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Abstract 

Fixed Cost Allocation (FCA) among Decision Making Units (DMUs) is one of the essential 

requirements in both private organizations and public sectors. Data Envelopment Analysis 

(DEA) has achieved remarkable success in this field and gained a distinguished position 

among researchers. On the other hand, one of the fundamental principles on which DEA is 

based is the principle of convexity and returns to scale. This principle has not been considered 

in FCA problems. In this paper, we demonstrate that in FCA, the principles of convexity and 

returns to scale change. The obtained results are illustrated by a numerical example. 
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1. Introduction 

DEA is a non-parametric optimization 

approach designed to assess the relative 

efficiency of comparable DMUs that 

operate with multiple inputs and outputs. 

Initially, this method was introduced as the 

CCR model under Constant Returns to 

Scale (CRS) by Charnes et al. [1] in 1978. 

Structural differences in organizations led 

to the development of the BCC model 

under Variable Returns to Scale (VRS) by 

Banker et al. [2] in 1984. Further research 

in DEA introduced the Decreasing Returns 

to Scale model (FG) by Färe and 

Grosskopf [3] and the Increasing Returns 

to Scale model (ST) by Seiford and Thrall 

[4] in 1985 and 1990, respectively. 

A prominent application of DEA is its use 

in FCA problems. FCA among DMUs is a 

crucial requirement in private 

organizations and public sectors. This 

approach was first introduced by Cook and 

Kress [5] based on two principles: 

efficiency invariance and Pareto 

optimality. Cook and Zhu [6] extended it 

for practical applications. Their model was 

designed using input-oriented and output-

oriented CCR models, and they 

recommended using the VRS framework 

for further development. The Pareto 

optimality principle introduced by Cook 

and Kress [5] was later evaluated as 

inappropriate by Lin and Chen [7], who 

suggested that it should be based on super-

efficiency invariance and feasibility. 

Jahanshahloo et al. [8] demonstrated that 

the Pareto optimality principle in Cook 

and Kress [5] was incomplete and 

proposed a simplified model with fewer 

computations, independent of output.  

Lin [9] proposed a new model considering 

efficiencies and input-output scales. 

Amirteimoori and Shafiei [10] introduced 

a DEA-based method for removing a fixed 

number of common resources among 

DMUs under the assumption that 

efficiency remains unchanged before and 

after elimination Mostafaee [11] proposed 

allocating fixed costs by jointly 

considering efficiency ratings and returns-

to-scale groupings. Li et al. [12] designed 

an allocation procedure grounded in 

common weights and the efficiency 

invariance principle Amirteimoori and 

Kordrostami [13] also employed an 

efficiency-invariance framework with a 

common weight set, but Jahanshahloo et 

al. [14] later showed that efficiency 

preservation is not always guaranteed. 

Hosseinzadeh Lotfi et al. [15] adopted a 

goal programming approach, ensuring that 

efficiency levels after allocation were 

explicitly assigned to DMUs. 

Moreover, FCA has been extended to two-

stage network systems. Several 

researchers, such as Zhou et al. [16], Li et 

al. [17], Ding et al. [18], and Yu et al. [19], 

have proposed different resource 

allocation approaches in two-stage 

network DEA. However, reviewing most 

FCA studies reveals that the issue of 

changes in convexity and returns to scale 

before and after allocation has been less 

addressed. Although Qianzhi et al. [20] 

examined returns to scale when fixed costs 

were considered as complementary inputs, 

they studied the relationship between fixed 

costs and VRS using the super-BCC model 

and proposed a fixed-cost approach with 

two conditions: (1) the share of fixed cost 

allocated to inelastic DMUs must align 

with their input shares, and (2) the same 

degree of efficiency satisfaction should 

hold for all DMUs in the unique optimal 

allocation. 

Variations in returns to scale (RTS) during 

the FCA process adversely affect the 

performance assessment of DMUs and 

undermine the efficiency invariance 

principle. Since changes in RTS shift the 

efficiency frontier, efficiency scores 

obtained prior to cost allocation differ 

from those calculated afterward. In this 

study, we demonstrate that, beyond the 

violation of the convexity assumption, the 
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evaluation models before and after FCA 

are not identical under certain 

assumptions. Moreover, through a 

numerical example, we illustrate that the 

CCR model transforms into the ST model, 

while the BCC model converts into the FG 

model once FCA is applied. Therefore, the 

two conditions originally defined by Cook 

and Kress [5] are insufficient, and 

additional requirements must be 

considered: adherence to convexity and 

the invariance of returns to scale before 

and after FCA.  

The rest of this paper is organized as 

follows. Section 2 introduces various DEA 

models. Section 3 presents the FCA 

method of Cook and Kress [5], simplified 

by Jahanshahloo et al. [8]. Section 4 

compares changes in returns-to-scale 

spaces before and after FCA. Section 5 

provides numerical results, and Section 6 

concludes the paper with suggestions for 

future research. 

 

2. DEA Models 

Suppose we have n homogeneous DMUs, 

where each , 1, ...,DMU j nj  produces s 

outputs ( , ..., )
1

T
Y y yj sjj

  by consuming m 

inputs ( , ..., )
1

T
X x xj mjj

 . The output-

oriented CCR model [1] is formulated as 

follows: 
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The dual form of Model (1) is expressed 

as: 
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A DMU_h is considered efficient in Model 

(2) if and only if 
*

1   and all slack 

variables are equal to zero. 

