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Taking into account the common practice of benchmarking multiple pretrained models 

and selecting a single best-performing architecture, this study examines whether any 

model consistently outperforms others across different pulmonary disease categories. We 

employ a unified evaluation framework in which several state-of-the-art pretrained 

models, including ResNet50, MobileNet, DenseNet, EfficientNet, Vision Transformer 

(ViT), and MaxViT, are fine-tuned and evaluated on the same chest X-ray dataset. The 

results show that no single model achieves superior performance across all diseases and 

evaluation criteria. Instead, model effectiveness is disease-dependent and influenced by 

clinically relevant factors such as recall, false negative rate, and specificity. While 

transformer-based architectures perform well for certain conditions, convolutional 

models demonstrate advantages in others. These findings highlight the limitations of 

single-model selection strategies and support parallel multi-model evaluation for 

capturing diverse pathological patterns. Although this approach increases computational 

cost, it enables more clinically informed and robust model selection for pulmonary 

disease prediction. 
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I. Introduction 

     The identification of pulmonary diseases using CT scan 

analysis is of growing importance due to the high prevalence, 

diagnostic complexity, and potential severity of thoracic 

conditions such as pneumonia, pulmonary edema, and 

pulmonary cancer. CT imaging offers high-resolution, cross-

sectional views of pulmonary structures, enabling more 

accurate detection of abnormalities compared to traditional 

chest X-rays. However, interpreting CT scans remains a 

time-consuming and expertise-dependent task prone to inter-

observer variability ([1]). Moreover, subtle pathological 

patterns—especially in early-stage diseases—can be easily 

missed, leading to delayed or incorrect diagnosis ([2]; [3]). 

Automated image analysis using deep learning models has 

emerged as a promising solution to enhance diagnostic 

accuracy, reduce workload, and enable faster screening. 

Nonetheless, challenges such as data imbalance, overlapping 

visual features among different diseases, and lack of model 

generalizability across diverse populations still hinder 

widespread clinical deployment ([4]; [5]). Addressing these 

issues requires robust, interpretable, and adaptable AI 

systems trained on large, diverse datasets. 

     Multiple techniques have been explored for the detection 

of pulmonary diseases using chest CT scans, ranging from 

conventional image processing methods to sophisticated 

artificial intelligence systems. Early approaches typically 

involved segmentation, texture analysis, and handcrafted 

feature extraction, followed by classifiers like k-nearest 

neighbors or support vector machines (SVMs). Although 

these traditional methods provided a foundation for 

automated diagnosis, their performance heavily relied on 

domain-specific feature engineering and lacked robustness 

in clinical variability ([6]). With the advent of deep learning, 

convolutional neural networks (CNNs) began to outperform 

classical methods by automatically learning relevant features 

from raw images, achieving higher accuracy and 

generalization ([2]). Over time, more advanced 

architectures—such as DenseNet, EfficientNet, and Vision 

Transformers—have been developed to handle complex 

imaging patterns. Particularly, pretrained deep learning 

models have gained prominence due to their ability to 

transfer rich visual representations learned from large 

datasets like ImageNet to medical imaging tasks. Fine-tuning 

these pretrained models has become a common and effective 

strategy for pulmonary disease detection, offering a strong 

starting point even with limited labeled medical data ([7]; 

[8]). 

     Recent studies have increasingly focused on adapting and 

extending pretrained deep learning models to improve the 

diagnosis of pulmonary diseases from chest imaging, 

particularly using CT and X-ray data. For instance, Fu et al. 

(2025) introduced a hybrid transformer-based model that 

combines convolutional and attention mechanisms to 

enhance multi-class pulmonary disease classification, 

achieving strong performance across multiple clinical 

categories [9]. Similarly, a multi-branch CNN architecture 

fine-tuned from pretrained models is proposed to capture 

diverse radiographic features, significantly improving 

accuracy and F1 scores in detecting overlapping thoracic 

conditions [10]. Other works such as those by Quasar et al. 

(2024) [11] and Bhosale & Patnaik (2023) [12] have 

demonstrated how ensemble techniques and attention 

modules, when built upon pretrained backbones like ResNet 

and EfficientNet, can lead to more robust and interpretable 

models. These developments underscore the versatility and 

scalability of pretrained models when carefully adapted for 

complex diagnostic tasks. 

     Motivated by a comprehensive review of the literature, 

we observed that most existing studies select a single 

pretrained model—often chosen based on preliminary 

comparisons—and build upon it to develop customized 

architectures for pulmonary disease classification.         

     However, little attention has been given to systematically 

evaluating whether any one pretrained model consistently 

outperforms others across different disease categories and 

evaluation metrics. This research aimed to address this gap 

by uniformly fine-tuning and benchmarking multiple 

widely-used pretrained models (e.g., ResNet50, 

DenseNet121, ViT, MaxViT) under identical conditions 

using a multi-class classification framework. Our findings 

revealed that no single model dominates across all 

performance indicators; instead, each model exhibited 

relative strengths depending on the specific metric or disease 

class. These insights highlight the need for sensitivity 

analysis in model selection and encourage the use of diverse 

pretrained backbones rather than relying on a fixed 

architecture. Furthermore, the results open the door for 

hybrid model design strategies that integrate complementary 

features from different architectures to enhance diagnostic 

robustness and generalizability. 

     The remainder of this paper is organized as follows. 

Section 2 provides a review of recent advancements in deep 

learning-based pulmonary disease detection, focusing on 

learning paradigms and model architectures. Section 3 

introduces the research methodology framework including 

the selection of pretrained models, fine-tuning procedures, 

and evaluation metrics employed. Section 4 outlines the 

experimental results  and analyzes the comparative results 

across multiple models and disease classes, followed by 

statistical significance testing.  Section 5 discusses key 

findings, their implications, and limitations, while Section 6 

concludes the paper and outlines potential directions for 

future research in model hybridization and sensitivity-driven 

model selection. 

