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 In this paper, the problem of multiple watchman routes in Minbar 

polygons is studied, where every point in the given polygon must be 

visible from at least one point on some watchmen's route. The 

problem of multiple watchman routes is NP-hard even in simple 

polygons. However, some limited types of polygon have been shown 

to have polynomial-time solutions. We propose an algorithm based on 

the dynamic programming approach that requires O(n) space and 

consumes O(n ⋅ log n) time for min-max criterion, where n is the 

number of polygon vertices. We assume that the starting points of 

watchmen do not dominate each other. 
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1.  Introduction 

The Watchman Route Problem (WRP) is an 

intriguing variant of the well-known Art Gallery 

Problem (AGP). The AGP, introduced by Victor 

Klee in 1973 during a conversation with Vasek 

Chvátal, to determine the minimum number of 

stationary guards required to cover all points in a 

polygonal gallery [1]. In contrast, the WRP 

focuses on a connected polygonal domain 𝑃, and 

aims to identify the shortest path that a mobile 

guard, called the "watchman," must follow to 

observe every point in 𝑃. When the starting point 

of the watchman is known, the problem is 

classified as a fixed or anchored watchman route 

[2]. On the other hand, if the starting point is 

unspecified, it is referred to as a float watchman 

route [2-4]. 

The WRP has common similarities with problems 

such as touring polygons [4], traveling salesman 

[5], safari and zoo-keeper [2]. The WRP has many 

practical applications, including security and 

monitoring, efficient simulation, and optimization 

of time and energy [6]. The 𝑘-watchman route 

problem involves finding a group of 𝑘 closed 

routes that cover the entire area while minimizing 

the length of the routes. There are two commonly 

used measures for minimizing the length: the min-

max measure which aims to minimize the length 

of the longest route and the min-sum measure 

which minimizes the cumulative length of all 

routes [3]. 

This paper is organized as follows. In Section 2, 

we provide the necessary preliminaries and 

discuss related works. Section 3 delves into the 

problem of the single watchman route. In Section 

4, we introduce our algorithm for multiple 

watchman routes aimed at optimizing the min-

max criterion. Finally, we present our conclusions 

and outline future works in Section 5. 
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2. Preliminaries and related works 

A 𝑠𝑖𝑚𝑝𝑙𝑒 𝑝𝑜𝑙𝑦𝑔𝑜𝑛, 𝑃, having 𝑛 vertices, is a 

closed, simply-connected region whose boundary 

is a union of 𝑛 (straight) line segments (edges), 

whose endpoints are the vertices of 𝑃 [7]. A 

rectilinear polygon is a polygon whose edges are 

either horizontal or vertical. Let 𝑎 and 𝑏 be two 

points inside polygon 𝑃. Point 𝑏 is visible from or 

is guarded by point 𝑎 if the line segment [𝑎, 𝑏] 
lies entirely inside 𝑃 [8]. A 𝑠𝑡𝑎𝑖𝑟𝑐𝑎𝑠𝑒 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 

also defined in [9] and shown in Figure 1, is a 

rectilinear polygon consisting of two vertical 

edges at the left and right and is bounded above 

and below by two staircase like connected to 

vertical edges.  

 
Figure 1: A staircase polygon 

A Minbar polygon, illustrated in Figure 2, is 

classified as a staircase polygon [9]. It is 

composed of three distinct parts: a long horizontal 

line segment known as the horizontal base, a long 

vertical line segment referred to as the vertical 

wall, and a chain formed by alternating horizontal 

and vertical line segments. Notably, this chain is 

monotone with respect to both the x-axis and the 

y-axis. Assuming the vertical wall is connected to 

the right vertex of the horizontal base, the bottom-

right corner of the polygon is defined as the 

origin. The vertices are numbered in a clockwise 

sequence, beginning at the origin, as illustrated in 

Figure 3 with the origin assigned an index of zero. 

A vertex 𝑣 of the polygon 𝑃 is called reflex if the 

internal angle at v exceeds 180𝑜 ; otherwise, it is 

designated as convex. We denote the vertex of 𝑃 

with index 𝑐 as 𝑃𝑐 . 
 

A polygon is called star-shaped if there exists a 

set of points from which all points of the polygon 

are visible. This set of points is known as the 

kernel, as shown in Figure 3 (highlighted in gray). 

When the edges of the kernel are extended, the 

polygon is divided into four sub-polygons: a 

rectangle located above the kernel, denoted as U; 

a rectangle to the left of the kernel, denoted as L; 

a Minbar sub-polygon situated in the upper-left 

corner of the kernel, denoted as M; and the kernel 

itself, denoted as K. 

