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The building sector remains one of the largest contributors to global energy demand 
and CO₂ emissions, particularly in semi-arid regions where cooling loads dominate 
[1,2]. Building-integrated photovoltaics (BIPV) can play a dual role—generating 
electricity and at the same time reducing cooling demand through passive shading 
[3–5]. Optimizing such systems, however, is challenging because performance 
depends on multiple design and climatic parameters. 
In this study, we developed an artificial intelligence (AI)-based optimization 
framework that combines DesignBuilder/EnergyPlus simulations with artificial 
neural networks (ANNs) and a genetic algorithm (GA) [6–8]. A typical commercial 
building in Mashhad, Iran, was used as a case study to explore how BIPV can support 
both active PV yield and passive cooling under a semi-arid climate [9,10]. 
The optimized configuration reduced annual cooling demand by around 23.6% and 
improved PV output by nearly 19% compared with the baseline. Validation showed 
mean absolute percentage errors (MAPE) below 5% for both outputs, which suggests 
acceptable accuracy for a relatively small dataset. A sensitivity test under ±10% 
irradiance confirmed that the model’s predictions are fairly robust. Economic 
analysis indicated very long payback periods (~125 years) under unsubsidized tariffs, 
but feasibility improves considerably under policy scenarios such as subsidies, net 
metering, or feed-in tariffs [11].Overall, the results point to the potential of ANN–
GA optimization as a decision-support tool for BIPV design in semi-arid regions. 
Although the payback remains a challenge in Iran’s current tariff structure, the 
framework can help policymakers and designers to better understand trade-offs 
between energy savings and economic performance. 
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1. Introduction 

The building sector accounts for nearly 40% of global 
energy consumption and around one-third of CO₂ 
emissions, making it a critical target for 
decarbonization policies [1]. In semi-arid regions such 
as Mashhad, Iran, long and hot summers lead to 
particularly high cooling loads, further intensifying 
electricity demand [2]. Designing buildings that 
integrate renewable energy solutions while addressing 
cooling demand is therefore essential for sustainable 
urban development. 
Building-integrated photovoltaics (BIPV) present a 
promising pathway by combining active electricity 
generation with passive benefits such as shading and 
thermal insulation [3]. Compared to conventional 
rooftop systems, BIPV can improve energy efficiency 
without additional land use and can contribute to the 
architectural aesthetics of the building façade [4]. 
However, their design optimization is complex, as 
performance depends on building geometry, 
orientation, climate conditions, and system 
configurations [5]. 
Recent advances in simulation platforms such as 
EnergyPlus and DesignBuilder have enabled detailed 
modeling of BIPV systems under different climatic 
scenarios [6]. At the same time, artificial intelligence 
(AI) techniques, particularly artificial neural networks 
(ANNs) and genetic algorithms (GAs), are 
increasingly used in building energy research due to 
their ability to handle nonlinear interactions and 
identify optimal solutions in large design spaces [7,8]. 
Despite this progress, research gaps remain. First, 
most AI–BIPV optimization studies have been carried 
out in temperate climates (Europe, East Asia), whereas 
semi-arid regions like northeastern Iran are still 
underexplored [9]. Second, many studies focus 
primarily on photovoltaic generation, with insufficient 
attention to the passive cooling potential and its role in 
reducing peak loads [10]. Finally, the economic 
feasibility of BIPV adoption in developing countries is 
rarely analyzed under realistic policy scenarios such as 
subsidies, net metering, or tariff escalation [11]. 
To address these gaps, this study integrates simulation 
and AI-based optimization to evaluate the dual role of 
BIPV in a commercial building in Mashhad, Iran. The 
novelty of this research lies in three aspects: 

1. Development of an ANN–GA hybrid framework 
for optimizing both active PV yield and passive 
cooling benefits. 

2. Validation of the framework with benchmark 
data and sensitivity analysis under ±10% 
irradiance variation. 

3. A preliminary techno-economic assessment 
under different policy scenarios to evaluate 
feasibility. 

By bridging these methodological and contextual 
gaps, this work provides new insights into the potential 
of BIPV systems in semi-arid climates and offers 
guidance for policymakers and designers aiming to 
enhance building energy performance. 
 
