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In this paper, the problem of multiple watchman routes in Minbar
polygons is studied, where every point in the given polygon must be
visible from at least one point on some watchmen's route. The
problem of multiple watchman routes is NP-hard even in simple
polygons. However, some limited types of polygon have been shown
to have polynomial-time solutions. We propose an algorithm based on
the dynamic programming approach that requires O(n) space and
consumes O(n - logn) time for min-max criterion, where nis the
number of polygon vertices. We assume that the starting points of
watchmen do not dominate each other.

1. Introduction

The Watchman Route Problem (WRP) is an
intriguing variant of the well-known Art Gallery
Problem (AGP). The AGP, introduced by Victor
Klee in 1973 during a conversation with Vasek
Chvatal, to determine the minimum number of
stationary guards required to cover all points in a
polygonal gallery [1]. In contrast, the WRP
focuses on a connected polygonal domain P, and
aims to identify the shortest path that a mobile
guard, called the "watchman," must follow to
observe every point in P. When the starting point
of the watchman is known, the problem is
classified as a fixed or anchored watchman route
[2]. On the other hand, if the starting point is
unspecified, it is referred to as a float watchman
route [2-4].

The WRP has common similarities with problems
such as touring polygons [4], traveling salesman
[5], safari and zoo-keeper [2]. The WRP has many
practical applications, including security and
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monitoring, efficient simulation, and optimization
of time and energy [6]. The k-watchman route
problem involves finding a group of k closed
routes that cover the entire area while minimizing
the length of the routes. There are two commonly
used measures for minimizing the length: the min-
max measure which aims to minimize the length
of the longest route and the min-sum measure
which minimizes the cumulative length of all
routes [3].

This paper is organized as follows. In Section 2,
we provide the necessary preliminaries and
discuss related works. Section 3 delves into the
problem of the single watchman route. In Section
4, we introduce our algorithm for multiple
watchman routes aimed at optimizing the min-
max criterion. Finally, we present our conclusions
and outline future works in Section 5.
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2. Preliminaries and related works

A simple polygon, P, having n vertices, is a
closed, simply-connected region whose boundary
is a union of n (straight) line segments (edges),
whose endpoints are the vertices of P [7]. A
rectilinear polygon is a polygon whose edges are
either horizontal or vertical. Let a and b be two
points inside polygon P. Point b is visible from or
is guarded by point a if the line segment [a, b]
lies entirely inside P [8]. A staircase polygon
also defined in [9] and shown in Figure 1, is a
rectilinear polygon consisting of two vertical
edges at the left and right and is bounded above
and below by two staircase like connected to
vertical edges.

i
L~

Figure 1: A staircase polygon

A Minbar polygon, illustrated in Figure 2, is
classified as a staircase polygon [9]. It is
composed of three distinct parts: a long horizontal
line segment known as the horizontal base, a long
vertical line segment referred to as the vertical
wall, and a chain formed by alternating horizontal
and vertical line segments. Notably, this chain is
monotone with respect to both the x-axis and the
y-axis. Assuming the vertical wall is connected to
the right vertex of the horizontal base, the bottom-
right corner of the polygon is defined as the
origin. The vertices are numbered in a clockwise
sequence, beginning at the origin, as illustrated in
Figure 3 with the origin assigned an index of zero.
A vertex v of the polygon P is called reflex if the
internal angle at v exceeds 180° ; otherwise, it is
designated as convex. We denote the vertex of P
with index cas P. .

A polygon is called star-shaped if there exists a
set of points from which all points of the polygon
are visible. This set of points is known as the
kernel, as shown in Figure 3 (highlighted in gray).
When the edges of the kernel are extended, the
polygon is divided into four sub-polygons: a
rectangle located above the kernel, denoted as U;
a rectangle to the left of the kernel, denoted as L;
a Minbar sub-polygon situated in the upper-left
corner of the kernel, denoted as M; and the kernel
itself, denoted as K.
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Any Minbar polygon is star-shaped. Taking into
account a Minbar polygon with n > 4 vertices
and k > 1 watchmen positioned inside it, the
starting point for each watchman is specified
(refer to Figure 2). Each watchman follows a
route within the polygon and ultimately returns to
its starting point, ensuring that every point of the
polygon is visible from at least one of these
routes. We define a corner as a convex vertex in P
whose index is even. Let C represent the set of
corner indices in , which can be expressed as C =
{0,2,...,n — 2} . For any point , we denote the x-
coordinate by x(p) and the y -coordinate by y(p)

22 23

20 2

18 19 s
16 17

Figure 2: A Minbar polygon with 24 vertices and 3
watchmen starting points s4, S,, s3, each vertex takes an
index in the clockwise order, and ¢ = 6, ¢; = 14,¢c3 =

20, €7 ={8,10,12},C; = {16,18}, C; = {22} and Z, =
{6,8,10,12}, Z, = {14,16,18}, Z; = {20,22} and the
route of each watchman under min-max criterion.

