as: 

3 
𝐶𝑉 =

2|𝑆𝐴 ∩ 𝑆𝐵|

|𝑆𝐴| + |𝑆𝐵|
 

where 𝑆𝐴 is the initial segmentation and 𝑆𝐵 is often the 

ground truth. Higher CV values, between 0 and 1, indicate 

greater agreement. 

Variation of Information (VI) is another metric for 

evaluating image segmentation. It measures the amount 

of information one segmentation provides to describe 

another and vice versa. First, a joint information matrix 

between the two segmentations is calculated, followed 

by co-occurrence values across categories. VI is then 

calculated as: 

4 𝑉𝐼 = 𝐻(𝐴) + 𝐻(𝐵) − 2𝐼(𝐴, 𝐵) 

where 𝐻 is entropy and 𝐼 represents mutual information. 

VI values range from 0 to log 𝑁 with lower values 

indicating higher agreement between segmentations. 

Our experiments utilize three performance metrics to 

assess segmentation accuracy across different 

algorithms: Probabilistic Rand Index (PRI), Coverage (CV), 

and Variation of Information (VI). Higher PRI and CV 

values, along with a lower VI value, indicate segmentation 

results that closely align with the ground truth. For our 

tests, the number of clusters per image in the BSDS500 

dataset ranges from 2 to 6, while for images in the MSRC 

dataset, it ranges from 2 to 4. 

We select the set of parameters corresponding to the 

highest PRI value as the final performance criteria for 

each image. Fig. 3 and Fig. 4 display the average PRI, CV, 
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and VI values across all images in the BSDS500 or MSRC 

datasets. A comparison of values in Fig. 3 and Fig. 4 shows 

that PFCM yields lower performance metrics, as it is 

sensitive to parameter settings. The proposed algorithm 

provides the best PRI, CV, and VI values. Analysis of Fig. 3 

and Fig. 4 demonstrates that the proposed algorithm 

delivers high-quality segmentation on various reference 

images, underscoring its efficiency and stability. 

It achieves the highest PRI value of 0.78, indicating 

superior accuracy compared to the other algorithms. 

Additionally, the VI value for our proposed algorithm is 

2.12, the lowest among all algorithms, indicating less 

information variation and lower cluster dispersion. 

Furthermore, this algorithm has a CV value of 0.52, the 

highest among all algorithms, indicating higher reliability 

of its clustering. 

Based on the results in Fig. 3, our proposed algorithm 

performs best on the BSDS500 dataset, achieving top 

results across all three evaluation metrics (PRI, VI, and 

CV). The high PRI value reflects greater accuracy, the low 

VI value indicates less information dispersion, and the 

high CV value suggests more reliable clustering. This 

combination of attributes implies that our proposed 

algorithm is more accurate and maintains the cluster 

structure optimally. 

The performance differences among the algorithms in 

this table are evident. For example, the PFCM algorithm 

[22] has a lower PRI (0.72) and a higher VI (2.97) than our 

proposed algorithm, indicating lower accuracy and 

greater information dispersion. Although the FRFCM [25] 

algorithms achieve higher PRI values than other 

algorithms, they still do not perform as well as our 

proposed algorithm. Differences in VI and CV values 

among the algorithms further highlight variations in the 

clustering approach and cluster reliability. 

These results hold significant implications for our 

research. The superior performance of our proposed 

algorithm demonstrates its potential to enhance data 

analysis and clustering that is substantially relevant to our 

study. With its high accuracy and low information 

dispersion, this algorithm enables us to obtain more 

reliable outcomes from data analysis. This, in turn, can 

lead to improved research quality and increased accuracy 

of the results. 

 

Fig. 3. Comparison of Algorithm Performance on the 
BSDS500 Dataset 

According to Fig. 4, the proposed algorithm demonstrates 

the best performance among the algorithms evaluated. 

This algorithm achieves a PRI value of 0.75, the lowest VI 

value of 1.51, and the highest CV value of 0.64, 

outperforming other algorithms in terms of accuracy, 

lower information variation, and clustering reliability. 

Due to its higher PRI and CV values and lower VI, this 

algorithm indicates greater accuracy, less variable 

information, and more reliable clustering. In other words, 

the proposed algorithm has effectively clustered the data 

with higher precision, and the resulting clusters are more 

reliable with minimal information variance. 

Performance differences across the various algorithms 

are clearly visible in the metrics presented. The PFCM, 

and KWFLICM[17], with PRI values of 0.67 and 0.69 and a 

CV value of 0.55, exhibit similar performance. In contrast, 

the FRFCM algorithm displays different performance 

characteristics with a CV of 0.58. The MSFCM algorithms 

also show similar performance in terms of PRI, VI, and CV 

values. 

These findings are particularly meaningful for the 

research. The strong performance of the proposed 

algorithm suggests it can perform data clustering with 

high accuracy and reliability while introducing minimal 

information variation. This capability is crucial when 

analyzing complex, large datasets. 

The differences in algorithm performance across various 

metrics (PRI, VI, CV) are notable. For instance, PRI values 

range from 0.67 to 0.75, VI values from 1.51 to 1.93, and 
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CV values from 0.54 to 0.64. Such variations reflect 

differences in accuracy, information variation, and 

clustering reliability among the algorithms. If these 

differences are statistically significant, one can conclude 

that the proposed algorithm performs significantly better 

than the others. 

Clustering with each algorithm can produce different data 

structures. For instance, algorithms with higher CV values 

may create more reliable clusters. The algorithms have 

performed appropriately if these structures align with the 

defined clustering objectives. Each algorithm may reveal 

new insights into the data that are highly useful for data 

analysis. 

Overall, algorithms that provide more interpretable and 

meaningful clustering can greatly benefit research. These 

algorithms can facilitate better data analysis and lead to 

improved outcomes. 

 

Fig. 4. Comparison of Algorithm Performance on the MSRC 

Dataset 

Conclusion 

This study introduces a self-optimizing fuzzy clustering 

algorithm for image segmentation, addressing two 

primary challenges in current fuzzy clustering methods. 

The algorithm incorporates a regularization term to 

balance cluster scatter and fuzziness, achieving self-

regularization, and includes a filtering technique for 

effective merging of small regions, enhancing 

segmentation results. Experimental evaluations on 

synthetic and comparative images demonstrate the 

algorithm’s superior performance over existing methods, 

with improved segmentation quality and performance 

metrics. Parameter analysis reveals that clustering 

effectiveness is maintained when the regularization 

parameter is below 0.5. 

Future research directions include exploring additional 

algorithm parameters, new filters for merging regions, 

diverse applications in fields like medical and satellite 

imaging, and the impact of noise on performance. 

Evaluating the algorithm on real-world data and 

comparing it with advanced algorithms could further 

refine its accuracy, stability, and adaptability in practical 

scenarios. 
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