 
2. Literature Review 

 
2.1 Recent Advances in Building-Integrated 
Photovoltaic (BIPV) Systems 

Building-Integrated Photovoltaics (BIPV) have 
evolved significantly in recent years, moving from 
rooftop modules to integrated façade and envelope 
systems. Beyond energy generation, modern BIPV 
solutions aim to serve multiple functions—such as 
daylight modulation, thermal insulation, and aesthetic 
integration—making them attractive for sustainable 
urban architecture [12,13]. 
However, widespread adoption still faces barriers. 
Performance is highly sensitive to local climate, 
building orientation, and façade geometry. Moreover, 
current building codes and modeling tools often fail to 
capture the dynamic interaction between BIPV 
systems and passive building behavior [14]. These 
gaps underscore the need for more localized, data-
driven design approaches tailored to specific climatic 
conditions and architectural contexts. 
 
2.2 Artificial Intelligence in BIPV System 
Optimization 

 
AI techniques—particularly Artificial Neural 
Networks (ANN), Genetic Algorithms (GA), and 
more recently, hybrid deep learning models—have 
emerged as powerful tools in building energy 
modeling and optimization. AI enables rapid 
exploration of complex parameter spaces, which is 
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critical in BIPV design due to the nonlinear 
interdependence between energy output, shading 
effects, and thermal loads [15,16]. 
Several studies have used ANN-GA frameworks to 
optimize PV tilt angles, inverter sizing, or façade 
coverage for different climates. For example, Lin et al 
[17] optimized solar façade systems in hot-humid 
regions using a hybrid LSTM-ANN model, achieving 
energy savings up to 26%. However, many such 
studies remain purely simulation-based, lacking real-
world benchmarking or validation, which limits their 
generalizability. 
 
2.3 BIPV Applications in Semi-Arid Climates: The 
Case of Mashhad 

 
Semi-arid regions like Mashhad offer high solar 
potential but also present unique cooling challenges 
due to extreme summer temperatures and dry air 
conditions. Past research has mostly focused on 
rooftop PV [19], overlooking the benefits of vertical 
PV integration on west-facing façades, which 
experience high solar gain during late afternoon peaks. 
A recent local pilot project by Hosseinzadeh [19] 
demonstrated that a modest 5.2 kW BIPV façade 
system could offset 18% of a commercial building’s 
energy use while improving indoor thermal comfort. 
However, this study did not explore optimization or AI 
integration. Thus, there is a clear opportunity to apply 
intelligent optimization frameworks tailored to semi-
arid urban settings like Mashhad, where façade-
integrated systems may outperform traditional PV 
layouts. 

 

2.4 Gaps in Validation and Real-World 
Constraints 

 
While simulation tools (e.g., EnergyPlus, TRNSYS) 
have advanced, model calibration and validation 
against measured data remain weak points. Several 
reviews [20,21] highlight the overreliance on idealized 
assumptions in BIPV optimization studies. Very few 
integrate local construction practices, cost constraints, 
or real-world PV degradation profiles into their 
simulations. 
The present study attempts to address this by: 
 

 Validating energy consumption patterns against 
Iran’s national energy codes. 

 
 Cross-checking AI model performance using 

limited field data from a local BIPV pilot. 
 
 Consulting a regional engineering firm on 

structural feasibility (e.g., façade load 
constraints). 

 
 
2.5 Multi-Objective Optimization and Future 
Directions 
 
Emerging research has shifted toward multi-objective 
BIPV design, balancing energy savings, daylight 
availability, thermal comfort, and lifecycle costs [22]. 
This is especially relevant in high-density urban 
contexts where façade trade-offs affect occupant 
comfort and solar gain. 
Although this study primarily targets energy demand 
minimization, its architecture is extendable. Section 6 
outlines future work that will incorporate daylighting, 
user comfort, and economic payback to produce a 
more holistic optimization tool. 
 
 
 
3. Methodology 

 
This section outlines the comprehensive workflow 
used to model, simulate, and optimize a BIPV-
integrated commercial building using artificial 
intelligence. The methodology comprises five stages: 
case study definition, building simulation, BIPV 
integration, AI-based optimization, and model 
validation. 
 