Let s; denote the starting point of watchman , and
we will also use s; interchangeably to refer to the
watchman itself. The set of all corner points on
the chain that can be seen from watchman i at the
specific starting point s; is denoted as (i) . It is
assumed that for any two starting points s; and s;
(where 1< i,j < k ), the conditions x(s;) <
x(s;) and y(s;) < y(sj) hold, and that vp(i) N
vp(j) = @, where k represents the number of
watchmen. A point a is said to dominate point b if
x(b) < x(a) and (b) = y(a) . When point a
dominates point , the condition dom(a,b) is
satisfied. For simplification, this paper assumes
that the starting points of the watchmen do not
dominate each other. Additionally, we use h(c)
and v(c) to refer to the horizontal and vertical line
segments that pass through the corner P, and are
contained within the polygon P.

The WRP in polygons with holes has been proven
to be NP-hard [10,11]. Similarly, the multiple
WREP is also NP-hard even in simple polygons [3].
However, some limited types of polygon have
been shown to have polynomial-time solutions
[6,10,12-15].

Nilsson and Wood considered the multiple WRP
in spiral polygons with the min-sum criterion, and
provided a 6(n?)-time algorithm based on
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dynamic programming for this problem [13].
Nilsson and Packer exhibited a polynomial-time
7.1416 approximation algorithm for computing
the min-max two-watchman route in simple
polygons [3]. Nilsson and Schuierer gave an
0(n?logn)-time algorithm to compute the min-
max optimum set of m watchmen in a histogram
polygon in the float version of problem [16]. In
[6], Packer presented heuristics to compute
multiple watchman routes in polygons possibly
with holes.

Bagheri et~al. [17] investigated the multiple WRP
in staircase polygons and proposed an O(n?-
min{m,n})-time algorithm under the min-sum
criterion, where m and n are the number of
watchmen and vertices, respectively. In [18], the
authors proposed a 0(n? - k? - logn)-time greedy
algorithm for the fixed multiple watchman routes
problem in Minbar polygons under min-max
criterion. In this study, a faster algorithm based on
the dynamic programming method is proposed,
which can find the optimal solution in min-max
criteria.

The use of a Minbar polygon simplifies the
geometry to highlight the main challenge:
optimizing multiple watchman routes under non-
domination constraints. This strategic choice
emphasizes  algorithmic ~ complexity  over
geometric intricacy, laying a clear foundation for
tackling more complex shapes later.

Recent works in semi-supervised generative
modeling for medical imaging focus on
identifying critical regions under uncertainty
[19,20]. These challenges align with geometric
coverage problems like watchman routes,
suggesting that visibility-based path planning may
offer transferable strategies for improving sample
selection and structural consistency in imbalanced
or partially observed domains.

3. Single fixed watchman route

First, we present an algorithm to address the
single fixed watchman route problem. The value &
defined by Equation (3.1) formulates this problem
specifically within a Minbar polygon. The
watchman is required to go to the nearest point of
the kernel from its starting point and then return
back.

For the single fixed watchman route, we need the
watchman starting point s; along with the indices
of the first and last corners on the chain of the
given Minbar polygon (or sub-polygon), denoted
by ¢ and ¢’ , respectively. The horizontal and
vertical cuts within P that need to be covered by
watchman i are represented by h(c) and (¢') . We
formulate this problem as (i,c,c’) , which

32

calculates the length of the minimum route for
watchman i to effectively guard the polygon. For
simplicity, we compute half of the minimum
length route, as illustrated in Equation (3.1) and
shown in Figure 3.

§@i,c,c) = |[si,qi]| ,where q;
( Si» S € K

_ (x(si)!y(Pc)),Si eEvU
_< (x(B),y(s))si € L
\(x(P.), y(P), s; € M

(3.1)

There are four possible cases to consider: Case 1:
If the watchman is located within the kernel,
denoted as sub-polygon K , the watchman does
not need to move. Case 2: If the watchman is
located above the kernel, indicated as a sub-
polygon U , the watchman should move vertically
down to reach the kernel. Case 3: If the watchman
is positioned to the left of the kernel, represented
as sub-polygon L , the watchman should move
horizontally right towards the kernel. Case 4: If
the watchman is located in the upper-left corner of
the kernel, denoted as sub-polygon M , the
watchman should move diagonally to access the
kernel. Refer to Figure 3, where the guards
st,s?,s?,and s correspond to cases 1, 2, 3, and
4, respectively.