Any Minbar polygon is star-shaped. Taking into 

account a Minbar polygon with 𝑛 >  4 vertices 

and 𝑘 >  1 watchmen positioned inside it, the 

starting point for each watchman is specified 

(refer to Figure 2). Each watchman follows a 

route within the polygon and ultimately returns to 

its starting point, ensuring that every point of the 

polygon is visible from at least one of these 

routes. We define a corner as a convex vertex in 𝑃 

whose index is even. Let 𝐶 represent the set of 

corner indices in  , which can be expressed as 𝐶 =
{0,2,… , 𝑛 − 2} . For any point  , we denote the 𝑥-

coordinate by 𝑥(𝑝) and the 𝑦 -coordinate by 𝑦(𝑝) 
. 

 
Figure 2: A Minbar polygon with 24 vertices and 3 

watchmen starting points 𝒔𝟏, 𝒔𝟐, 𝒔𝟑, each vertex takes an 

index in the clockwise order, and 𝒄𝟏
− = 𝟔,  𝒄𝟐

− = 𝟏𝟒, 𝒄𝟑
− =

𝟐𝟎 , 𝑪𝟏
− = {𝟖, 𝟏𝟎, 𝟏𝟐}, 𝑪𝟐

− = {𝟏𝟔, 𝟏𝟖}, 𝑪𝟑
− = {𝟐𝟐} and 𝒁𝟏 =

{𝟔, 𝟖, 𝟏𝟎, 𝟏𝟐}, 𝒁𝟐 = {𝟏𝟒, 𝟏𝟔, 𝟏𝟖}, 𝒁𝟑 = {𝟐𝟎, 𝟐𝟐} and the 

route of each watchman under min-max criterion. 

Let 𝑠𝑖 denote the starting point of watchman  , and 

we will also use 𝑠𝑖 interchangeably to refer to the 

watchman itself. The set of all corner points on 

the chain that can be seen from watchman 𝑖 at the 

specific starting point 𝑠𝑖 is denoted as (𝑖) . It is 

assumed that for any two starting points 𝑠𝑖 and 𝑠𝑗 

(where 1 ≤  𝑖, 𝑗 ≤  𝑘 ), the conditions 𝑥(𝑠𝑖)  <

 𝑥(𝑠𝑗) and 𝑦(𝑠𝑖)  <  𝑦(𝑠𝑗) hold, and that 𝑣𝑝(𝑖) ∩

 𝑣𝑝(𝑗)  = ∅ , where 𝑘 represents the number of 

watchmen. A point 𝑎 is said to dominate point 𝑏 if 

𝑥(𝑏) ≤  𝑥(𝑎) and (𝑏) ≥  𝑦(𝑎) . When point a 

dominates point  , the condition 𝑑𝑜𝑚(𝑎, 𝑏) is 

satisfied. For simplification, this paper assumes 

that the starting points of the watchmen do not 

dominate each other. Additionally, we use ℎ(𝑐) 
and 𝑣(𝑐) to refer to the horizontal and vertical line 

segments that pass through the corner 𝑃𝑐 and are 

contained within the polygon 𝑃. 

The WRP in polygons with holes has been proven 

to be NP-hard [10,11]. Similarly, the multiple 

WRP is also NP-hard even in simple polygons [3]. 

However, some limited types of polygon have 

been shown to have polynomial-time solutions 

[6,10,12-15]. 

Nilsson and Wood considered the multiple WRP 

in spiral polygons with the min-sum criterion, and 

provided a 𝜃(𝑛2)-time algorithm based on 
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dynamic programming for this problem [13]. 

Nilsson and Packer exhibited a polynomial-time 

7.1416 approximation algorithm for computing 

the min-max two-watchman route in simple 

polygons [3]. Nilsson and Schuierer gave an 

𝑂(𝑛2 log 𝑛)-time algorithm to compute the min-

max optimum set of 𝑚 watchmen in a histogram 

polygon in the float version of problem [16]. In 

[6], Packer presented heuristics to compute 

multiple watchman routes in polygons possibly 

with holes. 