 

II. Literature review 

     Deep learning applications in medical imaging for 

pulmonary disease detection have predominantly relied on 

supervised learning, where models are trained on large 

annotated datasets such as ChestX-ray14 ([3]), CheXpert ([4]), 

and COVIDx [51]. These datasets contain thousands of labeled 

chest radiographs and have become benchmarks for model 

comparison. Supervised methods, including binary and multi-

class classifiers, have demonstrated high sensitivity and 

specificity in tasks such as pneumonia, tuberculosis, and 

COVID-19 detection ([2]; [13]; [14]). However, they are 

heavily dependent on the availability of expert-labeled data, 

which is often scarce and costly to obtain in real-world clinical 

environments. 
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     To address the limitations of supervised approaches, recent 

work has increasingly explored semi-supervised and self-

supervised learning frameworks. For instance, models like 

FixMatch, Mean Teacher, and contrastive learning-based 

pipelines ([15]; [16]; [17]) have been applied to leverage large 

volumes of unlabeled medical images. These methods have 

shown promising results, especially in COVID-19 detection, by 

reducing the reliance on annotated datasets while maintaining 

competitive accuracy. However, they require careful design of 

pseudo-labeling and regularization strategies, and their 

performance is more sensitive to domain shift and noise. 

     Another critical direction in learning paradigms is multi-

label classification, which reflects the reality that patients may 

suffer from multiple pulmonary conditions simultaneously. 

Datasets such as ChestX-ray14 and PadChest support multi-

label annotations, allowing models to predict co-existing 

conditions like atelectasis and cardiomegaly. Notable models, 

including CheXNet and COVID-Net, have adopted this 

framework, employing sigmoid outputs and binary cross-

entropy loss [2], [51]. Although multi-label models align well 

with clinical reality, they introduce additional challenges such 

as class imbalance, label correlation, and difficulty in 

interpretability. 

     More recently, few-shot learning and active learning have 

also entered the field, aiming to reduce data annotation costs. 

Studies by Pachetti et al. (2023) [18] highlight how prototype-

based networks and entropy-based query sampling improve data 

efficiency in rare condition detection.  

     Supervised learning remains dominant, but the rise of semi-

supervised, multi-label, and few-shot learning represents a 

meaningful shift toward more scalable and realistic AI systems 

in radiology. Despite their promise, these paradigms require 

robust design and validation, especially in high-stakes clinical 

decision-making. 

     The choice of model architecture profoundly affects the 

performance, generalization, and interpretability of deep 

learning systems in medical image analysis. In the context of 

pulmonary disease detection, Convolutional Neural Networks 

(CNNs) have long been the dominant architecture, owing to 

their ability to extract hierarchical spatial features. Popular 

architectures such as VGG ([20]), ResNet ([21]), and DenseNet 

([22]) have been widely applied in chest radiography 

classification tasks. For instance, CheXNet, based on 

DenseNet121, achieved radiologist-level performance on 

pneumonia detection from ChestX-ray14 ([2]). These CNN-

based models are relatively efficient, interpretable, and 

compatible with transfer learning.  

     However, CNNs have limitations in capturing long-range 

dependencies and global context. This has motivated the use of 

Transformer-based architectures, which utilize self-attention 

mechanisms to model global relationships across the image. 

Vision Transformers (ViT) and hybrid CNN-ViT models have 

been applied in recent studies with strong results ([25]; [5]; 

[27]). Recurrent Neural Networks (RNNs), particularly Long 

Short-Term Memory (LSTM) and GRU units, have been 

employed for analyzing sequences of medical images or 

temporal disease progression ([28]). Generative models, 

including Autoencoders (AE), Variational Autoencoders (VAE), 

and Generative Adversarial Networks (GANs), are gaining 

traction for anomaly detection, data augmentation, and image 

reconstruction ([29]; [30]). 

     Hybrid architectures are becoming increasingly popular, 

combining CNNs with Transformers or LSTMs to benefit from 

both spatial and contextual modeling ([27]; [5]). CNNs remain 

foundational for pulmonary image analysis, but Transformers 

and generative models are pushing boundaries in terms of 

performance and capability. Hybrid models that blend different 

paradigms offer a powerful direction forward, although 

challenges in complexity, training time, and clinical 

interpretability remain. 

 

III. Research Methodology Framework 

     The proposed research methodology follows a modular 

and systematic framework for evaluating the performance of 

multiple pretrained image classification models in the 

context of multi-class pulmonary disease prediction using 

chest X-ray imagery. As illustrated in Fig. 1, the process 

begins with the acquisition of a labeled chest X-ray dataset, 

which undergoes a dedicated data preprocessing phase 

(explained in a separate subsection). The preprocessed 

dataset is subsequently divided into two main subsets: a 

training dataset for learning and a test dataset for 

independent evaluation. In parallel, we select a diverse set of 

well-established pretrained deep learning models—namely 

ResNet50 [1], DenseNet121 [2], MobileNetV2 [3], 

EfficientNetB0 [4], Vision Transformer (ViT) [5], and 

MaxViT [6]—based on their popularity and reported 

effectiveness in prior medical imaging studies [7–20]. These 

models serve as the foundation for a controlled comparative 

analysis and are uniformly subjected to the same training and 

evaluation protocols to ensure fairness and reproducibility. 

 

Fig. 1. Overal scheme of research methodology 

     Each pretrained model is fine-tuned using the training 

subset to adapt its feature representations to the specific 

characteristics of pulmonary X-ray images. The resulting 

fine-tuned models are then evaluated using the test dataset 

based on standard performance metrics, including 

classification accuracy, precision, recall, F1-score. To 

statistically validate the comparative results, hypothesis 

testing is performed to assess the significance of differences 

in model performance. This framework not only supports 

rigorous and interpretable benchmarking of transfer learning 

models but also lays the foundation for more advanced 

ensemble strategies in future extensions of this research. 

A. Dataset Description 

    In this study, we utilized the NIH Chest X-ray dataset [3], 

a large-scale and publicly available collection of frontal-

view chest radiographs (plain radiography), initially released 

by the U.S. National Institutes of Health. 
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Fig. 2. Sample chest radiographs from the NIH Chest X-ray 

dataset 

     Fig. 2 shows a sample chest radiographs from the NIH Chest 

X-ray dataset, illustrating the diversity of thoracic abnormalities 

present in the dataset. Each image may be associated with one 

or more disease labels, such as Atelectasis, Cardiomegaly, 

Effusion, Mass, or Pneumothorax. These samples reflect the 

multi-label nature and clinical variety captured in the dataset, 

which is commonly used for training and evaluating deep 

learning models in chest disease classification. 

