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Taking into account the common practice of benchmarking multiple pretrained models
and selecting a single best-performing architecture, this study examines whether any
model consistently outperforms others across different pulmonary disease categories. We
employ a unified evaluation framework in which several state-of-the-art pretrained
models, including ResNet50, MobileNet, DenseNet, EfficientNet, Vision Transformer
(ViT), and MaxViT, are fine-tuned and evaluated on the same chest X-ray dataset. The
results show that no single model achieves superior performance across all diseases and
evaluation criteria. Instead, model effectiveness is disease-dependent and influenced by
clinically relevant factors such as recall, false negative rate, and specificity. While
transformer-based architectures perform well for certain conditions, convolutional
models demonstrate advantages in others. These findings highlight the limitations of
single-model selection strategies and support parallel multi-model evaluation for
capturing diverse pathological patterns. Although this approach increases computational
cost, it enables more clinically informed and robust model selection for pulmonary
disease prediction.
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|. Introduction

The identification of pulmonary diseases using CT scan
analysis is of growing importance due to the high prevalence,
diagnostic complexity, and potential severity of thoracic
conditions such as pneumonia, pulmonary edema, and
pulmonary cancer. CT imaging offers high-resolution, cross-
sectional views of pulmonary structures, enabling more
accurate detection of abnormalities compared to traditional
chest X-rays. However, interpreting CT scans remains a
time-consuming and expertise-dependent task prone to inter-
observer variability ([1]). Moreover, subtle pathological
patterns—especially in early-stage diseases—can be easily
missed, leading to delayed or incorrect diagnosis ([2]; [3]).
Automated image analysis using deep learning models has
emerged as a promising solution to enhance diagnostic
accuracy, reduce workload, and enable faster screening.
Nonetheless, challenges such as data imbalance, overlapping
visual features among different diseases, and lack of model
generalizability across diverse populations still hinder
widespread clinical deployment ([4]; [5]). Addressing these
issues requires robust, interpretable, and adaptable Al
systems trained on large, diverse datasets.

Multiple techniques have been explored for the detection
of pulmonary diseases using chest CT scans, ranging from
conventional image processing methods to sophisticated
artificial intelligence systems. Early approaches typically
involved segmentation, texture analysis, and handcrafted
feature extraction, followed by classifiers like k-nearest
neighbors or support vector machines (SVMs). Although
these traditional methods provided a foundation for
automated diagnosis, their performance heavily relied on
domain-specific feature engineering and lacked robustness
in clinical variability ([6]). With the advent of deep learning,
convolutional neural networks (CNNs) began to outperform
classical methods by automatically learning relevant features
from raw images, achieving higher accuracy and
generalization  ([2]). Over time, more advanced
architectures—such as DenseNet, EfficientNet, and Vision
Transformers—have been developed to handle complex
imaging patterns. Particularly, pretrained deep learning
models have gained prominence due to their ability to
transfer rich visual representations learned from large
datasets like ImageNet to medical imaging tasks. Fine-tuning
these pretrained models has become a common and effective
strategy for pulmonary disease detection, offering a strong
starting point even with limited labeled medical data ([7];
(8-

Recent studies have increasingly focused on adapting and
extending pretrained deep learning models to improve the
diagnosis of pulmonary diseases from chest imaging,
particularly using CT and X-ray data. For instance, Fu et al.
(2025) introduced a hybrid transformer-based model that
combines convolutional and attention mechanisms to
enhance multi-class pulmonary disease classification,
achieving strong performance across multiple clinical
categories [9]. Similarly, a multi-branch CNN architecture
fine-tuned from pretrained models is proposed to capture
diverse radiographic features, significantly improving
accuracy and F1 scores in detecting overlapping thoracic
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conditions [10]. Other works such as those by Quasar et al.
(2024) [11] and Bhosale & Patnaik (2023) [12] have
demonstrated how ensemble techniques and attention
modules, when built upon pretrained backbones like ResNet
and EfficientNet, can lead to more robust and interpretable
models. These developments underscore the versatility and
scalability of pretrained models when carefully adapted for
complex diagnostic tasks.

Motivated by a comprehensive review of the literature,
we observed that most existing studies select a single
pretrained model—often chosen based on preliminary
comparisons—and build upon it to develop customized
architectures for pulmonary disease classification.

However, little attention has been given to systematically
evaluating whether any one pretrained model consistently
outperforms others across different disease categories and
evaluation metrics. This research aimed to address this gap
by uniformly fine-tuning and benchmarking multiple
widely-used  pretrained models (e.g., ResNet50,
DenseNet121, ViT, MaxViT) under identical conditions
using a multi-class classification framework. Our findings
revealed that no single model dominates across all
performance indicators; instead, each model exhibited
relative strengths depending on the specific metric or disease
class. These insights highlight the need for sensitivity
analysis in model selection and encourage the use of diverse
pretrained backbones rather than relying on a fixed
architecture. Furthermore, the results open the door for
hybrid model design strategies that integrate complementary
features from different architectures to enhance diagnostic
robustness and generalizability.

The remainder of this paper is organized as follows.
Section 2 provides a review of recent advancements in deep
learning-based pulmonary disease detection, focusing on
learning paradigms and model architectures. Section 3
introduces the research methodology framework including
the selection of pretrained models, fine-tuning procedures,
and evaluation metrics employed. Section 4 outlines the
experimental results and analyzes the comparative results
across multiple models and disease classes, followed by
statistical significance testing. Section 5 discusses key
findings, their implications, and limitations, while Section 6
concludes the paper and outlines potential directions for
future research in model hybridization and sensitivity-driven
model selection.