Figure 3: Single fixed watchman route. The two essential
cuts of a the Minbar polygon are shown with dashed lines
and the gray area shows the kernel of the Minbar
polygon, ¢ = 2 and ¢’ = 12 and four possible locations of
s; marked as s}, s2, s3 and s¥. Routes of each s; is shown
by dotted lines.

4. The proposed Algorithm

In this section, an efficient algorithm based on the
dynamic programming method is presented to
solve the fixed multiple watchman routes problem
in Minbar polygons. The algorithm finds the
optimal solution for min-max criterion.

For a watchman i, ¢; is the maximum index of a
corner on the chain that s; can see (see Equation
41), and Vi,j,1<1i,j< k,i# j, we have,
ci # ¢ (seeFigure 2).
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¢; = maxcec {c | dom(s;, Fc)} (4.1)
For each watchman i there are a number of
corners, say c, where x(s;) < x(P.) < x(Si31)
and P, is not visible from s; and s;, 1. We call this
set of corners C; (see Equation (4.2) and we
define Z; in Equation (4.3) as the union of {c; }
and C;, and we have Vi,j1<i,j< k,i#
j, Zi N Z] = Q.

¢ ={ceClx(s) < x(P)
< x(si;1) & = dom(s;, P.)

& ~dom(s;11, P}, 1<i<k (4.2)
7. = {ciIuCr, ifi<k 4.3
i_{{n—Z}, ifi=k

Lemma 4.1: The number of elements in union of
Z; for all watchmen, is less than n (i.e:
|V, Zi| < n).
Proof: The proof follows directly from the fact
that for all i,j, where 1 <i,j <k and i # j, the
sets Z; and Z; are disjoint, i.e., Z; N Z; = Q.

[ |
Lemma 4.2: Let ¢ be a corner of Minbar polygon
P that is dominated by watchman s. If r is a route
of the watchman s’ (where s # s’) in an optimal
solution for min-max, then it does not intersect the
horizontal extension h(c) or the vertical extension
v(c).
Proof: If we assume that y(s") > y(P.) and the
line segment r intersects h(c), the only
explanation is that s’ is trying to see an unguarded
corner, like z, that lies below the corner c.
Therefore, watchman s cannot move while
watchman s is closer to h(z), because y(z) <
y(s) < y(s"). On the other hand, since we want
to minimize the maximum route length, we can
assign guarding of corner z to watchman s so that
watchman s’ does not need to intersect the
horizontal cut of ¢, and r will be shorten. Thus, r
cannot intersect h(c) and similarly v(c).

[ |
It implies from Lemma 4.2 that, in the optimal
solution for the min-max, an initially unguarded
corner should be guarded by the watchmen whose
starting points are immediately before or after it.

Lemma 4.3: If r is a route in the optimal solution
for min-max and |r| > 0, then the endpoint of r
lies on a horizontal or vertical cut of a corner that
was not visible initially by any watchman. By | r|,
we mean the length of .
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Proof: Assuming that x is the intersection point
of r with a horizontal (or vertical) cut of the
unguarded corner and q is the endpoint of r other
than x, no new corner can be guarded by any
point on line segment [x,p]. This means that r
can be shortened in such a way that x becomes its
endpoint, so r lies on a cut.

]
Lemma 4.4: If c is an initially unguarded corner
of P, then there is exactly one route (such as r) in
the optimal solution, which intersects or touches
either h(c) or v(c).
Proof: Firstly, in order to see or guard the corner
c, at least one of the cuts must be meet by a route.
Secondly, if we assume that one of the cuts
intersects or touches a route r; and the other cut
intersects or touches another route r;, then this is
not optimal, because we can shorten either ; or 1;,
so the lemma is proven.

]
As indicated in Equation (4.4), {(c") gives the
minimum longest watchman route in a Minbar
polygon. To solve the min-max problem, we split
the polygon into sub-polygons, where each sub-
polygon exactly contains one watchman. To do
this, we can exclude the last watchman from the
polygon by determining the left boundary of the
last sub-polygon that contains the last watchman,
where the last watchman guards that sub-polygon.

(e
§(1,2,¢"),

cesitn { max(3(c),8(, ¢ +2,¢M)},
ifc’ €Z;andi > 1

ifc' € Z;
(4.9)