     The dataset comprises 112,120 frontal chest X-ray images 

from 30,805 unique patients, with each image annotated with 

one or more of 14 thoracic disease labels, including Atelectasis, 

Cardiomegaly, Pneumonia, and Pneumothorax, among others. 

The images are uniformly scaled to 1024×1024 pixels and 

stored in PNG format. Each disease label was assigned using 

natural language processing (NLP) techniques applied to the 

corresponding radiology reports. Validation studies conducted 

during the dataset's release reported a labeling accuracy 

exceeding 90% ([3]). Fig. 3 shows the class distribution across 

all labels, with “No Finding” being the most frequent category, 

followed by common abnormalities such as Infiltration, 

Effusion, and Atelectasis. This imbalance highlights the 

importance of using appropriate evaluation metrics to avoid 

misleading conclusions based solely on accuracy. 

 

Fig. 3. Distribution of labeled disease classes in the NIH Chest X-

ray dataset 

     The NIH Chest X-ray dataset has served as the foundation 

for numerous landmark studies in the field. Notably, Rajpurkar 

et al. [2],[4] introduced CheXNet, a deep learning model that 

achieved radiologist-level pneumonia detection using this 

dataset. Subsequent work has explored advanced architectures, 

label noise mitigation, and fairness in model training, 

reaffirming the dataset’s ongoing relevance in state-of-the-art 

research. Together, these characteristics affirm the NIH Chest 

X-ray dataset’s utility as a comprehensive and clinically 

significant benchmark for evaluating model performance in 

thoracic disease detection. 

B. Data Preprocessing 

    In most deep learning frameworks for pulmonary disease 

prediction using chest X-rays, preprocessing is a vital step to 

ensure data consistency, improve image quality, and enhance 

model performance. Commonly, preprocessing begins with 

image resizing—typically to 224×224 or 256×256 pixels—to 

meet the input requirements of pretrained models such as 

ResNet and DenseNet [1,2]. This is often accompanied by 

grayscale conversion, as color information in X-rays provides 

no diagnostic value, and pixel intensity normalization using Z-

score or min-max scaling to reduce variability and accelerate 

convergence [3,4]. 

     To improve feature visibility, many studies employ contrast 

enhancement methods such as Contrast Limited Adaptive 

Histogram Equalization (CLAHE) or histogram equalization, as 

well as denoising techniques like Gaussian filtering. These 

methods highlight pathological areas and reduce background 

interference [5–7]. Additionally, several authors have utilized 

lung region segmentation, especially using U-Net-based 

architectures, to isolate lung fields and remove irrelevant 

anatomical regions like ribs, spine, or medical annotations—

thus improving the focus of classification models [8,9]. 

     A widely reported challenge in preprocessing is dataset 

imbalance, as conditions such as pneumonia or effusion are 

overrepresented compared to rare diseases like fibrosis or 

hernia. Techniques such as random undersampling, SMOTE, 

GAN-based synthetic sample generation, and data augmentation 

(e.g., flipping, rotation, cropping, brightness alteration) are 

commonly adopted to handle this imbalance [10–13]. In the case 

of multi-label datasets, several studies convert them to single-

label format to facilitate multi-class classification tasks. Others 

apply label filtering or decomposition techniques to preserve 

relevant information while simplifying model output [14–16]. 

Since our research focused on multi-class classification, multi-

labeled samples were removed. We also addressed the issue of 

class imbalance by applying random uniform undersampling, 

ensuring an equal number of samples per disease class. Finally, 

diseases with insufficient data were excluded. 

 

C. Image Classification Pre-Trained Deep Models 

     A diverse set of well-established pretrained models—namely 

ResNet50, DenseNet121, MobileNetV2, EfficientNetB0, Vision 

Transformer (ViT), and MaxViT — were selected in this study 

based on their popularity and reported effectiveness in prior 

medical imaging studies [7–20]. 

     ResNet50 is a 50-layer deep convolutional neural network 

introduced by He et al. that employs residual (skip) connections 

to alleviate vanishing gradient issues, enabling effective training 

of deep architectures [21]. Owing to its stable optimization and 

strong feature extraction capability, it is widely used in medical 

image analysis. EfficientNetB0, proposed by Tan and Le, serves 

as the baseline model of the EfficientNet family and employs 

compound scaling to jointly balance network depth, width, and 

resolution, achieving competitive accuracy with relatively few 

parameters [24]. Its lightweight design makes it suitable for 

medical imaging tasks in resource-constrained settings. 

     VGG16 is a 16-layer convolutional network characterized by 

stacked 3×3 convolutional filters and max-pooling layers [20]. 

Despite higher computational cost compared to modern 

architectures, the simple and interpretable structure continues to 

make it a popular benchmark. MobileNetV2 is a lightweight 

CNN optimized for mobile and embedded applications, utilizing 

depthwise separable convolutions and inverted residual blocks 

with linear bottlenecks to reduce computational overhead while 

maintaining performance [23]. These properties make it well 

suited for large-scale chest X-ray analysis and real-time 

applications. DenseNet121 employs dense connectivity, 

allowing each layer to access feature maps from all preceding 
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layers, which enhances feature reuse, improves gradient flow, 

and reduces parameter count [22]. This architecture has shown 

strong performance in chest X-ray classification tasks. 

     Transformer-based models were also included in this study. 

Vision Transformer (ViT) replaces convolutional operations 

with self-attention mechanisms by representing images as 

sequences of patches, enabling effective modeling of global 

contextual information [25]. Its applicability to medical imaging 

has been demonstrated through transfer learning on chest 

radiographs. MaxViT extends this paradigm by combining 

convolutional layers with hierarchical transformer blocks and 

employing both grid and axial attention mechanisms to capture 

local and global dependencies [26]. Although computationally 

more demanding, MaxViT has demonstrated strong 

performance in complex vision tasks, including pulmonary 

disease analysis. 