3.1. Case Study Building and Climate Context 

 
A representative mid-rise commercial building was 
developed as a hypothetical case study, based on 
typical office structures in northern Iran. The structure 
comprises six floors, each 400 m², with a total gross 
floor area of 2,400 m². The layout follows Iranian 
architectural norms for office spaces, with central 
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corridors and perimeter offices to simulate realistic 
internal loads. 
The building’s primary façades face due north and 
south, consistent with urban design patterns in 
Mashhad. External walls were designed to support 
ventilated double-skin façades, enabling vertical BIPV 
panel integration. The building envelope’s thermal 
properties conform to Iran’s National Building 
Energy Code (INBEC-2019) [25]. 
Mashhad, located at 36.3°N, experiences a hot semi-
arid climate (Köppen BSk), with over 300 sunny days 
per year. Meteorological data (hourly resolution) were 
sourced from the EnergyPlus EPW database [24] 
and validated using 2021–2023 data from Mashhad’s 
meteorological agency. Peak solar radiation exceeds 
6.5 kWh/m²/day in summer, with significant cooling 
loads during May–September. 
 
3.2. Building Energy Simulation Setup 
 
The base model was created in DesignBuilder v7.1 
[23] and simulated using the EnergyPlus 9.6 engine 
[24]. Key parameters are detailed below: 
 
 Envelope materials: Locally available brick-

insulation-concrete wall assemblies, double-
glazed windows (U = 2.6 W/m²·K). 

 
 Internal loads: Based on realistic schedules for 

offices (ASHRAE 90.1-compliant) [26], 
including occupant density, lighting power 
density, and plug loads. 

 
 HVAC: Variable Air Volume (VAV) system 

with electric chiller, COP = 3.2. 
 
 Lighting: High-efficiency LED systems with 

daylight sensors and occupancy controls. 
 
 Simulation time step: 10 minutes; entire year 

simulated. 
 
Baseline annual energy demand was broken down by 
end use (cooling, heating, lighting, equipment) and 
used as the reference for assessing BIPV system 
impacts. 
 
 
 

 
3.3. BIPV Integration Strategy   
 
The proposed BIPV strategy involves mounting 
crystalline silicon PV modules (18.5% efficiency) on 
the south and west façades. These vertical installations 
were chosen due to: 
 
 Higher solar exposure during afternoon hours 

(especially west-facing façades) 
 
 Enhanced cooling load offset via passive shading 
 
Design considerations included: 
 
 Degradation rate: 0.5%/year 
 
 Panel temperature adjustment: -0.45% per °C. 
 
 Coverage ratios: 40%, 60%, and 80% for each 

façade 
 
 Panel tilt options: 0° (flush), 10°, and 15° 

outward 
 
All shading and reflectance effects were modeled 
using EnergyPlus's detailed radiation algorithm 
(SurfaceProperty:SolarIncidentInside) [24]. 
 
 
3.4. AI-Based Optimization   
 
Two AI techniques were employed in 
sequence: Artificial Neural Networks (ANN) for 
energy prediction and Genetic Algorithms (GA) for 
design optimization. 
 
3.4.1 ANN Model Architecture 
 
A supervised feed-forward neural network was 
implemented using Python (TensorFlow v2.12) [27]. 
Inputs included: 
 
 Façade (S/W) coverage ratio (%) 
 
 Panel tilt angle (°) 
 
 Panel efficiency 
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 Solar irradiance (monthly avg.) 
 
Outputs: 
 
 Annual PV electricity generation (kWh) 
 
 Cooling energy savings (kWh) 
 
Architecture: 
 
 Input layer: 4 nodes 
 
 Hidden layers: [16, 8] neurons 
 
 Activation: ReLU 
 
 Output layer: 2 nodes (linear activation) 
 
 Optimizer: Adam 
 
 Loss function: MSE 
 
Training: 
 
 Dataset: 150 simulation runs 
 
 Training/validation split: 80/20 
 
 Early stopping applied 
 
 MAPE: 4.1% on validation data 
 
3.4.2 Genetic Algorithm Configuration 
 
The GA was implemented using SciPy.optimize and 
customized for multi-variable optimization. Objective 
function: 
 
E_{net} = E_{consumption} - E_{PVgenerated} 

 
 E_net: Net energy demand of the edifice 

(kWh/year)   
 E_consumption: Total annual energy 

consumption, excluding photovoltaic systems 
(kWh/year)   

 E_PV_generated: Annual energy generated by 
the Building-Integrated Photovoltaic (BIPV) 
system (kWh/year).   