Bagheri et~al. [17] investigated the multiple WRP 

in staircase polygons and proposed an 𝑂(𝑛2 ⋅
 𝑚𝑖𝑛{𝑚, 𝑛})-time algorithm under the min-sum 

criterion, where 𝑚 and 𝑛 are the number of 

watchmen and vertices, respectively. In [18], the 

authors proposed a 𝑂(𝑛2 ⋅ 𝑘2 ⋅ log 𝑛)-time greedy 

algorithm for the fixed multiple watchman routes 

problem in Minbar polygons under min-max 

criterion. In this study, a faster algorithm based on 

the dynamic programming method is proposed, 

which can find the optimal solution in min-max 

criteria.  

The use of a Minbar polygon simplifies the 

geometry to highlight the main challenge: 

optimizing multiple watchman routes under non-

domination constraints. This strategic choice 

emphasizes algorithmic complexity over 

geometric intricacy, laying a clear foundation for 

tackling more complex shapes later. 

Recent works in semi-supervised generative 

modeling for medical imaging focus on 

identifying critical regions under uncertainty 

[19,20]. These challenges align with geometric 

coverage problems like watchman routes, 

suggesting that visibility-based path planning may 

offer transferable strategies for improving sample 

selection and structural consistency in imbalanced 

or partially observed domains. 

 

3. Single fixed watchman route 

First, we present an algorithm to address the 

single fixed watchman route problem. The value 𝜉 

defined by Equation (3.1) formulates this problem 

specifically within a Minbar polygon. The 

watchman is required to go to the nearest point of 

the kernel from its starting point and then return 

back. 

For the single fixed watchman route, we need the 

watchman starting point 𝑠𝑖 along with the indices 

of the first and last corners on the chain of the 

given Minbar polygon (or sub-polygon), denoted 

by 𝑐 and 𝑐′ , respectively. The horizontal and 

vertical cuts within 𝑃 that need to be covered by 

watchman 𝑖 are represented by ℎ(𝑐) and (𝑐′) . We 

formulate this problem as (𝑖, 𝑐, 𝑐′) , which 

calculates the length of the minimum route for 

watchman 𝑖 to effectively guard the polygon. For 

simplicity, we compute half of the minimum 

length route, as illustrated in Equation (3.1) and 

shown in Figure 3. 

   
𝜉(𝑖, 𝑐, 𝑐′) = |[𝑠𝑖, 𝑞𝑖]| , 𝑤ℎ𝑒𝑟𝑒 𝑞𝑖

=

{
 
 

 
 

𝑠𝑖,      𝑠𝑖 ∈  𝐾

(𝑥(𝑠𝑖), 𝑦(𝑃𝑐)), 𝑠𝑖 ∈  𝑈

(𝑥(𝑃𝑐
′), 𝑦(𝑠𝑖)), 𝑠𝑖 ∈  𝐿

(𝑥(𝑃𝑐′), 𝑦(𝑃𝑐)),  𝑠𝑖 ∈  𝑀

 

 

 

(3.1) 

 
There are four possible cases to consider: Case 1: 

If the watchman is located within the kernel, 

denoted as sub-polygon K , the watchman does 

not need to move. Case 2: If the watchman is 

located above the kernel, indicated as a sub-

polygon U , the watchman should move vertically 

down to reach the kernel. Case 3: If the watchman 

is positioned to the left of the kernel, represented 

as sub-polygon L , the watchman should move 

horizontally right towards the kernel. Case 4: If 

the watchman is located in the upper-left corner of 

the kernel, denoted as sub-polygon M , the 

watchman should move diagonally to access the 

kernel. Refer to Figure 3, where the guards 

𝑠𝑖
1 , 𝑠𝑖

2 , 𝑠𝑖
3 , and 𝑠𝑖

4 correspond to cases 1, 2, 3, and 

4, respectively. 

 

 
Figure 3: Single fixed watchman route. The two essential 

cuts of a the Minbar polygon are shown with dashed lines 

and the gray area shows the kernel of the Minbar 

polygon, 𝒄 = 𝟐 and 𝒄′ = 𝟏𝟐 and four possible locations of 

𝒔𝒊 marked as 𝒔𝒊
𝟏, 𝒔𝒊

𝟐, 𝒔𝒊
𝟑 and 𝒔𝒊

𝟒. Routes of each 𝒔𝒊 is shown 

by dotted lines. 

 

4. The proposed Algorithm 

In this section, an efficient algorithm based on the 

dynamic programming method is presented to 

solve the fixed multiple watchman routes problem 

in Minbar polygons. The algorithm finds the 

optimal solution for min-max criterion. 