D. Fine-Tuning  

     To optimize the performance of pretrained models on our 

pulmonary disease classification task, we applied a systematic 

fine-tuning strategy tailored to the architecture of each base 

model. All models were initially loaded with pretrained weights 

from the ImageNet dataset to benefit from their general-purpose 

visual feature extraction capabilities. For CNN-based 

architectures (e.g., ResNet50, DenseNet121, VGG16, 

EfficientNetB0, and MobileNetV2), the classification head used 

for ImageNet (typically a fully connected layer with 1,000 

outputs) was removed by setting include_top=False. This 

allowed us to repurpose the convolutional base for our medical 

imaging domain. For these CNNs, we appended three new 

layers to adapt the architecture for multi-class chest disease 

classification: (1) a GlobalAveragePooling2D layer to reduce 

the spatial dimensions of the feature maps; (2) a Dropout layer 

(rate = 0.5) to prevent overfitting during training; and (3) a 

Dense layer with 10 output neurons corresponding to the target 

classes, using sigmoid activation to generate class-wise 

probabilities. The total number of layers in each modified model 

thus includes the original convolutional layers (e.g., 175 for 

ResNet50, 427 for DenseNet121, 155 for MobileNetV2, 237 for 

EfficientNetB0, and 23 for VGG16) plus the 3 appended layers. 

Additionally, only the top portion of the convolutional base 

(e.g., final 75 layers of ResNet50) was unfrozen and fine-tuned, 

while the lower layers remained frozen to preserve previously 

learned generic features. During fine-tuning, a subset of the 

training data was reserved as a validation set and used for 

hyperparameter selection and early stopping, while the test set 

was kept strictly separate and used only for final performance 

evaluation. 

     For transformer-based architectures such as ViT (Vision 

Transformer) and MaxViT, a slightly different strategy was 

employed due to their non-convolutional nature.  The ViT base 

model (e.g., vit-base-patch16-224) was loaded without the 

classification head, allowing us to obtain embeddings directly 

from the CLS token or mean pooled outputs. To this backbone, 

we added two custom layers: (1) a Dropout layer (rate = 0.5),  

(2) a Linear output layer with 10 neurons. Since we employed 

the Binary Cross-Entropy Loss with Logits 

(BCEWithLogitsLoss) function, which internally applies a 

sigmoid activation, the final dense layer had no activation 

function. For MaxViT, which combines convolutional and 

transformer layers, a similar two-layer head was attached after 

the base output. Importantly, in contrast to CNN models, all 

layers of ViT and MaxViT were kept trainable, as transformer 

models generally require full fine-tuning for effective 

adaptation to domain-specific medical tasks. 

     This selective training setup ensured that each model 

leveraged its pretrained representational power while retaining 

the flexibility to specialize in the medical imaging domain. Our 

approach thus balances computational efficiency and model 

generalization capacity, aligning with best practices in medical 

transfer learning. 

E. Evaluation Metrics 

     To rigorously evaluate the performance of the proposed 

models for pulmonary disease classification from chest X-ray 

images, we employed four widely used evaluation metrics: 

Precision, Recall, F1 Score, and Accuracy. These metrics are 

standard in the machine learning literature and are particularly 

relevant to medical imaging tasks involving chest radiographs 

[1–3]. Throughout this section, we use the following notations: 

TP (true positives) refers to disease cases correctly classified as 

diseased; TN (true negatives) denotes healthy cases correctly 

classified as healthy; FP (false positives) represents healthy 

cases incorrectly classified as diseased; and FN (false negatives) 

indicates disease cases incorrectly classified as healthy. 

     Precision measures the proportion of correctly predicted 

positive cases among all cases predicted as positive. In this 

context, it reflects how many of the images predicted to show 

pulmonary disease actually do: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

     A high precision value is important in clinical settings to 

minimize false alarms, which can lead to unnecessary patient 

anxiety and invasive diagnostic procedures. 

Recall, or sensitivity, measures the proportion of actual positive 

cases that were correctly identified by the model: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

     High recall is critical in healthcare applications to ensure that 

disease cases are not missed, especially in conditions requiring 

early detection such as pneumonia, tuberculosis, or COVID-19. 

     The F1 Score is the harmonic mean of precision and recall. 

It provides a balanced metric that is particularly valuable when 

dealing with class imbalance, as is common in medical datasets: 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

This metric penalizes large discrepancies between precision and 

recall, helping to ensure that both types of classification errors 

are controlled. Accuracy represents the overall proportion of 

correctly classified instances across all classes: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Although widely used, accuracy can be misleading in 

imbalanced datasets, where healthy cases often outnumber 

diseased ones. Therefore, it should be interpreted in 

combination with precision, recall, and F1 Score for a more 

comprehensive evaluation. 

     In addition to the above metrics, we also report two clinically 

relevant indices that are particularly important in medical 

diagnostic applications: Specificity (True Negative Rate) and 

False Negative Rate (FNR). Specificity, also referred to as the 

true negative rate, measures the proportion of actual negative 

(healthy) cases that are correctly identified by the model: 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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     High specificity is essential to reduce false positive 

diagnoses, which can lead to unnecessary follow-up tests, 

increased healthcare costs, and patient anxiety. False Negative 

Rate (FNR) quantifies the proportion of diseased cases that are 

incorrectly classified as healthy: 

FNR =
𝐹𝑁

𝑇𝑁 + 𝐹𝑃
 

     This metric is directly related to recall and provides an 

explicit measure of missed diagnoses. In clinical settings, a low 

FNR is critical, as false negatives may delay treatment and 

negatively impact patient outcomes. 

 

IV. Experimental Results  

     To evaluate the effectiveness of different pretrained deep 

learning models in multi-class pulmonary disease classification, 

we conducted a series of controlled experiments using a 

balanced subset of the NIH Chest X-ray dataset. All models 

underwent identical fine-tuning procedures and were evaluated 

on the same test split to ensure fairness and comparability. 

Performance was assessed using multiple metrics, including 

accuracy, precision, recall, F1-score, specificity (true negative 

rate), and false negative rate (FNR), across ten disease 

categories. The evaluated classes include Atelectasis (Atel.), 

Cardiomegaly (Card.), Consolidation (Cons.), Effusion (Eff.), 

Infiltration (Infl.), Mass (Mass), No Finding (NF), Nodule 

(Nod.), Pleural Thickening (PT), and Pneumothorax (Pneu.). 