The output-oriented BCC model [2] is 

given as: 
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The output-oriented FG model [3] is 

defined as: 
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Finally, the output-oriented ST model [4] 

is expressed as: 
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3. FCA with the Cook and Kress 

Method 

Suppose we want to allocate a fixed cost L 

among n DMUs. Each DMU has its own 

unique performance measures. The costs 

should be allocated such that the share of 

each DMUj is lj, subject to the condition 

1

n
l Lj

j
 


. Jahanshahloo et al. [8] proposed 

a simpler allocation method compared to 

the Cook and Kress [5] approach, based on 

the two conditions of efficiency invariance 

and Pareto minimality, as follows. The 

allocated costs for each DMU should be 

considered as a new input added to the 

objective function of model (1). 
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If the efficiency of any DMU changes after 

allocation, then the equitable cost 

allocation is violated. Thus, the efficiency 

of DMUs should remain unchanged after 

FCA. The dual of model (6) is formulated 

as follows: 
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The efficiency of model (2) and model (7) 

are equal if and only if constraint (**) in 

model (7) is redundant (for proof, see [8]). 

Therefore, it can be concluded that: 
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4. Our Method for Analyzing 

Changes in Returns to Scale 

under FCA 

Theorem 1: Consider the output-oriented 

CCR model (1). We aim to allocate a fixed 

cost L among n DMUs, such that 
1

n
l Lj

j
 


. After cost allocation, model (2) becomes 

equivalent to model (7), where the 

convexity condition no longer holds. 

Proof: The convexity condition states that:  
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After FCA in model (7), we obtain:  
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  (10)  

The result shows that the convexity 

condition does not hold after FCA. 

Theorem 2: In the CCR model, under a 

specific condition, after cost allocation, 

this model reduces to the FG model. 

Proof: Suppose the total input of all DMUs 

is a constant K. That is:  
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Replacing relation (12) in model (7), 
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we obtain model (13), which is exactly the 

FG model. That is, the CRS technology 

after FCA transforms into DRS. 

Another observation in FCA is that returns 

to scale change after FCA. That is, the 

CCR model after FCA becomes the ST 

model, and the BCC model after FCA 

becomes the FG model. We could not find 

a rigorous mathematical proof for this, but 

the numerical results in the next section 

confirm this claim. 

 

5. Numerical Example 

In this section, we use the dataset provided 

by Cook and Kress [5]. 

Table 1: Dataset from Cook and Kress [5] 

DMUs Input 1 Input 2 Input 3 Output 1 Output2 

1 350 39 9 67 751 

2 298 26 8 73 611 

3 422 31 7 75 584 

4 281 16 9 70 665 

5 301 16 6 75 445 

6 360 29 17 83 1070 

7 540 18 10 72 457 

8 267 33 5 74 590 

9 323 25 5 75 1074 

10 444 64 6 74 1072 

11 323 25 5 25 350 

12 444 64 6 104 1199 
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Table 2: Efficiency Comparison (CCR vs ST model after FCA) 

DMUs model h  New Input h   ST 

1 1.29822 11.25 1.29822 1.29822 

2 1.05497 9.39 1.05497 1.05497 

3 1.33564 13.00 1.33564 1.33564 

4 1.00000 8.65 1.00000 1.00000 

5 1.00000 9.13 1.00000 1.00000 

6 1.03446 11.47 1.03446 1.03446 

7 1.16224 16.06 1.16224 1.16224 

8 1.00000 8.88 1.00000 1.00000 

9 1.00000 9.99 1.00000 1.00000 

10 1.00000 14.53 1.00000 1.00000 

11 3.00000 9.98 3.00000 3.00000 

12 1.00000 14.53 1.00000 1.00000 

 
Table 3: Efficiency Computation for BCC Model vs FG Model after FCA 

DMUs h  New Input h   FG model 

1 1.26225 11.25 1.29822 1.29822 

2 1.03466 9.39 1.03466 1.03466 

3 1.12101 13.00 1.12101 1.12101 

4 1.00000 8.65 1.00000 1.00000 

5 1.00000 9.13 1.00000 1.00000 

6 1.00000 11.47 1.00000 1.00000 

7 1.05876 16.06 1.05876 1.05876 

8 1.00000 8.88 1.00000 1.00000 

9 1.00000 9.99 1.00000 1.00000 

10 1.11847 14.53 1.11847 1.11847 

11 3.00000 9.98 3.00000 3.00000 

12 1.00000 14.53 1.00000 1.00000 

6. Conclusion and Suggestions 

In FCA problems with the Cook and 
Kress method, the results show that the 
principles of convexity and returns to 
scale change. In a special case, the CCR 
model after FCA reduces to the FG 
model. Numerical results also 
demonstrate that the CCR model 
transforms into the ST model, and the 
BCC model becomes the FG model after 
FCA. Therefore, it is of particular 
importance that in FCA problems, 
convexity and returns to scale 
principles should be explicitly 
considered. 
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