Transactions on Fuzzy Sets and Systems (TFSS)
URL: https://sanad.iau.ir /journal /tfss/
Online ISSN: 2821-0131

Vol.5, No.2, (2026), 243-259

DOI: https://doi.org/10.71602/tfss.2026.1213756 ;Luzgljuscetgg%ssuunsmms

Article Type: Original Research Article
(Journal Pre-proof)

Powerful and Powerless Fuzzy Graphs and it’s Application

Elham Darabian , Rajab Ali Borzooei*

Abstract. In this article, we aim to enhance a fuzzy graph to achieve its optimal state and introduce a powerless or
powerful fuzzy graph derived from it. To accomplish this, we will define a semi-strong arc and first determine mod-
ified fuzzy graphs that result from adjusting the value of an arc in the original fuzzy graph. Next, we will calculate
the standard deviation of each fuzzy graph. To continue, we will identify the fuzzy graphs with the maximum and
minimum standard deviations, designating them as the powerful and powerless fuzzy graphs, respectively. Finally,
we will discuss an intriguing and significant application in identifying common injuries among high school students.

AMS Subject Classification 2020: 05C76; 05C72
Keywords and Phrases: Fuzzy graph, Semi strong arc, Standard deviation, Modified fuzzy graph, Powerful fuzzy
graph, Powerless fuzzy graph.

1 Introduction

In classical set theory introduced by Cantor, the values of elements in a set can either be 0 or 1. This means
that for any given element, there are only two possibilities: the element is either a member of the set or it
is not. Consequently, Cantor’s set theory cannot accommodate data that involves ambiguity or uncertainty.
In 1965, Zadeh [1] 1965, proposed fuzzy set theory, which addresses these limitations. The most important
feature of a fuzzy set is that it includes a class of objects that satisfy one or more specific properties. In a
fuzzy set, each element is assigned a membership value selected from the interval [0, 1], known as the grade
of membership in the set.

The origins of graph theory trace back to the Knigsberg bridge problem in 1735. This problem led to the
development of the concept of the Eulerian graph. Euler analyzed the Knigsberg bridge problem and devised
a structure that solved it, which is now referred to as an Fulerian graph. In 1840, Mbius introduced the
ideas of the complete graph and the bipartite graph, and Kuratowski later proved that these types of graphs
can be planar by using recreational problems. Today, graph theory is extensively applied within computer
science, particularly in research fields such as data mining, image segmentation, clustering, and networking
(see [2]).

In 1975, Rosenfeld [3] introduced the concept of a fuzzy graph by merging the theories of fuzzy sets and
graph theory. Fuzzy graph theory is increasingly being applied to model real-time systems where the levels
of information have varying degrees of precision. Fuzzy models are useful because they aim to bridge the gap
between traditional numerical models used in engineering and sciences and the symbolic models employed in
expert systems. The field of fuzzy graph theory has expanded rapidly and now serves numerous applications
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across various domains. In 2012, Nagoor Gani and Latha [1] introduced the concept of irregular fuzzy graphs,
including the ideas of total degree and totally irregular fuzzy graphs. The strong neighborhood of a node
and the distance between two nodes in a fuzzy graph are useful for determining the relationships among
nodes. Borzooei and other researchers [5, 6, 7, 8, 4, 9, 10, 11, 12] have conducted numerous studies on fuzzy
graphs. Additionally, Yeh and Bang [13] 1975 introduced various concepts related to connectedness in fuzzy
graphs. The initial studies on graph connectivity began in 1975 when Rosenfeld [3] introduced the concept of
distance in fuzzy graphs. Based on this notion of distance, Bhattacharya [14] 1987 introduced the concepts
of eccentricity and center in fuzzy graphs. Furthermore, Meenal [15] 2019, defined antipodal and eccentric
fuzzy graphs, respectively, based on the definition of distance. Akram et al. ([16]-[18]) examined various
aspects, including length, distance, eccentricity, radius, and diameter of bipolar fuzzy graphs, and introduced
the concept of self-centered bipolar fuzzy graphs.