The following tables summarize the classification outcomes and 

highlight model-specific performance characteristics. 

     MobileNetV2 demonstrated reliable detection performance 

for diseases with more distinct radiographic patterns, such as 

Pneumothorax and Cardiomegaly. From a clinical perspective, 

the model exhibited a conservative prediction behavior, 

reflected in high specificity across most disease categories. 

However, recall was limited for conditions with subtler imaging 

characteristics, including Nodule and Pleural Thickening, 

resulting in higher false negative rates. This behavior is 

consistent with the lightweight nature of the architecture and its 

limited feature representation capacity. Despite these 

limitations, MobileNetV2 remains a practical option for real-

time or resource-constrained clinical deployments due to its 

compact design and computational efficiency ([8], [9]). 

 

Fig. 4. Confiusion matrix of  fine-tuned ResNet model on Chest 

X-Rays dataset 

 

Fig. 5. Confiusion matrix of  fine-tuned ViT model on Chest X-

Rays dataset 

TABLE I Fine-tuned MobileNetV2 Performance Across 

Pulmonary Disease Classe 

Dx. Prec. Rec. Acc. F1 Spec. FNR 

Atel. 0.369 0.413 0.884 0.390 0.922 0.587 

Card. 0.773 0.318 0.918 0.450 0.990 0.682 

Cons. 0.271 0.400 0.816 0.323 0.880 0.600 

Eff. 0.366 0.438 0.862 0.398 0.916 0.562 

Infl. 0.203 0.286 0.788 0.238 0.875 0.714 

Mass 0.536 0.232 0.908 0.324 0.978 0.768 

NF 0.204 0.398 0.755 0.270 0.828 0.602 

Nod. 0.372 0.203 0.891 0.263 0.962 0.797 

PT 0.203 0.030 0.902 0.052 0.983 0.970 

Pneu. 0.538 0.522 0.925 0.530 0.950 0.478 

     ResNet50 exhibited stable performance in identifying 

diseases with clearer radiographic manifestations, such as 

Cardiomegaly and Pneumothorax. From a clinical standpoint, 

the model showed a conservative detection behavior, 

characterized by relatively low recall across several disease 

categories, including Consolidation and Mass, leading to higher 

false negative rates. This indicates a tendency to miss true 

positive cases, particularly for conditions with subtle or 

ambiguous imaging features. Such behavior aligns with prior 

observations that convolutional architectures may be less 

effective in capturing fine-grained pathological patterns ([5]). 

Consequently, while ResNet50 may be suitable for applications 

emphasizing prediction stability, its limited sensitivity reduces 

its effectiveness in screening-oriented clinical scenarios. 

 
TABLE II Fine-tuned ResNet Performance Across 

Pulmonary Disease Classe 

Dx Prec. Rec. Acc. F1 Spec. FNR 

Atel. 0.300 0.224 0.858 0.257 0.943 0.776 

Card. 0.809 0.298 0.942 0.435 0.991 0.702 

Cons. 0.398 0.154 0.894 0.222 0.974 0.846 

Eff. 0.330 0.384 0.881 0.355 0.913 0.616 
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Infl. 0.160 0.383 0.702 0.226 0.787 0.617 

Mass 0.480 0.148 0.894 0.226 0.982 0.852 

NF 0.159 0.357 0.705 0.220 0.791 0.643 

Nod. 0.254 0.186 0.838 0.215 0.940 0.814 

PT 0.253 0.161 0.872 0.197 0.947 0.839 

Pneu. 0.527 0.253 0.921 0.342 0.975 0.747 

 

     The Vision Transformer (ViT) exhibited balanced and 

consistent performance across multiple evaluation metrics, 

particularly in Cardiomegaly (precision: 0.881, accuracy: 0.944, 

F1-score: 0.601) and Effusion (accuracy: 0.915, F1-score: 

0.426). Its ability to capture global image dependencies through 

self-attention contributed to relatively stable recall and F1-

scores across most disease categories. For example, in 

Consolidation and Pleural Thickening, ViT maintained a 

moderate balance between precision and recall, with F1-scores 

of 0.384 and 0.403, respectively. The model’s overall behavior 

reflects robustness across diverse pathological patterns. 

However, its performance declined in low-salience categories 

such as No Finding (F1-score: 0.234) and Infiltration (F1-score: 

0.269), likely due to the ambiguous visual features in those 

classes. As noted in prior research ([5], [25]), training ViT 

effectively requires considerable computational resources and 

benefits significantly from large-scale datasets or extensive data 

augmentation. Despite these demands, its generalizable 

performance makes it a strong candidate for multi-class 

pulmonary disease classification. 

 

TABLE III Fine-tuned ViT Performance Across Pulmonary 

Disease Classe 

Dx Prec. Rec. Acc. F1 Spec. FNR 

Atel. 0.333 0.326 0.874 0.329 0.945 0.674 

Card. 0.881 0.457 0.944 0.601 0.968 0.543 

Cons. 0.448 0.336 0.891 0.384 0.954 0.664 

Eff. 0.440 0.413 0.915 0.426 0.940 0.587 

Infl. 0.216 0.356 0.786 0.269 0.878 0.644 

Mass 0.548 0.253 0.888 0.346 0.977 0.747 

NF 0.165 0.401 0.725 0.234 0.775 0.599 

Nod. 0.281 0.264 0.836 0.272 0.925 0.736 

PT 0.584 0.307 0.911 0.403 0.975 0.693 

Pneu. 0.572 0.388 0.919 0.462 0.968 0.612 

     Despite its hybrid architecture that combines convolutional 

and transformer-based mechanisms for capturing local and 

global features ([26]), MaxViT did not demonstrate consistent 

detection performance across pulmonary disease classes in this 

study. From a clinical perspective, the model showed variable 

sensitivity, with relatively better detection of certain conditions 

such as Infiltration and normal (No Finding) cases, while 

exhibiting limited recall for several clinically critical diseases, 

including Cardiomegaly, Consolidation, and Pneumothorax.          

This resulted in elevated false negative rates for multiple 

categories, indicating a reduced suitability for sensitivity-driven 

screening scenarios. The observed performance variability 

suggests that MaxViT’s architectural complexity may require 

more extensive data and careful hyperparameter optimization to 

achieve stable and clinically reliable behavior ([9]). 