I1. Literature review

Deep learning applications in medical imaging for
pulmonary disease detection have predominantly relied on
supervised learning, where models are trained on large
annotated datasets such as ChestX-ray14 ([3]), CheXpert ([4]),
and COVIDx [51]. These datasets contain thousands of labeled
chest radiographs and have become benchmarks for model
comparison. Supervised methods, including binary and multi-
class classifiers, have demonstrated high sensitivity and
specificity in tasks such as pneumonia, tuberculosis, and
COVID-19 detection ([2]; [13]; [14]). However, they are
heavily dependent on the availability of expert-labeled data,
which is often scarce and costly to obtain in real-world clinical
environments.
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To address the limitations of supervised approaches, recent
work has increasingly explored semi-supervised and self-
supervised learning frameworks. For instance, models like
FixMatch, Mean Teacher, and contrastive learning-based
pipelines ([15]; [16]; [17]) have been applied to leverage large
volumes of unlabeled medical images. These methods have
shown promising results, especially in COVID-19 detection, by
reducing the reliance on annotated datasets while maintaining
competitive accuracy. However, they require careful design of
pseudo-labeling and regularization strategies, and their
performance is more sensitive to domain shift and noise.

Another critical direction in learning paradigms is multi-
label classification, which reflects the reality that patients may
suffer from multiple pulmonary conditions simultaneously.
Datasets such as ChestX-rayl4 and PadChest support multi-
label annotations, allowing models to predict co-existing
conditions like atelectasis and cardiomegaly. Notable models,
including CheXNet and COVID-Net, have adopted this
framework, employing sigmoid outputs and binary cross-
entropy loss [2], [51]. Although multi-label models align well
with clinical reality, they introduce additional challenges such
as class imbalance, label correlation, and difficulty in
interpretability.

More recently, few-shot learning and active learning have
also entered the field, aiming to reduce data annotation costs.
Studies by Pachetti et al. (2023) [18] highlight how prototype-
based networks and entropy-based query sampling improve data
efficiency in rare condition detection.

Supervised learning remains dominant, but the rise of semi-
supervised, multi-label, and few-shot learning represents a
meaningful shift toward more scalable and realistic Al systems
in radiology. Despite their promise, these paradigms require
robust design and validation, especially in high-stakes clinical
decision-making.

The choice of model architecture profoundly affects the
performance, generalization, and interpretability of deep
learning systems in medical image analysis. In the context of
pulmonary disease detection, Convolutional Neural Networks
(CNNs) have long been the dominant architecture, owing to
their ability to extract hierarchical spatial features. Popular
architectures such as VGG ([20]), ResNet ([21]), and DenseNet
([22]) have been widely applied in chest radiography
classification tasks. For instance, CheXNet, based on
DenseNet121, achieved radiologist-level performance on
pneumonia detection from ChestX-rayl4 ([2]). These CNN-
based models are relatively efficient, interpretable, and
compatible with transfer learning.

However, CNNs have limitations in capturing long-range
dependencies and global context. This has motivated the use of
Transformer-based architectures, which utilize self-attention
mechanisms to model global relationships across the image.
Vision Transformers (ViT) and hybrid CNN-ViT models have
been applied in recent studies with strong results ([25]; [5];
[27]). Recurrent Neural Networks (RNNs), particularly Long
Short-Term Memory (LSTM) and GRU units, have been
employed for analyzing sequences of medical images or
temporal disease progression ([28]). Generative models,
including Autoencoders (AE), Variational Autoencoders (VAE),
and Generative Adversarial Networks (GANs), are gaining
traction for anomaly detection, data augmentation, and image
reconstruction ([29]; [30]).

Hybrid architectures are becoming increasingly popular,
combining CNNs with Transformers or LSTMs to benefit from
both spatial and contextual modeling ([27]; [5]). CNNs remain
foundational for pulmonary image analysis, but Transformers
and generative models are pushing boundaries in terms of
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performance and capability. Hybrid models that blend different
paradigms offer a powerful direction forward, although
challenges in complexity, training time, and clinical
interpretability remain.

I11. Research Methodology Framework

The proposed research methodology follows a modular
and systematic framework for evaluating the performance of
multiple pretrained image -classification models in the
context of multi-class pulmonary disease prediction using
chest X-ray imagery. As illustrated in Fig. 1, the process
begins with the acquisition of a labeled chest X-ray dataset,
which undergoes a dedicated data preprocessing phase
(explained in a separate subsection). The preprocessed
dataset is subsequently divided into two main subsets: a
training dataset for learning and a test dataset for
independent evaluation. In parallel, we select a diverse set of
well-established pretrained deep learning models—namely
ResNet50 [1], DenseNet121 [2], MobileNetV2 [3],
EfficientNetBO [4], Vision Transformer (ViT) [5], and
MaxViT [6]—based on their popularity and reported
effectiveness in prior medical imaging studies [7-20]. These
models serve as the foundation for a controlled comparative
analysis and are uniformly subjected to the same training and
evaluation protocols to ensure fairness and reproducibility.

B-2-B-B-2-2
_ 1

Chest Xerays preprocessing Preprocesed est Statistical
Data: Chest Xcrays Dataset Testing
Dataset

|

&6‘
Fine-Tuning
Training
Dataset

Fig. 1. Overal scheme of research methodology

Fine-Tuned Pretrained Models

Selected Image Classification
Pretrained Models

Each pretrained model is fine-tuned using the training
subset to adapt its feature representations to the specific
characteristics of pulmonary X-ray images. The resulting
fine-tuned models are then evaluated using the test dataset
based on standard performance metrics, including
classification accuracy, precision, recall, Fl-score. To
statistically validate the comparative results, hypothesis
testing is performed to assess the significance of differences
in model performance. This framework not only supports
rigorous and interpretable benchmarking of transfer learning
models but also lays the foundation for more advanced
ensemble strategies in future extensions of this research.