In this paper, we aim to enhance a fuzzy graph to its optimal state and introduce powerful and powerless
fuzzy graphs derived from it. To achieve this, we first define the semi-strong arc in a fuzzy graph and
determine modified fuzzy graphs that result from adjusting the value of an arc in the original fuzzy graph.
We then calculate the standard deviation of each fuzzy graph. Finally, we categorize the fuzzy graphs with
the maximum standard deviation as powerful and those with the minimum standard deviation as powerless.
Moreover, recognizing that one of the most prevalent threats in society is the interest and inclination of young
people and students toward drug use, we will demonstrate a significant application of powerless fuzzy graphs
in identifying and controlling this issue. Specifically, we aim to illustrate the damage caused among high
school students and propose methods to prevent its spread.

2 Preliminaries

In this section, we present definitions and results of fuzzy graphs that are utilized in this paper (see [19]-

[21],[3)-
A fuzzy graph on simple graph G* = (V(G), E(G)) is a pair G = (o, p), where o : V(G) — [0,1] and
w: E(G) — [0,1] are fuzzy sets such that for all zy € E(G),

w(xy) < o(x) Ao(y).

Notation. From now on, let G = (o, 1) or G be an fuzzy graph on simple graph G* = (V(G), E(G)), unless
otherwise stated.
The neighbourhood of node v € V(G) is defined by N(v) and defined as follows;

Nw)={ueV(G) | 0 < u(uv)}.

The arc uv € E(QG) is called an effective arc whenever pu(uv) = o(u) A o(v). Also, the order and size of G
denoted by O(G) and S(G), respectively, and defined as below

0G) = Y o) ., SG)= Y plu).
veV(Q) weE(G)
The degree of node u € V(G) is called d(u) and define as below
dw= 3 pw)

weE(G),u#tv

G is called complete, if pu(uv) = o(u) Ao (v), for all u,v € V(G), is called complete bipartite, if V(G) = V1 UV,
where V4 NV, = () and for every u,v € Vi (or V2), u(uv) = 0 and for every u € V5 and v € Vi, p(uv) =
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o(u) A o(v).

A path p in G is a sequence of distinct nodes vy, v, v2, . . . , vg, € V(G) such that for any i = 1,2, ..., k,
wu(vi—1v;) > 0, then k is called the length of the path p.

For every u,v € V(G) and every path p: u = ug, u1,...,ur, = v, 6-distance from u to v is

Kp
S(u,v) = /p\ (z;(u(ullu)))

The eccentricity of a node v is defined as e(v) = maz,cy()d(u,v). The diameter and radius in G are denoted
by diam(G) and r(G) and are defined as follows;

diam(G) = \/ e(w) , (@)= J\ e).
VeV (G) veV(G)
Let u,v € V(G). If uw and v are connected by means of a path p : u = vg,v1,...,vx = v of length k in G, then
,u’;(u, v) is defined as
i (,v) = pu(uvr) A p(vivg) A p(vvs) Ao A p(vg-1v).
the strength of connectedness between u and v is

p(u,v) = sup{u];(u,v) | pis a path from u to v with length k}.

An arc wv in G is said to be a strong arc, if p(uv) > p*(u,v). The strong neighbourhood of node v in G is
denoted by N (v) and defined as follows;

N (v) ={u € V(GQ) | uv is strong}.

3 Powerful and powerless fuzzy graphs

In this section, we introduce the concept of standard deviation in a fuzzy graph. Following this, we present
powerful and powerless fuzzy graphs and finally, we discuss its application in high school education. In this
section, it is assumed that all fuzzy graphs are finite and simple.

Definition 3.1. The arc uv € E(G) is called semi-strong if

() = g (1)

Example 3.2. Let G be a fuzzy graph as Figure 1:




246 Darabian E, Borzooei RA. Trans. Fuzzy Sets Syst. 2026; 5(2)

Figure 1: Fuzzy graph G

Then for arc ac, we have,

d(a,c) = % —  ulac) =

Hence uv is a semi-strong arc.
Theorem 3.3. FEvery strong arc in G is semi-strong.