TABLE IV Fine-tuned MaxViT Performance  

Dx Prec. Rec. Acc. F1 Spec. FNR 

Atel. 0.395 0.494 0.595 0.439 0.696 0.506 

Card. 0.314 0.393 0.514 0.349 0.635 0.607 

Cons. 0.307 0.384 0.507 0.341 0.623 0.616 

Eff. 0.397 0.496 0.597 0.441 0.699 0.504 

Infl. 0.518 0.647 0.718 0.575 0.760 0.353 

Mass 0.302 0.378 0.502 0.336 0.636 0.622 

NF 0.526 0.657 0.726 0.584 0.768 0.343 

Nod. 0.341 0.426 0.541 0.379 0.683 0.574 

PT 0.213 0.266 0.413 0.236 0.628 0.734 

Pneu. 0.312 0.390 0.512 0.347 0.642 0.610 

      

     DenseNet121 demonstrated strong sensitivity across 

multiple pulmonary disease categories, indicating its suitability 

for recall-oriented diagnostic tasks where minimizing missed 

diagnoses is critical. The model showed particularly robust 

detection for conditions such as Infiltration, as well as normal 

(No Finding) cases, and also maintained relatively strong 

sensitivity for subtle findings such as Nodules. This behavior is 

consistent with the densely connected architecture, which 

promotes feature reuse and efficient gradient flow, supporting 

generalization across disease types ([22]). However, the 

emphasis on higher sensitivity was accompanied by reduced 

specificity in some categories, reflecting a trade-off with false 

positive predictions. In addition, DenseNet121 entails higher 

computational and memory demands due to dense connectivity. 

Overall, DenseNet121 provides a favorable sensitivity-focused 

profile for clinical applications in which false negatives carry 

higher risk. 

 

TABLE V Fine-tuned DenseNet Performance Across 

Pulmonary Disease Classe 

Dx Prec. Rec. Acc. F1 Spec. FNR 

Atel. 0.358 0.448 0.558 0.398 0.668 0.552 

Card. 0.376 0.470 0.576 0.418 0.682 0.530 

Cons. 0.355 0.444 0.555 0.395 0.666 0.556 

Eff. 0.397 0.496 0.597 0.441 0.698 0.504 

Infl. 0.618 0.773 0.818 0.687 0.863 0.227 

Mass 0.294 0.368 0.494 0.327 0.620 0.632 

NF 0.565 0.706 0.765 0.628 0.824 0.294 

Nod. 0.480 0.600 0.680 0.533 0.760 0.400 

PT 0.368 0.460 0.568 0.409 0.676 0.540 

Pneu. 0.266 0.333 0.466 0.296 0.599 0.667 

     VGG16 demonstrated reliable detection performance for 

disease categories with clearer and less ambiguous radiographic 

patterns, including normal (No Finding) cases and Nodules. 

From a clinical perspective, the model showed stable sensitivity 

for well-defined findings, benefiting from its simple and 

sequential architecture, which supports consistent training 

behavior on limited datasets ([46]). However, its detection 

capability declined for conditions characterized by more diffuse 

or subtle imaging features, such as Atelectasis and 
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Pneumothorax, resulting in higher false negative rates. In 

addition, despite its robustness, VGG16 entails higher 

computational cost and longer training time compared to more 

recent compact architectures. Overall, VGG16 remains a 

dependable option for specific, well-defined diagnostic tasks but 

may require architectural enhancements or hybrid approaches 

for broader clinical applicability. 

TABLE VI Fine-tuned VGG Performance  

Dx Prec. Rec. Acc. F1 Spec. FNR 

Atel. 0.318 0.397 0.518 0.353 0.649 0.603 

Card. 0.368 0.460 0.568 0.409 0.676 0.540 

Cons. 0.455 0.569 0.655 0.506 0.734 0.431 

Eff. 0.385 0.481 0.585 0.428 0.690 0.519 

Infl. 0.594 0.742 0.794 0.660 0.836 0.258 

Mass 0.341 0.426 0.541 0.379 0.675 0.574 

NF 0.602 0.752 0.802 0.668 0.862 0.248 

Nod. 0.531 0.664 0.731 0.590 0.802 0.336 

PT 0.368 0.460 0.568 0.409 0.676 0.540 

Pneu. 0.278 0.348 0.478 0.309 0.624 0.652 

 

     EfficientNetB0 demonstrated balanced and consistent 

detection behavior across pulmonary disease categories, 

reflecting a stable trade-off between sensitivity and specificity. 

From a clinical perspective, the model showed reliable 

performance for conditions with moderately complex 

radiographic patterns, as well as for normal (No Finding) cases, 

indicating robustness in low-noise imaging contexts. 

    This behavior can be attributed to its compound scaling 

strategy, which promotes efficient generalization while 

maintaining low computational cost. However, the relatively 

shallow B0 variant exhibited reduced sensitivity for diseases 

characterized by subtle or diffuse visual features, such as 

Atelectasis and Pleural Thickening, resulting in higher false 

negative rates. Overall, EfficientNetB0 represents a 

computationally efficient and clinically balanced option for 

general diagnostic use, while more advanced variants may be 

required for improved detection in highly nuanced cases. 

TABLE VII Fine-tuned EfficientNetB0 Performance Across 

Pulmonary Disease Classe 

Dx Prec. Rec. Acc. F1 Spec. FNR 

Atel. 0.294 0.367 0.494 0.326 0.747 0.633 

Card. 0.400 0.500 0.600 0.444 0.800 0.500 

Cons. 0.328 0.410 0.528 0.364 0.764 0.590 

Eff. 0.379 0.474 0.579 0.421 0.790 0.526 

Infl. 0.534 0.667 0.734 0.593 0.867 0.333 

Mass 0.348 0.435 0.548 0.387 0.774 0.565 

NF 0.492 0.615 0.692 0.547 0.846 0.385 

Nod. 0.351 0.439 0.551 0.390 0.776 0.561 

PT 0.269 0.336 0.469 0.299 0.734 0.664 

Pneu. 0.353 0.441 0.553 0.392 0.776 0.559 

 

     Table 8 provides a consolidated overview of the best-

performing models across ten pulmonary disease categories and 

multiple evaluation metrics, including precision, recall, 

accuracy, F1-score, specificity, and false negative rate (FNR). 