A. Dataset Description
In this study, we utilized the NIH Chest X-ray dataset [3],
a large-scale and publicly available collection of frontal-
view chest radiographs (plain radiography), initially released
by the U.S. National Institutes of Health.
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Fig. 2. Sample chest radiographs from the NIH Chest X-ray
dataset

Fig. 2 shows a sample chest radiographs from the NIH Chest
X-ray dataset, illustrating the diversity of thoracic abnormalities
present in the dataset. Each image may be associated with one
or more disease labels, such as Atelectasis, Cardiomegaly,
Effusion, Mass, or Pneumothorax. These samples reflect the
multi-label nature and clinical variety captured in the dataset,
which is commonly used for training and evaluating deep
learning models in chest disease classification.

The dataset comprises 112,120 frontal chest X-ray images
from 30,805 unique patients, with each image annotated with
one or more of 14 thoracic disease labels, including Atelectasis,
Cardiomegaly, Pneumonia, and Pneumothorax, among others.
The images are uniformly scaled to 1024x1024 pixels and
stored in PNG format. Each disease label was assigned using
natural language processing (NLP) techniques applied to the
corresponding radiology reports. Validation studies conducted
during the dataset's release reported a labeling accuracy
exceeding 90% ([3]). Fig. 3 shows the class distribution across
all labels, with “No Finding” being the most frequent category,
followed by common abnormalities such as Infiltration,
Effusion, and Atelectasis. This imbalance highlights the
importance of using appropriate evaluation metrics to avoid
misleading conclusions based solely on accuracy.

o To000 30000 30000 0000 5000 0000
Number of Images

Fig. 3. Distribution of labeled disease classes in the NTH Chest X-

ray dataset

The NIH Chest X-ray dataset has served as the foundation
for numerous landmark studies in the field. Notably, Rajpurkar
et al. [2],[4] introduced CheXNet, a deep learning model that
achieved radiologist-level pneumonia detection using this
dataset. Subsequent work has explored advanced architectures,
label noise mitigation, and fairness in model training,
reaffirming the dataset’s ongoing relevance in state-of-the-art
research. Together, these characteristics affirm the NIH Chest
X-ray dataset’s utility as a comprehensive and clinically
significant benchmark for evaluating model performance in
thoracic disease detection.

B. Data Preprocessing

In most deep learning frameworks for pulmonary disease
prediction using chest X-rays, preprocessing is a vital step to
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ensure data consistency, improve image quality, and enhance
model performance. Commonly, preprocessing begins with
image resizing—typically to 224x224 or 256x256 pixels—to
meet the input requirements of pretrained models such as
ResNet and DenseNet [1,2]. This is often accompanied by
grayscale conversion, as color information in X-rays provides
no diagnostic value, and pixel intensity normalization using Z-
score or min-max scaling to reduce variability and accelerate
convergence [3,4].

To improve feature visibility, many studies employ contrast
enhancement methods such as Contrast Limited Adaptive
Histogram Equalization (CLAHE) or histogram equalization, as
well as denoising techniques like Gaussian filtering. These
methods highlight pathological areas and reduce background
interference [5—7]. Additionally, several authors have utilized
lung region segmentation, especially using U-Net-based
architectures, to isolate lung fields and remove irrelevant
anatomical regions like ribs, spine, or medical annotations—
thus improving the focus of classification models [8,9].

A widely reported challenge in preprocessing is dataset
imbalance, as conditions such as pneumonia or effusion are
overrepresented compared to rare diseases like fibrosis or
hernia. Techniques such as random undersampling, SMOTE,
GAN-based synthetic sample generation, and data augmentation
(e.g., flipping, rotation, cropping, brightness alteration) are
commonly adopted to handle this imbalance [10—13]. In the case
of multi-label datasets, several studies convert them to single-
label format to facilitate multi-class classification tasks. Others
apply label filtering or decomposition techniques to preserve
relevant information while simplifying model output [14-16].
Since our research focused on multi-class classification, multi-
labeled samples were removed. We also addressed the issue of
class imbalance by applying random uniform undersampling,
ensuring an equal number of samples per disease class. Finally,
diseases ~ with  insufficient data  were  excluded.

C. Image Classification Pre-Trained Deep Models

A diverse set of well-established pretrained models—namely
ResNet50, DenseNet121, MobileNetV2, EfficientNetB0, Vision
Transformer (ViT), and MaxViT — were selected in this study
based on their popularity and reported effectiveness in prior
medical imaging studies [7-20].

ResNet50 is a 50-layer deep convolutional neural network
introduced by He et al. that employs residual (skip) connections
to alleviate vanishing gradient issues, enabling effective training
of deep architectures [21]. Owing to its stable optimization and
strong feature extraction capability, it is widely used in medical
image analysis. EfficientNetBO0, proposed by Tan and Le, serves
as the baseline model of the EfficientNet family and employs
compound scaling to jointly balance network depth, width, and
resolution, achieving competitive accuracy with relatively few
parameters [24]. Its lightweight design makes it suitable for
medical imaging tasks in resource-constrained settings.

VGG16 is a 16-layer convolutional network characterized by
stacked 3x3 convolutional filters and max-pooling layers [20].
Despite higher computational cost compared to modern
architectures, the simple and interpretable structure continues to
make it a popular benchmark. MobileNetV2 is a lightweight
CNN optimized for mobile and embedded applications, utilizing
depthwise separable convolutions and inverted residual blocks
with linear bottlenecks to reduce computational overhead while
maintaining performance [23]. These properties make it well
suited for large-scale chest X-ray analysis and real-time
applications. DenseNet121 employs dense connectivity,
allowing each layer to access feature maps from all preceding
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layers, which enhances feature reuse, improves gradient flow,
and reduces parameter count [22]. This architecture has shown
strong performance in chest X-ray classification tasks.

Transformer-based models were also included in this study.
Vision Transformer (ViT) replaces convolutional operations
with self-attention mechanisms by representing images as
sequences of patches, enabling effective modeling of global
contextual information [25]. Its applicability to medical imaging
has been demonstrated through transfer learning on chest
radiographs. MaxViT extends this paradigm by combining
convolutional layers with hierarchical transformer blocks and
employing both grid and axial attention mechanisms to capture
local and global dependencies [26]. Although computationally
more demanding, MaxViT has demonstrated strong
performance in complex vision tasks, including pulmonary
disease analysis.