Proof. Suppose uv € E(G) is a strong arc. Then for every path p : u = vg, vy, ..., vp = v, we have

luv) > 5> (u,v)

such that
u(u,v) = sup{u’;(u,v) | p is a path from u to v with length k}
where
o (u,v) = sup{p(u, vo) A p(vovr) A p(v1va) A (vavg) A oo A pr(vg—10)}.
Hence, for a strong arc uv and every path with length 1,2,.... k, ..., we have
p(uv) > (,u},(u,v)) v (,u,/%(u,v)) Y (,u,i(u,v)) V..V (u];(u,v)) V...
Therefore,
pluv) > pp(u,v),
p(uv) > g (u,v),
So by definition of p/; (u,v) we get,
pluv) > pluon) A p(orw),
pluo) > pluvn) A p(oros) A p(os),

We see that p(uvy) A p(viv) = p(uvr) or p(uvy) A p(viv) = p(viv). Therefore

1 1 1 1
(o) Ap(orw) — plavr) 7 p(uon) A p(ow)  ploro)’

And this shows that
1 1 1

o) A (o)~ pluen)  p(oro)”

So, if p(uv) > p(uvy) A p(v1v) then

1 < 1 < 1 n 1 . 1 < 1 n 1
p(uv) = p(uv) A p(viv) — pluvy)  p(vrv) pluv) — p(uvy)  p(viv)
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Similarly,
1 < 1 n 1 + 1
pi(uw) pluvy) — p(orvz) — p(vav)
1 < 1 n 1 + 1 + 1
p(uv) pluv)  plvive) — p(vevs)  p(vsw)
Then
1 - 1
AX (o)
p(uv) /> ; f(vie1v;)
Hence, by the definition of J-distance, we have
1 1
(5 = =
(U,’U) M(U,’U) — M(uv) (S(U,’U)

O
Note. The converse of Theorem 3.3, is not correct in general. For example, let G be fuzzy graph as in the
Example 3.2. We see that p(ac) = ch), but ac is not a strong arc.

Definition 3.4. Let Ei(G) be a set of all strong arcs in G. Then the standard deviation of G denoted by
sd(G) and defined as follows,

2

Sy (1) = (o) A o)) Sugmie (nw) — 5s)

sd(G) = B.C)) RO B ®

Note. It should note that, in this definition, we have defined the standard deviation by the difference between
the value of a strong arc and the value of the effective arc (which is the most optimal case in this definition)
and also the difference between a non-strong arc and the semi-strong arc (which is the best case in this
definition of the non-strong arc). In other words, we obtain that if the standard deviation is the lowest, then
the arcs are effective or the non-strong arcs are semi-strong. As a result, a fuzzy graph in which all strong
arcs are effective or all non-strong arcs are semi-strong is more important to us.

Definition 3.5. (i) Let uv € E(G). If we change the value of arc uv, meaning we increase or decrease p(uv),
then the resulting fuzzy graph is called a modified fuzzy graph and is denoted by G*.

(ii) The powerful and the powerless fuzzy graphs of G denoted as G and Gp and defined as follows, respec-
tively,

GP = {Guv A (sdG™),5d(@)) = {sa(G™) or sd(GU’v’>},Es(Guv)zES(GU’U')}

weE(G)

Gp = {G“‘ Vo (saG),sd(G) ) = {sd(G™) or sd(G“'”/)},ES(G“”)gES(G“/”/)}
weE(G)

Note. By this definition, we see that G and Gp may not be unique.
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Example 3.6. Let G be a fuzzy graph as Figure 2:

Figure 2: Fuzzy graph G

In fuzzy graph G, we see that

Ey(G) = {ab,bd,ac,cd} , 5(b,c)= (%) A (0% + 0%5) A (0% + 0%) _ 7
Therefore we have,
1 2 2 2
(@) = [ ((,u(ab) — (o(a) A a(b))) + (u(bd) — (a(b) A a(d))) + (u(ac) — (o(a) A 0(0)))

1 1 2
© BT TE©) <<’“‘(bc> i) )
_ i((m — (047 0.3))* + (02— (0.3A0.8))* + (0.4 — (0.4 A 0.5))> + (0.5 — (0.5 A 0.8))2)
+ (01~ %)2 = 0.007

Consider G? and G be two modified fuzzy graphs from G (resulting from the change of y(ab) = 0.2 and
w(be) = 0.1 in G to p(ab) = 0.3 and p(bc) = 0.2, respectively) as Figure 3:
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Figure 3: Modified fuzzy graphs of G (left is graph G, right is graph G%°)