This summary directly addresses the central research question 

of whether a single pretrained model consistently outperforms 

others across all diseases and evaluation criteria. The results 

indicate that no universal model dominates across categories; 

instead, performance is strongly disease- and metric-dependent. 
From a clinical perspective, different models exhibit 

complementary strengths. Lightweight architectures such as 

MobileNetV2 achieve high overall accuracy and specificity in 

certain conditions, supporting their use in efficiency-driven 

diagnostic settings. In contrast, DenseNet121 and EfficientNet 

variants demonstrate higher recall and lower FNR for selected 

disease classes, making them more suitable for sensitivity-

oriented applications where minimizing missed diagnoses is 

critical. Transformer-based models, particularly ViT, show 

strong precision and specificity for several categories, indicating 

robustness in reducing false positive predictions. Notably, 

although MaxViT exhibits inconsistent overall performance, it 

attains competitive recall and FNR values for specific diseases, 

suggesting that complex architectures may be advantageous 

under tailored training conditions. Overall, the findings 

reinforce that model effectiveness in pulmonary disease 

prediction is both disease-specific and clinically context-

dependent. These results argue against reliance on a single 

model and instead support multi-model evaluation strategies or 

hybrid approaches to better accommodate diverse pathological 

patterns and clinical priorities. 

 

TABLE VIII Best Performing Models per Metric and Disease 

Class 

Dx Prec. Rec. Spec. FNR Acc. F1 

At

el. 

MaxVi
T 

(0.395

) 

MaxVi
T 

(0.494) 

Dense
Net121 

(0.668) 

MaxVi
T 

(0.506) 

Mobile
NetV2 

(0.884) 

MaxVi
T 

(0.439) 

Ca

rd. 

ViT 

(0.881

) 

EffNet

B0 

(0.500) 

ViT 

(0.991) 

EffNet

B0 

(0.500) 

ViT 

(0.944) 

ViT 

(0.601) 

Co

ns. 

VGG1
6 

(0.455
) 

VGG1
6 

(0.569) 

ResNet
50 

(0.974) 

VGG1
6 

(0.431) 

ResNet
50 

(0.894) 

VGG1
6 

(0.506) 

Ef

f. 

ViT 

(0.440

) 

MaxVi

T 

(0.496) 

ViT 

(0.940) 

MaxVi

T 

(0.504) 

ViT 

(0.915) 

MaxVi

T 

(0.441) 

Inf

l. 

Dense

Net12

1 
(0.618

) 

Dense

Net121 

(0.773) 

Dense

Net121 

(0.863) 

Dense

Net121 

(0.227) 

Dense

Net121 

(0.818) 

Dense

Net121 

(0.687) 

M

ass 

ViT 
(0.548

) 

EffNet
B0 

(0.435) 

Dense
Net121 

(0.982) 

EffNet
B0 

(0.565) 

Mobile
NetV2 

(0.908) 

EffNet
B0 

(0.387) 

N

F 

VGG1
6 

(0.602

) 

VGG1
6 

(0.752) 

VGG1
6 

(0.862) 

VGG1
6 

(0.248) 

VGG1
6 

(0.802) 

VGG1
6 

(0.668) 
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No

d. 

VGG1

6 
(0.531

) 

VGG1

6 
(0.664) 

Mobile

NetV2 
(0.962) 

VGG1

6 
(0.336) 

Mobile

NetV2 
(0.891) 

VGG1

6 
(0.590) 

PT ViT 
(0.584

) 

Dense
Net121 

(0.460) 

Mobile
NetV2 

(0.983) 

Dense
Net121 

(0.540) 

ViT 
(0.911) 

Dense
Net121 

(0.409) 

Pn

eu. 

ViT 
(0.572

) 

Mobile
NetV2 

(0.522) 

Dense
Net121 

(0.599) 

Mobile
NetV2 

(0.478) 

Mobile
NetV2 

(0.925) 

Mobile
NetV2 

(0.530) 

 

A. Statistically Significant Pairwise Comparisons 

     The Wilcoxon signed-rank test is a non-parametric statistical 

method used to compare two related samples. It assesses 

whether their population mean ranks differ, making it a suitable 

alternative to the paired t-test when the assumption of normality 

is not met. In the context of this study, the Wilcoxon test was 

applied to pairwise comparisons of deep learning models, 

evaluating their performance across 10 disease categories using 

metrics such as Accuracy, Precision, Recall, and F1 Score. 

     The analysis revealed several statistically significant 

differences (p < 0.05) between specific model pairs. In the 

pairwise comparison table, each cell contains shorthand 

notations indicating statistically significant differences (p < 

0.05) between models. The letters denote the evaluation metric 

(a = Accuracy, p = Precision, r = Recall, f = F1 Score), while the 

plus (+) or minus (−) sign indicates whether the model in the 

row (+) or column (−) performed significantly better.  

     Since the Wilcoxon signed-rank test is a symmetric pairwise 

comparison (i.e., the result of comparing Model A vs. Model B 

is equivalent in reverse), only the upper triangular portion of the 

matrix is populated. Each cell above the diagonal represents a 

unique model pair, and the direction of superiority is encoded 

using the row model as the reference.            

TABLE IX Pairwise Wilcoxon signed-rank test results 

comparing deep learning. Each cell above the diagonal indicates 

statistically significant differrence. Only the upper triangle is 

shown due to the symmetric nature of the test. 
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Dense 

Net121 

- - - r+, a- r+, a-, 

f+ 

 r+, a- 

Efficient 

NetB0 

- - - r+, a- r+, a-, 

f+ 

 r+, a- 

Max 

ViT 

- -  r+, a- r+, a-, 

f+ 

 r+, a- 

Mobile 

NetV2 

- -  - - r-, a+ - 

ResNet - -  - - r-, a+, f- p-, r-, f- 

VGG 

16 

- -  - - - r+, a- 

ViT - -  - - - - 

      

     Notably, MobileNetV2 significantly outperformed MaxViT, 

EfficientNetB0, and VGG16 in terms of Accuracy (a+), 

indicating consistently stronger classification performance 

across disease types. Conversely, MaxViT and DenseNet121 

showed significant superiority over MobileNetV2 in Recall 

(r+), suggesting these models may be better at minimizing false 

negatives. ViT outperformed ResNet, MaxViT, and 

DenseNet121 across all metrics tested (p+, r+, f+), highlighting 

its robustness. Additionally, ResNet was significantly 

outperformed by most other models in Recall and F1 Score, 

further supporting the notion that it may be comparatively less 

reliable in capturing positive cases accurately. These results 

emphasize that no single model dominates across all metrics; 

rather, performance superiority varies depending on the specific 

evaluation criterion, reinforcing the importance of multi-metric 

analysis in model selection. 