For a watchman 𝑖, 𝑐𝑖
− is the maximum index of a 

corner on the chain that 𝑠𝑖 can see (see Equation 

4.1), and ∀ 𝑖, 𝑗, 1 ≤  𝑖, 𝑗 ≤  𝑘, 𝑖 ≠  𝑗, we have, 

𝑐𝑖
− ≠ 𝑐𝑗

− (see Figure 2).  
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𝑐𝑖
− =  𝑚𝑎𝑥𝑐∈𝐶  {𝑐 | 𝑑𝑜𝑚(𝑠𝑖, 𝑃𝑐)} (4.1) 

 

For each watchman 𝑖 there are a number of 

corners, say 𝑐, where 𝑥(𝑠𝑖)  <  𝑥(𝑃𝑐)  <  𝑥(𝑠𝑖+1) 
and 𝑃𝑐 is not visible from 𝑠𝑖 and 𝑠𝑖+1. We call this 

set of corners 𝐶𝑖
− (see Equation (4.2) and we 

define 𝑍𝑖 in Equation (4.3) as the union of {𝑐𝑖
−} 

and 𝐶𝑖
−, and we have ∀ 𝑖, 𝑗, 1 ≤  𝑖, 𝑗 ≤  𝑘, 𝑖 ≠

 𝑗, 𝑍𝑖 ∩ 𝑍𝑗  = ∅. 

 

𝐶𝑖
− = { 𝑐 ∈ 𝐶 | 𝑥(𝑠𝑖) < 𝑥(𝑃𝑐)    
< 𝑥(𝑠𝑖+1) &  ¬ 𝑑𝑜𝑚(𝑠𝑖, 𝑃𝑐)  
& ¬𝑑𝑜𝑚(𝑠𝑖+1, 𝑃𝑐)}, 1 < 𝑖 < 𝑘 

 

 

(4.2) 

 

𝑍𝑖 = {
{𝑐𝑖
−} ∪ 𝐶𝑖

−,           𝑖𝑓 𝑖 < 𝑘

{ 𝑛 − 2 },           𝑖𝑓 𝑖 = 𝑘
 

     (4.3) 

 

Lemma 4.1: The number of elements in union of 

𝑍𝑖 for all watchmen, is less than 𝑛 (i.e: 

|| ∪𝑖=1
𝑘  𝑍𝑖| <  𝑛). 

Proof:  The proof follows directly from the fact 

that for all 𝑖, 𝑗, where 1 ≤ 𝑖, 𝑗 ≤ 𝑘 and 𝑖 ≠ 𝑗, the 

sets 𝑍𝑖 and 𝑍𝑗 are disjoint, i.e., 𝑍𝑖 ∩ 𝑍𝑗  = ∅.  

∎ 

Lemma 4.2: Let 𝑐 be a corner of Minbar polygon 

𝑃 that is dominated by watchman 𝑠. If 𝑟 is a route 

of the watchman 𝑠′ (where 𝑠 ≠  𝑠′) in an optimal 

solution for min-max, then it does not intersect the 

horizontal extension ℎ(𝑐) or the vertical extension 

𝑣(𝑐).  
Proof:  If we assume that 𝑦(𝑠′)  >  𝑦(𝑃𝑐) and the 

line segment 𝑟 intersects ℎ(𝑐), the only 

explanation is that 𝑠′ is trying to see an unguarded 

corner, like 𝑧, that lies below the corner 𝑐. 

Therefore, watchman 𝑠 cannot move while 

watchman 𝑠 is closer to ℎ(𝑧), because 𝑦(𝑧)  <
 𝑦(𝑠)  <  𝑦(𝑠′). On the other hand, since we want 

to minimize the maximum route length, we can 

assign guarding of corner 𝑧 to watchman 𝑠 so that 

watchman 𝑠′ does not need to intersect the 

horizontal cut of 𝑐, and 𝑟 will be shorten. Thus, 𝑟 

cannot intersect ℎ(𝑐) and similarly 𝑣(𝑐). 
∎ 

It implies from Lemma 4.2 that, in the optimal 

solution for the min-max, an initially unguarded 

corner should be guarded by the watchmen whose 

starting points are immediately before or after it. 

 

Lemma 4.3: If 𝑟 is a route in the optimal solution 

for min-max and |𝑟| > 0, then the endpoint of 𝑟 

lies on a horizontal or vertical cut of a corner that 

was not visible initially by any watchman. By | 𝑟|, 
we mean the length of 𝑟. 