D. Fine-Tuning

To optimize the performance of pretrained models on our
pulmonary disease classification task, we applied a systematic
fine-tuning strategy tailored to the architecture of each base
model. All models were initially loaded with pretrained weights
from the ImageNet dataset to benefit from their general-purpose
visual feature extraction capabilities. For CNN-based
architectures (e.g., ResNet50, DenseNetl2l, VGGI16,
EfficientNetB0, and MobileNetV2), the classification head used
for ImageNet (typically a fully connected layer with 1,000
outputs) was removed by setting include top=False. This
allowed us to repurpose the convolutional base for our medical
imaging domain. For these CNNs, we appended three new
layers to adapt the architecture for multi-class chest disease
classification: (1) a GlobalAveragePooling2D layer to reduce
the spatial dimensions of the feature maps; (2) a Dropout layer
(rate = 0.5) to prevent overfitting during training; and (3) a
Dense layer with 10 output neurons corresponding to the target
classes, using sigmoid activation to generate class-wise
probabilities. The total number of layers in each modified model
thus includes the original convolutional layers (e.g., 175 for
ResNet50, 427 for DenseNet121, 155 for MobileNetV2, 237 for
EfficientNetBO0, and 23 for VGG16) plus the 3 appended layers.
Additionally, only the top portion of the convolutional base
(e.g., final 75 layers of ResNet50) was unfrozen and fine-tuned,
while the lower layers remained frozen to preserve previously
learned generic features. During fine-tuning, a subset of the
training data was reserved as a validation set and used for
hyperparameter selection and early stopping, while the test set
was kept strictly separate and used only for final performance
evaluation.

For transformer-based architectures such as ViT (Vision
Transformer) and MaxViT, a slightly different strategy was
employed due to their non-convolutional nature. The ViT base
model (e.g., vit-base-patch16-224) was loaded without the
classification head, allowing us to obtain embeddings directly
from the CLS token or mean pooled outputs. To this backbone,
we added two custom layers: (1) a Dropout layer (rate = 0.5),
(2) a Linear output layer with 10 neurons. Since we employed
the Binary Cross-Entropy Loss with Logits
(BCEWithLogitsLoss) function, which internally applies a
sigmoid activation, the final dense layer had no activation
function. For MaxViT, which combines convolutional and
transformer layers, a similar two-layer head was attached after
the base output. Importantly, in contrast to CNN models, all
layers of ViT and MaxViT were kept trainable, as transformer
models generally require full fine-tuning for -effective
adaptation to domain-specific medical tasks.
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This selective training setup ensured that each model
leveraged its pretrained representational power while retaining
the flexibility to specialize in the medical imaging domain. Our
approach thus balances computational efficiency and model
generalization capacity, aligning with best practices in medical
transfer learning.

E. Evaluation Metrics

To rigorously evaluate the performance of the proposed
models for pulmonary disease classification from chest X-ray
images, we employed four widely used evaluation metrics:
Precision, Recall, F1 Score, and Accuracy. These metrics are
standard in the machine learning literature and are particularly
relevant to medical imaging tasks involving chest radiographs
[1-3]. Throughout this section, we use the following notations:
TP (true positives) refers to disease cases correctly classified as
diseased; TN (true negatives) denotes healthy cases correctly
classified as healthy; FP (false positives) represents healthy
cases incorrectly classified as diseased; and FN (false negatives)
indicates disease cases incorrectly classified as healthy.

Precision measures the proportion of correctly predicted
positive cases among all cases predicted as positive. In this
context, it reflects how many of the images predicted to show
pulmonary disease actually do:

TP
TP + FP

A high precision value is important in clinical settings to
minimize false alarms, which can lead to unnecessary patient
anxiety and invasive diagnostic procedures.

Recall, or sensitivity, measures the proportion of actual positive
cases that were correctly identified by the model:

TP
TP+ FN
High recall is critical in healthcare applications to ensure that

disease cases are not missed, especially in conditions requiring
early detection such as pneumonia, tuberculosis, or COVID-19.

Precision =

Recall =

The F1 Score is the harmonic mean of precision and recall.
It provides a balanced metric that is particularly valuable when
dealing with class imbalance, as is common in medical datasets:

2 x Precision * Recall
F1=

Precision + Recall

This metric penalizes large discrepancies between precision and
recall, helping to ensure that both types of classification errors
are controlled. Accuracy represents the overall proportion of
correctly classified instances across all classes:

| ~ TP+ TN
CoUraCY = TP Y TN + FP + FN

Although widely used, accuracy can be misleading in
imbalanced datasets, where healthy cases often outnumber
diseased ones. Therefore, it should be interpreted in
combination with precision, recall, and F1 Score for a more
comprehensive evaluation.

In addition to the above metrics, we also report two clinically
relevant indices that are particularly important in medical
diagnostic applications: Specificity (True Negative Rate) and
False Negative Rate (FNR). Specificity, also referred to as the
true negative rate, measures the proportion of actual negative
(healthy) cases that are correctly identified by the model:

TN

Specificity = m
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High specificity is essential to reduce false positive
diagnoses, which can lead to unnecessary follow-up tests,
increased healthcare costs, and patient anxiety. False Negative
Rate (FNR) quantifies the proportion of diseased cases that are
incorrectly classified as healthy:

FNR =N+ rp

This metric is directly related to recall and provides an
explicit measure of missed diagnoses. In clinical settings, a low
FNR is critical, as false negatives may delay treatment and
negatively impact patient outcomes.