Now, since E,(G%) = {ab, ac, dc}, we have G we have,

5(b,d) =

s(be) = — A(

2
sd(G™) = E.(G)) ((,u(ab) — (o(a) A O'(b)))2 + (,u(ac) — (o(a) A a(c)))2 + (u(dc) — (o (d) A O'(C))>2>

1 1 2 1 2
" E(G) - |E@)] ((“(bd) “5oa) * (9= 555) )

— 2((03-(0410.3))" + (0.4~ (041 05))* + (05 - (0.510.8))*)

n ;((o,z _ é)z + (0.1 _ 518)2> — 0.003

Since E4(G*) = {ab, bc, cd, ac,bd} and all arcs in G are strong, then we have

W | =

sd(GY) = %((0.2 — (0.4 0.3))° + (0.4 — (041 0.5))° + (0.2 — (0.370.5))° + (0.5 — (0.5 A 0.8))”

+ (0:2-(0310.8))%) = 0.006
So, we see that
sd(G) = sd(G) V sd(G™) v sd(G) , sd(G™) = sd(G) A sd(G™) A sd(G™).
Therefore, G and G% are powerless and powerful fuzzy graphs of G, respectively. In other words,
Gp=G , GF=qag®.

Theorem 3.7. If sd(G) = 0, then every arc wv € E(QG) is effective or semi-strong.
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Proof. Since sd(G) = 0, we have;

EuveEs(G) (M(UU) — (U(U) A O‘(U)))z Z“U¢E5(G) (M(uv) — (S(le))Q B N
E.(G)] E@I-E@] 7
If E5(G) = E(G), that is all arc’s are strong, since;
2
ZquEs(G) (M(UU) - (O’(U) A 0’(7)))) =0 (4)

|Es(G))|

then for all uv € E(G), p(w) — (o(u) Ao (v)) = 0 and so p(uv) = (o(u) Ao(v)). Then all arc’s are effective.
If there exists ugvg € F(G) such that ugvg € Es(G), since

2w By (G) (M(“”) B ﬁ)z

=0. (5)
|E(G)| = |Es(G)]
then p(ugvg) — m = 0 and so p(ugvg) = m. This shows thet ugvg is semi-strong arc in G. O
Lemma 3.8. [22] G has at least one strong arc.

Corollary 3.9. Let G has no any effective arc or no any semi-strong arc, then sd(G) # 0.

Proof. If G has no effective arc, so by Lemma 3.8, G has at least one strong arc. Suppose that uv is an arc
in G such that is strong. According to the assumption of the theorem we have u(uv) < o(u) A o(v) and so

((wv) — o (u) A a(v))2 > (0. Hence
> (uw) ~ (o(w) Ao(w)” > 0.
weEs(G)

Therefore, sd(G) # 0. Similar to the above process and according to the definition of a semi-strong arc, we
consider that if G has no semi-strong arc, then sd(G) #0. O

Remark 3.10. G has at least one powerful or powerless fuzzy graph.
Lemma 3.11. [22] Every effective arc in G is strong.

Theorem 3.12. Let sd(G) = 0. Then every strong arc in G is effective.
Proof. Let sd(G) = 0. Then

2

Serie (400~ (000 100))" | Sgrie (400~ sity)

|E5(G)] |E(G)| — |E5(G)] - )
and so
Se. o) (#m) — (olw) Ao(@)) D () - i) O i
|E5(G))| - |E(G)| — | Es(G)] -
If 2
EquEs(G) (M(UU) o (J(u) A 0’(’[)))) -0 (8)

|Es(G)]
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then for every uv € E4(G), p(uwv) — (o(u) A o(v)) = 0, this shows that uv is effective. In other words, for
every strong arc in G as uv, we see that

w(uv) = o(u) A o(v).
Then every strong arc in G is effective arc. U

Theorem 3.13.