 

Proof: Assuming that 𝑥 is the intersection point 

of 𝑟 with a horizontal (or vertical) cut of the 

unguarded corner and 𝑞 is the endpoint of 𝑟 other 

than 𝑥, no new corner can be guarded by any 

point on line segment [𝑥, 𝑝]. This means that 𝑟 

can be shortened in such a way that 𝑥 becomes its 

endpoint, so 𝑟 lies on a cut. 

∎ 

Lemma 4.4: If 𝑐 is an initially unguarded corner 

of 𝑃, then there is exactly one route (such as 𝑟) in 

the optimal solution, which intersects or touches 

either ℎ(𝑐) or 𝑣(𝑐). 
Proof: Firstly, in order to see or guard the corner 

𝑐, at least one of the cuts must be meet by a route. 

Secondly, if we assume that one of the cuts 

intersects or touches a route 𝑟𝑖 and the other cut 

intersects or touches another route 𝑟𝑗, then this is 

not optimal, because we can shorten either 𝑟𝑖 or 𝑟𝑗, 

so the lemma is proven. 

∎ 

As indicated in Equation (4.4), 𝜁(𝑐′) gives the 

minimum longest watchman route in a Minbar 

polygon. To solve the min-max problem, we split 

the polygon into sub-polygons, where each sub-

polygon exactly contains one watchman. To do 

this, we can exclude the last watchman from the 

polygon by determining the left boundary of the 

last sub-polygon that contains the last watchman, 

where the last watchman guards that sub-polygon. 

 

𝜁(𝑐′)  

=

{
 

 
ξ(1,2, c′),             if c′ ∈  Z1 

   
 { max( ζ(c), ξ(i, c + 2, c′))}c∈Zi−1

min ,

                        if c′ ∈ Zi and i > 1

 

 

 

(4.4) 

 

If a polygon contains only one watchman, the 

problem can be addressed as a single fixed 

watchman route using Equation (3.1), as outlined 

in the first part of Equation (4.4). If a polygon 

contains more than one watchman, the last 

watchman (let us call it watchman i ) in a given 

sub-polygon needs to be able to see corner 𝑐′ on 

the right side and corner 𝑐 + 2 on the left side, 

where 𝑐 belongs to 𝑍𝑖−1 and is the right corner 

visible to watchman 𝑖 − 1 . To achieve this, we 

must calculate 𝜁(𝑐) for all 𝑐 in 𝑍𝑖−1 recursively 

(as indicated in the second part of Equation (4.4), 

and then select the optimal value. The function 𝜉 

calculates the single fixed watchman route in a 

specified sub-polygon, as expressed in Equation 

(3.1), Additionally, 𝑍𝑖 can be determined through 

a pre-processing step that runs in 𝑂(𝑛) time, for 

all watchmen. 
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As illustrated in Figure 4, we have constructed 

the flowchart corresponding to Equation (4.4). 

Although Equation (4.4) is defined recursively, 

the flowchart evaluates it through an iterative 

procedure. Specifically, it computes 𝜁(𝑐′) for 

all corners in 𝑍𝑖, for each watchman 𝑖, 
proceeding sequentially up to the final 

watchman. We assume that the polygon 

contains at least one watchman. At each 

iteration, the computed value of 𝜁(𝑐′) is cached 

to enable reuse in subsequent steps. Ultimately, 

the value obtained for the last corner—corner 

𝑛 − 2—represents the solution to the problem. 
  

 
 

 

Theorem 4.5: The min-max recursion provided in 

Equation (4.4), finds a solution for fixed multiple 

watchman routes problem. 

Proof:  We call the recursion by 𝜁(𝑛 − 2) to find 

the min-max solution. The value of 𝜁 is calculated 

for all the corners in 𝑍𝑖 , 𝑖 ∈ [1, 𝑘]. Each 

unguarded corner on the left side of 𝑠1 will be 

covered by 𝑠1, since corner number 2 must be 

guarded by the watchman starting at 𝑠1. Each 

unguarded corner on the right side of 𝑠𝑘 will be 

covered by 𝑠𝑘 and each unguarded corners in 

𝑍𝑖 , 𝑖 ∈ [1, 𝑘 − 1] will be covered by watchman 𝑖 
or 𝑖 + 1. Hence all the vertices on the chain are 

guarded by some watchmen and the solution visits 

the entire polygon. 

∎ 
Theorem 4.6: The min-max recursion provided 

in Equation (4.4), finds an optimal solution for the 

min-max criterion. 

 

Proof:  We need an array 𝜁 as the storage. The 

value of 𝜁 is calculated for all the corners in 

START 

𝑖 ← 1 

𝑖 < 𝑘 ? 