1V. Experimental Results

To evaluate the effectiveness of different pretrained deep
learning models in multi-class pulmonary disease classification,
we conducted a series of controlled experiments using a
balanced subset of the NIH Chest X-ray dataset. All models
underwent identical fine-tuning procedures and were evaluated
on the same test split to ensure fairness and comparability.
Performance was assessed using multiple metrics, including
accuracy, precision, recall, F1-score, specificity (true negative
rate), and false negative rate (FNR), across ten discase
categories. The evaluated classes include Atelectasis (Atel.),
Cardiomegaly (Card.), Consolidation (Cons.), Effusion (Eff.),
Infiltration (Infl.), Mass (Mass), No Finding (NF), Nodule
(Nod.), Pleural Thickening (PT), and Pneumothorax (Pneu.).
The following tables summarize the classification outcomes and
highlight model-specific performance characteristics.

MobileNetV2 demonstrated reliable detection performance
for diseases with more distinct radiographic patterns, such as
Pneumothorax and Cardiomegaly. From a clinical perspective,
the model exhibited a conservative prediction behavior,
reflected in high specificity across most disease categories.
However, recall was limited for conditions with subtler imaging
characteristics, including Nodule and Pleural Thickening,
resulting in higher false negative rates. This behavior is
consistent with the lightweight nature of the architecture and its
limited feature representation capacity. Despite these
limitations, MobileNetV2 remains a practical option for real-
time or resource-constrained clinical deployments due to its
compact design and computational efficiency ([8], [9]).
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Fig. 4. Confiusion matrix of fine-tuned ResNet model on Chest
X-Rays dataset
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Fig. 5. Confiusion matrix of fine-tuned ViT model on Chest X-
Rays dataset

TABLE | Fine-tuned MobileNetV2 Performance Across
Pulmonary Disease Classe

Dx. Prec. Rec. Acc. F1 Spec. FNR
Atel. 0.369 0413 0.884 0390 0.922 0.587
Card. 0.773 0318 0918 0450 0.990 0.682
Cons. 0.271 0400 0.816 0.323 0.880 0.600
Eff. 0.366 0438 0.862 0.398 0916 0.562
Infl. 0.203 0.286 0.788 0.238 0.875 0.714
Mass 0.536 0.232 0908 0.324 0978 0.768
NF 0.204 0.398 0.755 0.270 0.828 0.602
Nod. 0372 0.203 0.891 0.263 0.962 0.797
PT 0.203 0.030 0.902 0.052 0.983 0.970
Pneu. 0.538 0.522 0.925 0.530 0.950 0.478

ResNet50 exhibited stable performance in identifying
diseases with clearer radiographic manifestations, such as
Cardiomegaly and Pneumothorax. From a clinical standpoint,
the model showed a conservative detection behavior,
characterized by relatively low recall across several disease
categories, including Consolidation and Mass, leading to higher
false negative rates. This indicates a tendency to miss true
positive cases, particularly for conditions with subtle or
ambiguous imaging features. Such behavior aligns with prior
observations that convolutional architectures may be less
effective in capturing fine-grained pathological patterns ([5]).
Consequently, while ResNet50 may be suitable for applications
emphasizing prediction stability, its limited sensitivity reduces
its effectiveness in screening-oriented clinical scenarios.

TABLE Il Fine-tuned ResNet Performance Across
Pulmonary Disease Classe
Dx Prec. Rec. Acc. F1 Spec. FNR

Atel. 0300 0.224 0.858 0.257 0.943 0.776
Card. 0.809 0.298 0942 0435 0991 0.702
Cons. 0398 0.154 0.894 0222 0974 0.846
Eff. 0.330 0.384 0.881 0355 0913 0.616
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Infl. 0.160 0383 0.702 0.226 0.787 0.617
Mass 0480 0.148 0.894 0226 0982 0.852
NF 0.159 0357 0.705 0220 0.791 0.643
Nod. 0254 0.186 0.838 0.215 0940 0.814
PT 0253 0.161 0.872 0.197 0947 0.839
Pneu. 0527 0253 0921 0342 0975 0.747

The Vision Transformer (ViT) exhibited balanced and
consistent performance across multiple evaluation metrics,
particularly in Cardiomegaly (precision: 0.881, accuracy: 0.944,
Fl-score: 0.601) and Effusion (accuracy: 0.915, Fl-score:
0.426). Its ability to capture global image dependencies through
self-attention contributed to relatively stable recall and F1-
scores across most disease categories. For example, in
Consolidation and Pleural Thickening, ViT maintained a
moderate balance between precision and recall, with F1-scores
of 0.384 and 0.403, respectively. The model’s overall behavior
reflects robustness across diverse pathological patterns.
However, its performance declined in low-salience categories
such as No Finding (F1-score: 0.234) and Infiltration (F1-score:
0.269), likely due to the ambiguous visual features in those
classes. As noted in prior research ([5], [25]), training ViT
effectively requires considerable computational resources and
benefits significantly from large-scale datasets or extensive data
augmentation. Despite these demands, its generalizable
performance makes it a strong candidate for multi-class
pulmonary disease classification.

TABLE Il Fine-tuned ViT Performance Across Pulmonary
Disease Classe

Dx Prec. Rec. Acc. F1 Spec. FNR
Atel.  0.333 0326 0.874 0329 0945 0.674
Card. 0.881 0457 0.944 0.601 0968 0.543
Cons. 0448 0336 0.891 0.384 0.954 0.664
Eff. 0.440 0413 0915 0426 0940 0.587
Infl. 0216 0356 0.786 0269 0.878 0.644
Mass 0.548 0.253 0.888 0.346 0.977 0.747
NF 0.165 0.401 0.725 0234 0.775 0.599
Nod. 0281 0264 0.836 0272 0925 0.736
PT 0.584 0307 0911 0403 0975 0.693
Pneu. 0572 0383 0919 0462 0.968 0.612