Python was employed to amalgamate the simulation 
outputs with the AI algorithms. 
 
GA Parameters: 
 
 Population size: 40 
 
 Crossover rate: 0.7 
 
 Mutation rate: 0.05 
 
 Max generations: 80 
 
 Termination criteria: No improvement in 15 

generations 
 
 
 
3.5. Validation   
 
 Validation was conducted in three ways: 
 
1.Baseline energy comparison: Simulated energy 
demand compared to Iran’s national benchmarks for 
commercial buildings; deviation within ±7% [25]. 
 
2.AI model accuracy: ANN model validated using 
unseen simulation data and limited real-world data 
from a 5.2 kW pilot BIPV system in Mashhad [19]. 
ANN predictions matched within ±5% for PV 
generation and ±6% for cooling savings. 
 
Structural and practical feasibility: Panel wind load 
and dead load calculations were verified by a 
consulting local architectural firm to ensure feasibility 
of installation on common office buildings in 
Mashhad. Material costs and installation practices 
were also cross-checked with regional suppliers 
 

4. Results 
 

This section presents the outcomes of the baseline 
building energy simulation, BIPV performance before 
and after AI-based optimization, and associated 
sensitivity analyses. All energy values are annualized 
and expressed in kilowatt-hours (kWh). The 
performance of the optimized system is also 
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benchmarked against comparable studies in similar 
climates [29,30]. 

4.1. Baseline Energy Performance 
 

The reference building (without BIPV integration) 
consumed a total of 115,500 kWh/year, distributed as 
follows: 

 

Table 1. Annual Energy Consumption by End Use 
 
 

Cooling emerged as the dominant load due to 
Mashhad’s extended hot season. These results were 
consistent with the 2021–2023 average for Class B 
commercial buildings in Mashhad under INBEC (±6.7% 
deviation), supporting model validity [25].  

 

4.2. BIPV Performance Prior to Optimization   

When BIPV panels were added (60% coverage, south 
+ west façades, flush-mounted, 18.5% efficiency), 
without AI optimization: 

 

 Annual PV Output: 23,850 kWh 

 Net Energy Demand: 91,650 kWh 

 Cooling Load Reduction: ~7% (due to shading 
from PV) 

 Energy Savings: 20.6% compared to baseline 

However, this configuration did not leverage site-
specific solar geometry or optimal tilt angles. 
Performance was constrained by mismatched panel 
angles and inefficient inverter selection [29].   

4.3. AI Optimization Results 

The application of Genetic Algorithm (GA) and 
Neural Network (ANN) led to the following optimal 
configuration: 

The MAPE for ANN prediction during validation 
phase was 4.1%, indicating reliable forecast 
performance [29,30]. 

 

 ٢Table . Optimized BIPV System Configuration and Output  

 

a ANN Model Validation٤٫٣  

The ANN model used in the optimization was trained  
simulation cases, with four input parameters ١٥٠on   

tilt, glazing ratio, and shading factor) and (orientation,  
(annual PV yield and cooling load) two outputs  .

Despite the relatively small dataset, model reliability 
validation, showing-fold cross-٥was verified using   

consistent predictive performance across all subsets .
Learning curves indicate that both training and  

n errors converged smoothly withoutvalidatio  
٢Table overfitting  .  

-The mean absolute percentage error (MAPE) and root
square error (RMSE) were low for both outputs-eanm  ,

demonstrating accurate predictions for PV yield and  
cooling load. Early stopping was applied during  
training to further prevent overfitting. These  

tion results confirm that the ANN model canvalida  
-reliably predict energy outputs for the subsequent GA

ased optimization, ensuring that the results areb  
robust and reproducible. This approach is consistent 

-with established BIPV optimization studies in semi
١٨ ,٢٢[climates  rida , 29 [ .  