2
1
Sd(G) < ZquE(G) (5(u,v) B (U(u) A 0(’0)))
- [E(G)]
Proof. By Corollary 3.9, if G has no effective or semi-strong arc, then sd(G) # 0. Suppose that every arc in G
is neither effective nor semi-strong. Let uv be an arbitrary arc in G, if uv € Es(G) then p(uv)—(o(u)Ao(v) #0
and so p(uv) # o(u) A o(v). Hence p(uv) < o(u) A o(v). Now, by Theorem 3.3, we see that;
1
5(u,v)’

p(uv) =

Therefore, for every wv € Es(G), p(uv) = ﬁ < o(u) Ao(v). Thus we get

ey () — (o(w) Ao()))’ S (g ~ (o) A o))’

|Es(G))| |Es(G))|
On the other hand, if wv € E(G)\Es(G), then p(uv) — ﬁ # 0 and so p(uv) # ﬁ. Hence

5(;0 < p(uv) < o(u) Ao(v).
Now for every uv € E5(G), we have
w(uv) — (5(ul,v) < (o(u) Ao(v) — 5(:’1})

and so

Therefore we get

> wweEL(G) (M(uv) - ﬁ)Q g 2wt By (G) (5(5,7)) —o(u) A O’(U))2
|E(G)| — |Es(G)] |E(G)] — |Es(G)]

So by Definition 3.4, we get

2 1 2
d(G) _ ZquES(G) <M(UU) B (U(u) A 0’(’1)))) n ZUUEES(G) (M(’U,’U) - m)
= E,(G)] E(G)| = B.(G)]
1 2 1 2
S wer (5 — (0 A o)) , T (m — o)A o(v))

: E.(G)] E(G)] - |E:(C)]
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This shows that

g

Theorem 3.14. If every arc in G 1is effective, then G has a unique powerful fuzzy graph, in other words,
G =GF =Gp.

Proof. Let every arc in G is effective. By Lemma 3.11, every arc in G is strong. So we see that Es(G) =
{uv | wv € E(G)} and since for every wv € E(G), p(uv) = o(u) A o(v) thus we have,

ey () — (o) Ao(w)))’
()]

S e ((0(u) Ao (@) ~ (o(w) A o))’
|Es(G)]

sd(G) =

= 0.

This shows that G is only powerful fuzzy graph in G and GF = G = Gp. O
Note. If every arc in G is effective, then sd(G) = 0. But the converse is not correct in general. For example
let G be a fuzzy graph in the Example 3.2, we see that Es(G) = {ab, bc} then,

() = (0.4 — (0.4 A 0.5)) -; (0.5 — (0.5 0.8)) L (03-03)=0.

But ac is not a strong arc.

Corollary 3.15. If G is complete or complete bipartite fuzzy graph, then G = GF.

4 Application of powerless fuzzy graphs

We are examining a high school with 100 students. Recently, a new drug has been discovered among the
student body, and field research has shown that 90 percent of the students have tried this drug at least once.
Our objective is to eliminate drug use from the school without the students being aware of our actions.

To achieve this, we have identified ten students who have been using these substances or whose appearance
suggests they may be users. We will create a graph featuring these ten students, with each student represented
as a vertex. Their relationships with one another will be illustrated as arcs. Each vertex will reflect various
values, such as psychological security, morals, the emotional dynamics of their family relationships, parental
education, overall well-being, comfort, and the sense of peace within each student’s family.

Additionally, each arc will represent the degree of communication between two students, evaluated based
on factors such as the length of their acquaintance, family connections, and family interaction. Using this
information, we will create a fuzzy graph to illustrate our findings (see Figure 4).
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Figure 4: Fuzzy graphs G of students

E(G) = {AE, BC, BF,ED, EH, DG, FG,GH},
§(A,B)=5 , 6(B,E)=83 , §(C,D)=5 , §(F,D)=53 , §(D,H) =53,

sd(G) = é((o.z& — (047 0.7))* + (0.4 — (0.4 A 0.8))* + (0.3 — (0.4 A 0.6))°0 + (0.3 — (0.4 A 0.3))?