Despite its hybrid architecture that combines convolutional
and transformer-based mechanisms for capturing local and
global features ([26]), MaxViT did not demonstrate consistent
detection performance across pulmonary disease classes in this
study. From a clinical perspective, the model showed variable
sensitivity, with relatively better detection of certain conditions
such as Infiltration and normal (No Finding) cases, while
exhibiting limited recall for several clinically critical diseases,
including Cardiomegaly, Consolidation, and Pneumothorax.
This resulted in elevated false negative rates for multiple
categories, indicating a reduced suitability for sensitivity-driven
screening scenarios. The observed performance variability
suggests that MaxViT’s architectural complexity may require
more extensive data and careful hyperparameter optimization to
achieve stable and clinically reliable behavior ([9]).
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TABLE IV Fine-tuned MaxViT Performance

Dx Prec. Rec. Acc. F1 Spec. FNR
Atel. 0395 0494 0.595 0439 0.696 0.506
Card. 0314 0393 0514 0349 0.635 0.607
Cons. 0307 0384 0507 0341 0.623 0.616
Eff. 0.397 0496 0597 0441 0.699 0.504
Infl. 0518 0.647 0.718 0575 0.760 0.353
Mass 0302 0378 0502 0336 0.636 0.622
NF 0.526 0.657 0.726 0.584 0.768 0.343
Nod. 0341 0426 0.541 0379 0.683 0.574
PT 0213 0266 0413 0236 0.628 0.734
Pneu. 0312 0390 0512 0347 0.642 0.610

DenseNet121 demonstrated strong sensitivity —across
multiple pulmonary disease categories, indicating its suitability
for recall-oriented diagnostic tasks where minimizing missed
diagnoses is critical. The model showed particularly robust
detection for conditions such as Infiltration, as well as normal
(No Finding) cases, and also maintained relatively strong
sensitivity for subtle findings such as Nodules. This behavior is
consistent with the densely connected architecture, which
promotes feature reuse and efficient gradient flow, supporting
generalization across disease types ([22]). However, the
emphasis on higher sensitivity was accompanied by reduced
specificity in some categories, reflecting a trade-off with false
positive predictions. In addition, DenseNet121 entails higher
computational and memory demands due to dense connectivity.
Overall, DenseNet121 provides a favorable sensitivity-focused
profile for clinical applications in which false negatives carry
higher risk.

TABLE V Fine-tuned DenseNet Performance Across
Pulmonary Disease Classe

Dx Prec. Rec. Acc. F1 Spec. FNR
Atel. 0.358 0.448 0.558 0.398 0.668 0.552
Card. 0376 0470 0.576 0418 0.682 0.530
Cons. 0.355 0444 0.555 0395 0.666 0.556
Eff. 0.397 0496 0.597 0441 0.698 0.504
Infl. 0.618 0.773 0.818 0.687 0.863 0.227
Mass  0.294 0368 0494 0327 0.620 0.632
NF 0.565 0.706 0.765 0.628 0.824 0.294
Nod. 0.480 0.600 0.680 0.533 0.760 0.400
PT 0.368 0.460 0.568 0.409 0.676 0.540
Pneu. 0.266 0.333 0466 0296 0.599 0.667

VGG16 demonstrated reliable detection performance for
disease categories with clearer and less ambiguous radiographic
patterns, including normal (No Finding) cases and Nodules.
From a clinical perspective, the model showed stable sensitivity
for well-defined findings, benefiting from its simple and
sequential architecture, which supports consistent training
behavior on limited datasets ([46]). However, its detection
capability declined for conditions characterized by more diffuse
or subtle imaging features, such as Atelectasis and
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Pneumothorax, resulting in higher false negative rates. In
addition, despite its robustness, VGG16 entails higher
computational cost and longer training time compared to more
recent compact architectures. Overall, VGG16 remains a
dependable option for specific, well-defined diagnostic tasks but
may require architectural enhancements or hybrid approaches
for broader clinical applicability.

TABLE VI Fine-tuned VGG Performance

Dx Prec. Rec. Acc. F1 Spec. FNR
Atel. 0318 0.397 0.518 0353 0.649 0.603
Card. 0368 0460 0.568 0409 0.676 0.540
Cons. 0455 0.569 0.655 0.506 0.734 0.431
Eff. 0385 0481 0.585 0428 0.690 0.519
Infl. 0.594 0.742 0.794 0.660 0.836 0.258
Mass 0341 0426 0.541 0.379 0.675 0.574
NF 0.602 0.752 0.802 0.668 0.862 0.248
Nod. 0531 0.664 0.731 0.590 0.802 0.336
PT 0.368 0.460 0.568 0.409 0.676 0.540
Pneu. 0278 0348 0478 0309 0.624 0.652

EfficientNetBO demonstrated balanced and consistent
detection behavior across pulmonary disease categories,
reflecting a stable trade-off between sensitivity and specificity.
From a clinical perspective, the model showed reliable
performance for conditions with moderately complex
radiographic patterns, as well as for normal (No Finding) cases,
indicating robustness in low-noise imaging contexts.

This behavior can be attributed to its compound scaling
strategy, which promotes efficient generalization while
maintaining low computational cost. However, the relatively
shallow BO variant exhibited reduced sensitivity for diseases
characterized by subtle or diffuse visual features, such as
Atelectasis and Pleural Thickening, resulting in higher false
negative rates. Overall, EfficientNetBO represents a
computationally efficient and clinically balanced option for
general diagnostic use, while more advanced variants may be
required for improved detection in highly nuanced cases.