If a polygon contains only one watchman, the
problem can be addressed as a single fixed
watchman route using Equation (3.1), as outlined
in the first part of Equation (4.4). If a polygon
contains more than one watchman, the last
watchman (let us call it watchman i) in a given
sub-polygon needs to be able to see corner ¢’ on
the right side and corner ¢ + 2 on the left side,
where ¢ belongs to Z;_; and is the right corner
visible to watchman i — 1 . To achieve this, we
must calculate {(c) for all ¢ in Z;_; recursively
(as indicated in the second part of Equation (4.4),
and then select the optimal value. The function &
calculates the single fixed watchman route in a
specified sub-polygon, as expressed in Equation
(3.1), Additionally, Z; can be determined through
a pre-processing step that runs in O(n) time, for
all watchmen.
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As illustrated in Figure 4, we have constructed
the flowchart corresponding to Equation (4.4).
Although Equation (4.4) is defined recursively,
the flowchart evaluates it through an iterative
procedure. Specifically, it computes {(c") for
all corners in Z;, for each watchman i,

proceeding sequentially up to the final
[ START
n,k,Z1 Zk

i1

:

A 4

¢’ « first element of Z;

watchman. We assume that the polygon
contains at least one watchman. At each
iteration, the computed value of {(c") is cached
to enable reuse in subsequent steps. Ultimately,
the value obtained for the last corner—corner
n — 2—represents the solution to the problem.

i<1+1

NO

= ®

YES

¢le'l < &(1,2,¢")

¢[e'] = min {max(C[cl,£(iyc +2,¢))}

NO

c' # last element of Z;

END

¢’ « next element of Z;

)

Figure 4 : Flowchart corresponding to Equation (4.4)

Theorem 4.5: The min-max recursion provided in
Equation (4.4), finds a solution for fixed multiple
watchman routes problem.

Proof: We call the recursion by {(n — 2) to find
the min-max solution. The value of ¢ is calculated
for all the corners in Z;i€[1,k]. Each
unguarded corner on the left side of s; will be
covered by s;, since corner number 2 must be
guarded by the watchman starting at s;. Each
unguarded corner on the right side of s, will be
covered by s, and each unguarded corners in
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Z;,i € [1,k — 1] will be covered by watchman i
or i + 1. Hence all the vertices on the chain are
guarded by some watchmen and the solution visits
the entire polygon.

[ ]
Theorem 4.6: The min-max recursion provided
in Equation (4.4), finds an optimal solution for the
min-max criterion.

Proof: We need an array { as the storage. The
value of ¢ is calculated for all the corners in
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Z;,i € [1,k]. So, the desired criterion value is
calculated in all the smaller Minbar sub-polygons
where for a corner ¢’ € Z;, v(c") is a vertical
essential cut of the sub-polygon. Thus, every
potential condition has been addressed. On the
other hand, in the second part of Equation (4.4),
the optimal value will be created on one of the
corners between the last two watchmen, and the
desired criterion is optimized here. So, the given
recursion finds the optimal solution.

[ |
Theorem 4.7: The min-max recursion provided
in Equation (4.4), finds the solution in 0(n?) time
and requires 0 (n) space.

Proof: According to Lemma 4.1, to store ¢
values, a memory of 0(n) space is enough. On
the other hand, ¢ function in Equation (3.1) has
0(1) complexity. The time complexity of the min
function in the second part of Equation (4.4) is
O(n). Therefore, the time complexity of the
whole recursion is 0(n?).

[ |

4.1. Improving the time-complexity

In this section, we improve the time-complexity of
the algorithm. To find the minimum point in the
second part of Equation (4.4), instead of using a
linear search method, we can use a binary search
method, which will improve the time complexity
of the algorithm.

Theorem 4.8: The max function in Equation
(4.4), can be divided into two parts, such that the
first part is decreasing and the second part is
increasing.

Proof: Considering Equation (4.4), the first input
of the max function is the value of {(c), that
changes in the interval between two last
watchmen (c € Z;_;). When ¢ increases, the
value of {(c) is either constant or increases. Also,
the second input is the value of the & function,
which calculates the route length of the last
watchman. It is strictly decreasing because the
distance between the horizontal cut (i.e. h(c + 2))
of the right sub-polygon that contains the last
watchman, and the starting point of the last
watchman is strictly decreasing.

At first, the max value may be selected from the
second input and then selected from the first
input. Therefore, as shown in Figure 5, at first the
value of the max function is strictly decreasing
and then it is increasing.
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Figure 5: The value of the max function in the second
part of Equation (4.4).

Theorem 4.8 shows that we can use a binary
search to find the minimum value, and improve
the time-complexity.

Theorem 4.8: The improved min-max algorithm,
computes the solution in O(nlogn) time and
requires O(n) space.

5. Conclusion and future works

In this paper, we studied the min-max multiple
fixed watchman route problem in Minbar
polygons, which is a specific case of staircase
polygons. The algorithms presented find the
optimal solution using a dynamic programming
approach. Our proposed algorithm has a time
complexity of O(n-logn) and requires O(n)
space, offering an improvement over the runtime
reported in [17,18]. Future research directions
include addressing this problem in the min-sum
scenario and exploring the possibility of
domination among watchmen. Additionally,
examining other types of polygons could provide
further insights into the problem.
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