+ (03 (04706)°+ (03~ (0310.5))° + (0.5 (0.6 A0.5) + (0.4 - (0.6 A 0.5))*)

1 1.9 1 .9 1.9 1.9 1.2
“((02-= A=) (02 - 2)7 4 (01— —2)* + (01— =)°) = 0.008
+ 5(02-9°+ (01- g5+ 02-5)°+ (01— 55)° + (01— )
In this graph, our goal is to significantly reduce the relationships between individuals, which leads us to seek
a powerless fuzzy graph. To achieve this, we aim to minimize the val of strong arcs. Consequently, we have
defined modified fuzzy graphs GAF, GBC GBI, GEP GFH GPG GFG and GHE (Figures 5, 6, 7 and 8) by
modifying the arcs u(AE), n(BC), u(BF), un(ED), n(EH), u(DG), n(FG) and u(HG), accordingly

GAE GBC

E,(GAF) = {AB,BC,BF,ED,EH,DG,FG,GH},
5(A,E)=10, §(E,B) =10, §(C,D)=5, §(F,D)=5.3, 6(D,H) =5.8,
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sd(GAF)

sd(GPY)

+ o+

Figure 5: Modified fuzzy graphs G of students

% ((0.2 — (0.4 0.7)% + (04— (0.4 7 0.8))* + (03— (0.4 0.6))> + (03— (0.4 0.3))*

(03— (0.410.6))*+ (0.3 = (0.370.5))* + (0.5 — (0.6 A 0.5)) + (0.4 — (0.6 A 0.5))2)

1((0.1 o) (01 ) (02— 2) 4 (01 %)

2 1 .9 .
5 10 10) 5 + (01~ ) ) = 0.012.

5.8
E,(GP®) = {AE, BC,BF,DC,ED, EH, DG, FG,GH?},

§(A,B) =33, 6(E,B)=8.3, 6(H,D) =58, §(F,D)=5.3,

2 2

é((o.g—(o4/\07

(0.3 (0.4A0.3))* + (0.3 — (0.4 A 0.6)) + (0.3 — (0.3 A 0.5))° + (0.5 — (0.6 A 0.5))

04-06105)7) + (02— 55) + (0.1 = 27+ (01— =) + (0.1 - =)?)
0.016.

+(0.2— (041 0.8))° + (0.3 (041 0.6))* + (0.2 — (0.3 0.8))
2

GBF GED

Figure 6: Modified fuzzy graphs of G of students

Figure 6: Modified fuzzy graphs of G

E,(GPYY = {AE,AB, BC,BF,DC,ED, EH, DG, FG,GH},

§(B,E)=83, §(F,D)=53, 6(D,H) =5.8,
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sd(GBF) = % ((0.3 — (047 0.7))° + (02— (047 0.7))° + (0.4 — (0.4 A 0.8))° + (0.2 — (0.4 A 0.6))”
+ (0.2 (0.310.8))° + (0.3 — (0.4 0.3))" + (0.3 — (0.4 1 0.6))” + (0.3 — (0.310.5))”
+ (05— (0.5A0.6)%+ (0.4 — (0.5 0.6))2>
+ %((0.1 _ 817))2 + (01— %)2 +(0.1— 5%)2) — 0.016.

E,(G¥P)={AE,BC,BF,EH,DG,FG,HG},
5(A,B)=5, 6(B,E)=83, §(C,D)=5, §(E,D)=5, §(F,D)=5.3, 6(H,D) =5.8,

sd(GED) %((0.3 — (047 0.7))* + (0.3 = (0.4 A 0.6))* + (0.4 — (0.4 A 0.8))° + (0.5 — (0.5 A 0.6))°
+ (03-(0.310.5))%+ (0.3 = (0.470.6))% + (0.4 — (0.5 A 0.6))2>
+é@m_@?mm_gthm_@%um_gthn_gyﬂwm_gﬁ
= 0.012

GFH GPG

Figure 7: Modified fuzzy graphs G of students

E,(GFH") = {AE,BC,BF,ED,DG,FG,GH}
6(A,B)=5, 6(B,E)=83, 6(D,C)=5, §(D,F)=53, §(D,H) =58, 6(E,H)=9.1

sd(GFH) = ;((0.3 — (047 0.7))* + (0.4 — (0.4 A 0.8))> + (0.3 — (0.4 A 0.6)) + (0.3 — (0.4 A 0.3))
+ (03— (0.3170.5))%+ (0.5 - (0.510.6))% + (0.4 — (0.5 A 0.6))2>
b (0221 01— )+ (02— ) 4 (01— 22+ (01— 1)+ (01— 1))

0.007.
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E,(GPY)={AE,BC,BF,ED,EH,FG,GH}