TABLE VII Fine-tuned EfficientNetB0O Performance Across
Pulmonary Disease Classe

Dx Prec. Rec.  Acc. F1 Spec. FNR
Atel. 0294 0367 0494 0326 0.747 0.633
Card. 0400 0.500 0.600 0.444 0.800 0.500
Cons. 0328 0410 0.528 0364 0.764 0.590
Eff. 0379 0474 0579 0421 0.790 0.526
Infl. 0.534 0.667 0.734 0593 0.867 0.333
Mass 0348 0435 0.548 0387 0.774 0.565
NF 0492 0.615 0.692 0547 0.846 0.385
Nod. 0351 0439 0551 0390 0.776 0.561
PT 0269 0336 0469 0299 0.734 0.664
Pneu. 0.353 0441 0553 0392 0.776  0.559
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Table 8 provides a consolidated overview of the best-
performing models across ten pulmonary disease categories and
multiple evaluation metrics, including precision, recall,
accuracy, F1-score, specificity, and false negative rate (FNR).
This summary directly addresses the central research question
of whether a single pretrained model consistently outperforms
others across all diseases and evaluation criteria. The results
indicate that no universal model dominates across categories;
instead, performance is strongly disease- and metric-dependent.
From a clinical perspective, different models exhibit
complementary strengths. Lightweight architectures such as
MobileNetV2 achieve high overall accuracy and specificity in
certain conditions, supporting their use in efficiency-driven
diagnostic settings. In contrast, DenseNet121 and EfficientNet
variants demonstrate higher recall and lower FNR for selected
disease classes, making them more suitable for sensitivity-
oriented applications where minimizing missed diagnoses is
critical. Transformer-based models, particularly ViT, show
strong precision and specificity for several categories, indicating
robustness in reducing false positive predictions. Notably,
although MaxViT exhibits inconsistent overall performance, it
attains competitive recall and FNR values for specific diseases,
suggesting that complex architectures may be advantageous
under tailored training conditions. Overall, the findings
reinforce that model effectiveness in pulmonary disease
prediction is both disease-specific and clinically context-
dependent. These results argue against reliance on a single
model and instead support multi-model evaluation strategies or
hybrid approaches to better accommodate diverse pathological
patterns and clinical priorities.

TABLE VIII Best Performing Models per Metric and Disease
Class

Dx Prec. Rec. Spec. FNR Acc. F1

At MaxVi MaxVi Dense  MaxVi Mobile MaxVi

el. T T Netl21 T NetV2 T
(0.395  (0.494) (0.668) (0.506) (0.884) (0.439)
)
Ca ViT EffNet ViT EffNet ViT ViT
rd. (0.881 BO (0.991) BO (0.944)  (0.601)
) (0.500) (0.500)
Co VGGI1 VGGl  ResNet VGGl  ResNet VGGI
ns. 6 6 50 6 50 6
(0.455  (0.569) (0.974) (0.431) (0.894) (0.5006)
)

Ef ViT MaxVi VIT  MaxVi ViT = MaxVi
f. (0.440 T (0.940) T (0.915) T
) (0.496) (0.504) (0.441)

Inf  Dense Dense Dense Dense Dense Dense
1. Netl2  Netl21 Netl21 Netl21 Netl2l  Netl2l
1 (0.773)  (0.863) (0.227) (0.818) (0.687)

(0.618

M ViT EffNet Dense EffNet Mobile EffNet
ass  (0.548 BO Netl21 BO NetV2 BO
) (0.435) (0.982) (0.565) (0.908) (0.387)

N VGGl VGGl VGGl VGGl VGGl VGGl
F 6 6 6 6 6 6
0.602  (0.752) (0.862) (0.248) (0.802)  (0.668)
)



37

No VGGl VGGl Mobile VGGl  Mobile VGGI

d. 6 6 NetV2 6 NetV2 6
(0.531  (0.664) (0.962) (0.336) (0.891)  (0.590)
)

PT ViT Dense  Mobile  Dense ViT Dense
(0.584  Netl21 NetV2 Netl2l (0.911) Netl21
) (0.460)  (0.983) (0.540) (0.409)

Pn ViT Mobile  Dense  Mobile = Mobile Mobile
eu. (0.572  NetV2  Netl2l  NetV2  NetV2  NetV2
) (0.522)  (0.599) (0.478) (0.925) (0.530)

A. Statistically Significant Pairwise Comparisons

The Wilcoxon signed-rank test is a non-parametric statistical
method used to compare two related samples. It assesses
whether their population mean ranks differ, making it a suitable
alternative to the paired t-test when the assumption of normality
is not met. In the context of this study, the Wilcoxon test was
applied to pairwise comparisons of deep learning models,
evaluating their performance across 10 disease categories using
metrics such as Accuracy, Precision, Recall, and F1 Score.

The analysis revealed several statistically significant
differences (p < 0.05) between specific model pairs. In the
pairwise comparison table, each cell contains shorthand
notations indicating statistically significant differences (p <
0.05) between models. The letters denote the evaluation metric
(a=Accuracy, p = Precision, r =Recall, f=F1 Score), while the
plus (+) or minus (—) sign indicates whether the model in the
row (+) or column (—) performed significantly better.

Since the Wilcoxon signed-rank test is a symmetric pairwise
comparison (i.e., the result of comparing Model A vs. Model B
is equivalent in reverse), only the upper triangular portion of the
matrix is populated. Each cell above the diagonal represents a
unique model pair, and the direction of superiority is encoded
using the row model as the reference.

TABLE IX Pairwise Wilcoxon signed-rank test results
comparing deep learning. Each cell above the diagonal indicates
statistically significant differrence. Only the upper triangle is
shown due to the symmetric nature of the test.

les]
¥ = £
B | 2 z 5 <
S B o @ g
FBE| 2| %z o S
= o (- S - =)
Sl S
Dense - | -] rta | rta-, r+, a-
f+
Netl21
Efficient | - | - | - | r+,a- | r+ a-, r+, a-
f+
NetB0
Max - - r+, a- r+, a-, r+, a-
. =+
ViT
Mobile - - - - -, at -
NetV2
ResNet - - - - r-,at, f- | p-, 1, f-
VGG -] - - - - r+, a-
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Notably, MobileNetV?2 significantly outperformed MaxViT,
EfficientNetBO, and VGG16 in terms of Accuracy (at),
indicating consistently stronger classification performance
across disease types. Conversely, MaxViT and DenseNet121
showed significant superiority over MobileNetV2 in Recall
(r+), suggesting these models may be better at minimizing false
negatives. ViT outperformed ResNet, MaxViT, and
DenseNet121 across all metrics tested (p+, r+, f+), highlighting
its robustness. Additionally, ResNet was significantly
outperformed by most other models in Recall and F1 Score,
further supporting the notion that it may be comparatively less
reliable in capturing positive cases accurately. These results
emphasize that no single model dominates across all metrics;
rather, performance superiority varies depending on the specific
evaluation criterion, reinforcing the importance of multi-metric
analysis in model selection.