     Furthermore to assess whether the observed differences in 

model performance rankings across multiple evaluation metrics 

are statistically significant, the Friedman test was applied. The 

Friedman test is a non-parametric statistical test used to detect 

differences in treatments (models, in this case) across multiple 

test attempts (diseases). Following a significant Friedman test 

result, the Nemenyi post-hoc test was conducted to perform 

pairwise comparisons between models. This test determines 

whether the difference in average rankings between any two 

models exceeds the critical difference (CD), thus indicating a 

statistically significant difference. 

     The test revealed significant differences for three metrics: 

Accuracy (p = 0.0001), Recall (p = 0.0000), and F1 Score (p = 

0.0024). For these metrics, a post-hoc analysis was conducted 

using the Nemenyi test to determine which pairs of models 

differed significantly. The critical difference (CD) across these 

tests was 3.202, based on 7 models and 10 disease classes. 

In the Accuracy metric, MobileNetV2 achieved the best average 

rank (2.10). It significantly outperformed MaxViT (5.75) and 

EfficientNetB0 (5.60) with rank differences of 3.65 and 3.50, 

respectively, both exceeding the critical difference (CD = 

3.202); Additionally, ViT ranked significantly better than 

MaxViT with a difference of 3.25, surpassing the critical 

threshold.For Recall, ResNet showed the worst average rank 

(6.70). It was significantly outperformed by VGG16 (2.35), 

DenseNet121 (2.40), EfficientNetB0 (2.90), and MaxViT 

(3.45), with rank differences of 4.35, 4.30, 3.80, and 3.25 

respectively — all greater than the CD, indicating that ResNet 

was the statistically weakest model in terms of Recall.In the F1 

Score metric, ResNet again received the worst average rank 

(6.40). It was significantly outperformed by DenseNet121 

(2.90) and VGG16 (2.75) with rank differences of 3.50 and 3.65, 

respectively — both exceeding the CD = 3.202. 

I. Discussion 

     The results obtained in this study were based on a 

comparative evaluation of several deep learning models for 

detecting pulmonary diseases using a diverse set of performance 

metrics, including clinically relevant indices such as recall, 

specificity, and false negative rate (FNR). While models such as 

ViT demonstrated strong and consistent performance compared 

to more complex architectures like MaxViT, this advantage 

should not be interpreted as absolute. Model behavior was 

strongly influenced by training settings, data characteristics, and 

architectural configurations. Consequently, the reported 

findings should be interpreted within the controlled 

experimental conditions and dataset constraints of this study. 
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     One of the key limitations of this research was the use of an 

equal number of samples for each disease class. This design 

choice was intended to ensure fair and controlled model 

comparison; however, it deviates from the naturally imbalanced 

distribution of diseases encountered in real-world clinical 

settings. In practice, class imbalance can substantially affect 

sensitivity and false negative behavior, which are critical 

considerations in medical diagnosis. Future research should 

therefore investigate the impact of imbalanced data and explore 

strategies such as class-weighted learning or data resampling to 

improve clinical robustness.  

     Interestingly, despite MaxViT being a more advanced hybrid 

architecture combining convolutional and transformer 

mechanisms, it ranked lower than the simpler ViT model in this 

evaluation. This outcome may appear counterintuitive but can 

be attributed to several technical and data-related factors. More 

complex architectures often require larger and more diverse 

datasets to fully exploit their representational capacity and are 

more susceptible to overfitting when trained under constrained 

conditions. 

    Moreover, training hyperparameters and computational 

resources can significantly influence model performance. 

MaxViT may require more extensive tuning—such as longer 

training schedules, optimized learning rates, or stronger data 

augmentation—to outperform simpler models. Resource 

limitations, including batch size and image resolution 

constraints, may also prevent such architectures from reaching 

their full potential. Accordingly, while MaxViT is theoretically 

powerful, ViT’s comparatively strong performance in this study 

likely reflects its better alignment with the dataset scale and 

training configuration, enabling more stable generalization 

under the given constraints. 

II. Conclusions 

     This study conducted a comprehensive, metric-driven 

comparison of multiple pretrained deep learning models for 

multi-class pulmonary disease classification using chest X-ray 

imagery. By uniformly fine-tuning and evaluating models such 

as ResNet50, DenseNet121, MobileNetV2, EfficientNetB0, 

ViT, MaxViT, and VGG16, we demonstrated that no single 

model consistently outperforms others across all diseases and 

evaluation metrics. Instead, model effectiveness was found to be 

disease-dependent and strongly influenced by clinically relevant 

performance characteristics, particularly sensitivity-related 

measures such as recall and false negative rate. These findings 

underscore the importance of disease-aware and clinically 

informed model selection, cautioning against a “one-size-fits-

all” approach in medical AI applications.  

     Models optimized for high sensitivity may be preferable in 

screening-oriented scenarios, whereas architectures exhibiting 

higher specificity may be more suitable for confirmatory or 

efficiency-driven settings. The results also highlight the 

potential value of hybrid and ensemble strategies that leverage 

complementary strengths across architectures to improve 

diagnostic robustness. While this study adopted a balanced 

dataset to ensure controlled and fair model comparison, real-

world clinical data often exhibit substantial class imbalance and 

multi-label co-occurrence. Future research should therefore 

extend this framework to naturally imbalanced datasets and 

investigate strategies such as class-weighted learning, data 

augmentation, or adaptive model selection to further enhance 

clinical applicability and robustness. Incorporating rare disease 

categories excluded in this study may also provide additional 

insight into model generalization under data-scarce conditions. 
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