0(A,B)=5, §(B,E)=83, 6(D,C)=5, 6(F,D)=17, §(D,G)=5, 6(D,H) =6.6

sd(GPY) = %((0.3 — (047 0.7))° + (0.4 — (0.4 1 0.8))° + (0.3 — (0.4 A 0.6))”

+ (03— (0.4A0.6))°+ (0.1 — (0.3 0.6))° + (0.5 — (0.5 A0.6))” + (0.4 — (0.5 A 0.6))2)

+ (1= %)2 +((02- %)2 + (01— %)2 + (02— %)2 +(0.2— é)2 + (01— %)2

GFG GHG’

Figure 8: Modified fuzzy graphs G of students

E,(GYY) = {AE, AB,BC,BF,DC,ED,EH,DG,FG,GH},

5(B,E) =83, §(D,F)=83, §(D,H) =528,

sd(GFC) = 1% ((0.3 —(04A0.7)* 4+ (02— (0410.7))> + (04— (041 08))> + (0.3 — (0.4 1 0.6))?
+ (02— (0.370.8))° + (0.3 — (0.4 A 0.3))” + (0.3 — (0.4 A 0.6))* + (0.3 — (0.3 0.5))”
+(0.2=(0510.6))° + (0.4 - (0510.6))°)

+ é((oa _ 5)2 + (01— %)2 + (01— %)ﬂ = 0.02

E,(GM"%) = {AE,BC,BF,ED,EH, DG, FG},

5(A,B)=5, 8(B,E) =83, §(D,C) =5, §(F,D) =53, §(D,H) = 6.6 , 5(H,G) =5,
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sd(GHG) = %((0.3 — (047 0.7))° + (04— (041 0.8))° + (0.3 — (0.4 A 0.6))” + (0.3 — (0.4 A 0.3))”
+ (03-(04A0.6))°+ (03— (0.3A0.5))% + (0.5 — (0.6 A 0.5))2)
1 1.2 1 .2 1.2 1.2 1.2 1.9
+ 6((0.2_5) + (01 5) + (02-2)° + (01— =)+ (01— =)+ (02— ¢) )
= 0.006.
Now, Since for all GAF, GBC, GBF gFEP GFH GPG GFG and GHC we get,

sd(GHY) = sd(GAF) A sd(GPO) A sd(GPE) A sd(GFP) A sd(GFH) A sd(GPY) A sd(GFY) A sd(GHE) = 0.006.

And we see that sd(1%) < sd(G), then G¥' = GHE.
In othere site

sd(GFY) = sd(GAP) Vv sd(GPY) v sd(GBF) v sd(GFP) v sd(GFH) v sd(GPY) v sd(GFY) v sd(GHE) = 0.02.

And also sd(F¢) > sd(G), then Gp = GFY. Therefore, according to the above modified fuzzy graphs, G(HG)
and G(F'G) are powerful and powerless fuzzy graphs of graph G, respectively. This means that if we decrease
the value of the strong arc F'G in fuzzy graph G, in total, we also reduce the relationship of the other high-risk
students and get a powerless fuzzy graph. Then, by this, we could prevent the spread of new drugs in high
school, by controlling and reducing the relationship between two students F' and G.

5 Conclusion

Graph theory has wide applications in computer science and engineering, especially in genetics and economics.
The importance of this field of mathematics is palpable and undeniable. Most of the time, the aspects of
graph problems are uncertain and fuzzy, respectively. In this case, nice use of fuzzy sets. There are some
interesting features for handling fuzzy data that are unique to fuzzy sets, such as allowing for a more intuitive
graphical representation of fuzzy data, which facilitates significantly better analysis of data relationships,
incompleteness, and similarity measures. The notion of fuzzy sets was initially incorporated into relations.
So fuzzy graphs are more important than crisp graphs.

In this paper, we introduce the semi-strong arc in fuzzy graphs and define modified fuzzy graphs by
decreasing and increasing the values of the function a arc. Then, we define a powerful and powerless fuzzy
graph. We were shown one application of powerless fuzzy graphs in real life. Helpful when the fuzzy graphs
are very large. The natural extension of this work is an exploration of the applications of a powerful and
powerless fuzzy graph in database theory, computer networks, transport networks, neural networks, and all
of the networks in the real world.
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