Furthermore to assess whether the observed differences in
model performance rankings across multiple evaluation metrics
are statistically significant, the Friedman test was applied. The
Friedman test is a non-parametric statistical test used to detect
differences in treatments (models, in this case) across multiple
test attempts (diseases). Following a significant Friedman test
result, the Nemenyi post-hoc test was conducted to perform
pairwise comparisons between models. This test determines
whether the difference in average rankings between any two
models exceeds the critical difference (CD), thus indicating a
statistically significant difference.

The test revealed significant differences for three metrics:
Accuracy (p = 0.0001), Recall (p = 0.0000), and F1 Score (p =
0.0024). For these metrics, a post-hoc analysis was conducted
using the Nemenyi test to determine which pairs of models
differed significantly. The critical difference (CD) across these
tests was 3.202, based on 7 models and 10 disease classes.
In the Accuracy metric, MobileNetV2 achieved the best average
rank (2.10). It significantly outperformed MaxViT (5.75) and
EfficientNetB0 (5.60) with rank differences of 3.65 and 3.50,
respectively, both exceeding the critical difference (CD =
3.202); Additionally, ViT ranked significantly better than
MaxViT with a difference of 3.25, surpassing the critical
threshold.For Recall, ResNet showed the worst average rank
(6.70). It was significantly outperformed by VGG16 (2.35),
DenseNetl121 (2.40), EfficientNetBO (2.90), and MaxViT
(3.45), with rank differences of 4.35, 4.30, 3.80, and 3.25
respectively — all greater than the CD, indicating that ResNet
was the statistically weakest model in terms of Recall.In the F1
Score metric, ResNet again received the worst average rank
(6.40). It was significantly outperformed by DenseNetl21
(2.90) and VGG16 (2.75) with rank differences of 3.50 and 3.65,
respectively — both exceeding the CD = 3.202.

|. Discussion

The results obtained in this study were based on a
comparative evaluation of several deep learning models for
detecting pulmonary diseases using a diverse set of performance
metrics, including clinically relevant indices such as recall,
specificity, and false negative rate (FNR). While models such as
ViT demonstrated strong and consistent performance compared
to more complex architectures like MaxViT, this advantage
should not be interpreted as absolute. Model behavior was
strongly influenced by training settings, data characteristics, and
architectural configurations. Consequently, the reported
findings should be interpreted within the controlled
experimental conditions and dataset constraints of this study.
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One of the key limitations of this research was the use of an
equal number of samples for each disease class. This design
choice was intended to ensure fair and controlled model
comparison; however, it deviates from the naturally imbalanced
distribution of diseases encountered in real-world clinical
settings. In practice, class imbalance can substantially affect
sensitivity and false negative behavior, which are critical
considerations in medical diagnosis. Future research should
therefore investigate the impact of imbalanced data and explore
strategies such as class-weighted learning or data resampling to
improve clinical robustness.

Interestingly, despite MaxViT being a more advanced hybrid
architecture combining convolutional and transformer
mechanisms, it ranked lower than the simpler ViT model in this
evaluation. This outcome may appear counterintuitive but can
be attributed to several technical and data-related factors. More
complex architectures often require larger and more diverse
datasets to fully exploit their representational capacity and are
more susceptible to overfitting when trained under constrained
conditions.

Moreover, training hyperparameters and computational
resources can significantly influence model performance.
MaxViT may require more extensive tuning—such as longer
training schedules, optimized learning rates, or stronger data
augmentation—to outperform simpler models. Resource
limitations, including batch size and image resolution
constraints, may also prevent such architectures from reaching
their full potential. Accordingly, while MaxViT is theoretically
powerful, ViT’s comparatively strong performance in this study
likely reflects its better alignment with the dataset scale and
training configuration, enabling more stable generalization
under the given constraints.

1. Conclusions

This study conducted a comprehensive, metric-driven
comparison of multiple pretrained deep learning models for
multi-class pulmonary disease classification using chest X-ray
imagery. By uniformly fine-tuning and evaluating models such
as ResNet50, DenseNetl21, MobileNetV2, EfficientNetBO,
ViT, MaxViT, and VGG16, we demonstrated that no single
model consistently outperforms others across all diseases and
evaluation metrics. Instead, model effectiveness was found to be
disease-dependent and strongly influenced by clinically relevant
performance characteristics, particularly sensitivity-related
measures such as recall and false negative rate. These findings
underscore the importance of disease-aware and clinically
informed model selection, cautioning against a “one-size-fits-
all” approach in medical Al applications.

Models optimized for high sensitivity may be preferable in
screening-oriented scenarios, whereas architectures exhibiting
higher specificity may be more suitable for confirmatory or
efficiency-driven settings. The results also highlight the
potential value of hybrid and ensemble strategies that leverage
complementary strengths across architectures to improve
diagnostic robustness. While this study adopted a balanced
dataset to ensure controlled and fair model comparison, real-
world clinical data often exhibit substantial class imbalance and
multi-label co-occurrence. Future research should therefore
extend this framework to naturally imbalanced datasets and
investigate strategies such as class-weighted learning, data
augmentation, or adaptive model selection to further enhance
clinical applicability and robustness. Incorporating rare disease
categories excluded in this study may also provide additional
insight into model generalization under data-scarce conditions.
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