  𝑐′ ← 𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑍𝑖 

𝑖 ← 1 + 1 

END 
  𝑐′ ← 𝑛𝑒𝑥𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑍𝑖 

𝑐′ ≠ 𝑙𝑎𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑍𝑖 

YES 

NO 
YES 

𝑖 = 1 ? 

𝜁[𝑐′] ← 𝜉(1,2, 𝑐′) 

𝜁[𝑛 − 2] 

NO 

YES 

𝑛, 𝑘, 𝑍1…𝑍𝑘 

A 

A 

𝜁[𝑐′] ← min
c ∈Zi−1

{max (𝜁[𝑐], 𝜉(𝑖, 𝑐 + 2, 𝑐′))} 

 

NO 

Figure 4 : Flowchart corresponding to Equation (4.4) 



Min-Max Multiple Fixed Watchman Routes in Minbar Polygons, with Non-domination Assumption 

35 

 

𝑍𝑖 , 𝑖 ∈  [1, 𝑘]. So, the desired criterion value is 

calculated in all the smaller Minbar sub-polygons 

where for a corner 𝑐′ ∈  𝑍𝑖 , 𝑣(𝑐′) is a vertical 

essential cut of the sub-polygon. Thus, every 

potential condition has been addressed. On the 

other hand, in the second part of Equation (4.4), 

the optimal value will be created on one of the 

corners between the last two watchmen, and the 

desired criterion is optimized here. So, the given 

recursion finds the optimal solution. 

∎ 
Theorem 4.7: The min-max recursion provided 

in Equation (4.4), finds the solution in 𝑂(𝑛2) time 

and requires 𝑂(𝑛) space. 

 

Proof: According to Lemma 4.1, to store 𝜁 

values, a memory of 𝑂(𝑛) space is enough. On 

the other hand, 𝜉 function in Equation (3.1) has 

𝑂(1) complexity. The time complexity of the 𝑚𝑖𝑛 

function in the second part of Equation (4.4) is 

𝑂(𝑛). Therefore, the time complexity of the 

whole recursion is 𝑂(𝑛2). 
∎ 

4.1. Improving the time-complexity 

In this section, we improve the time-complexity of 

the algorithm. To find the minimum point in the 

second part of Equation (4.4), instead of using a 

linear search method, we can use a binary search 

method, which will improve the time complexity 

of the algorithm. 

 

Theorem 4.8: The 𝑚𝑎𝑥 function in Equation 

(4.4), can be divided into two parts, such that the 

first part is decreasing and the second part is 

increasing.  

 

Proof: Considering Equation (4.4), the first input 

of the 𝑚𝑎𝑥 function is the value of 𝜁(𝑐), that 

changes in the interval between two last 

watchmen (𝑐 ∈  𝑍𝑖−1). When 𝑐 increases, the 

value of 𝜁(𝑐) is either constant or increases. Also, 

the second input is the value of the 𝜉 function, 

which calculates the route length of the last 

watchman. It is strictly decreasing because the 

distance between the horizontal cut (i.e. ℎ(𝑐 + 2)) 
of the right sub-polygon that contains the last 

watchman, and the starting point of the last 

watchman is strictly decreasing. 

At first, the 𝑚𝑎𝑥 value may be selected from the 

second input and then selected from the first 

input. Therefore, as shown in Figure 5, at first the 

value of the 𝑚𝑎𝑥 function is strictly decreasing 

and then it is increasing. 

∎ 

 

Figure 5: The value of the 𝒎𝒂𝒙 function in the second 

part of Equation (4.4). 

Theorem 4.8 shows that we can use a binary 

search to find the minimum value, and improve 

the time-complexity. 

 

Theorem 4.8: The improved min-max algorithm, 

computes the solution in 𝑂(𝑛 log 𝑛) time and 

requires 𝑂(𝑛) space. 

 

5. Conclusion and future works 

In this paper, we studied the min-max multiple 

fixed watchman route problem in Minbar 

polygons, which is a specific case of staircase 

polygons. The algorithms presented find the 

optimal solution using a dynamic programming 

approach. Our proposed algorithm has a time 

complexity of 𝑂(𝑛 ⋅ log 𝑛) and requires 𝑂(𝑛) 
space, offering an improvement over the runtime 

reported in [17,18]. Future research directions 

include addressing this problem in the min-sum 

scenario and exploring the possibility of 

domination among watchmen. Additionally, 

examining other types of polygons could provide 

further insights into the problem.  
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