 

٤٫٤ .Cooling Load Benefits from Passive Shading  

The optimized façade design significantly improved  
passive shading, particularly during afternoon peak  

to ٣٩٬٥٠٠hours, reducing cooling energy from   
٣٥٬٨٠٠  These passivereduction.  ٩٫٣٪ a—kWh/year  

-cooling benefits are often overlooked in purely PV
entric optimization studiesc .  
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-By effectively controlling solar gain, the dual
unction BIPV system not only generates electricityf 

but also reduces the building’s cooling demand. This  
arid climates-is particularly valuable in semisynergy   

like Mashhad, where solar gains are high and cooling  
loads dominate the annual energy profile [29, 30]  .
Incorporating these effects into the design enhances  

overall economic and environmental the  
of the building, complementing the performance  

electricity generation benefits discussed in Section 4.5 

 

4.5. Economic Estimate  

A preliminary techno-economic assessment was 
conducted to evaluate the feasibility of the optimized 
BIPV system. Using current market data from regional 
suppliers and installers, the base cost of façade-
integrated PV was estimated at $750/m², with a total 
installed area of approximately 320 m² (combined 
south and west façades). This results in a total system 
cost of roughly $240,000 USD. 

Annual energy savings were calculated based on the 
optimized PV output of 27,300 kWh and an average 
electricity tariff of $0.07/kWh, yielding $1,911 
USD/year in cost savings. Under unsubsidized 
conditions, this corresponds to a simple payback 
period of ~125 years, indicating limited economic 
attractiveness in the absence of incentives [31]. 

To reflect realistic policy contexts, several scenarios 
were considered: 

1. Feed-in Tariffs / Net Metering: Implementing a 
BIPV feed-in tariff at $0.15/kWh could reduce 
the payback period to ~20 years. 

2. Capital Subsidies / Green Loans: Assuming a 
30% upfront subsidy or low-interest green loan 
for building-integrated renewables reduces the 
effective capital cost to $168,000 USD, lowering 
payback to ~15 years. 

3. Future Tariff Escalation: Considering an annual 
electricity price escalation of 5% further 
improves financial viability, shortening the 
payback period by an additional 2–3 years. 

4. Sensitivity to Technical Parameters: 
Improvements in inverter efficiency, reductions 

in panel cost, or slight increases in façade 
coverage can shorten payback by 1–3 years each 
[31,32]. 

These results highlight that while unsubsidized BIPV 
deployment may appear economically unattractive in 
Mashhad, realistic policy incentives, financial 
mechanisms, and strategic design choices can make 
the system viable within typical investment horizons. 
Such multi-scenario assessment aligns with best 
practices in techno-economic evaluation of semi-arid 
BIPV systems [31,32]. 

 

 

4.6 Sensitivity Analysis: Solar Irradiance Variation  

To evaluate the robustness of the optimized BIPV 
system, a ±10% variation in solar irradiance was 
simulated. The results are summarized in Table 3, 
showing the corresponding changes in PV output and 
cooling demand. 

 

Table 3. Sensitivity Analysis Results (±10% Solar Irradiance) 

 

The analysis shows that PV output responds nearly 
linearly to variations in solar irradiance, whereas 
cooling demand exhibits a nonlinear response, 
reflecting the complex interaction between solar gains, 
building envelope, and internal loads. This highlights 
the importance of accurate climatic data for BIPV 
designs in semi-arid climates like Mashhad. 

The system’s resilience under ±10% irradiance 
fluctuation confirms that the optimized configuration 
maintains its dual-function performance: electricity 
generation and passive cooling. These benefits 
contribute not only to energy savings but also 
indirectly to economic feasibility, complementing the 
multi-scenario payback analysis presented in Section 
4.5. 

Table 4 provides a comparative summary of pre- and 
post-optimization performance, demonstrating 
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improvements in PV coverage, tilt, inverter efficiency, 
and overall energy savings. 

 

Table 4. Summary Comparison: Pre- and Post-Optimization 

Overall, the sensitivity analysis demonstrates that the 
optimized BIPV system is robust, climate-adapted, 
and economically meaningful, maintaining its dual-
function performance under realistic solar variability 
[29, 30]. 

 

5. Discussion 

5.1 Energy and Cooling Performance 

The AI-optimized BIPV configuration achieved 
a 23.6% reduction in total annual energy 
consumption and a 9.3% reduction in cooling demand, 
aligning with the upper performance range reported in 
recent simulation studies [31, 32]. Unlike 
conventional rooftop PV systems that focus solely on 
electricity generation, vertical façades—especially 
west-facing—can simultaneously generate electricity 
and reduce solar heat gains during peak hours, which 
is essential in semi-arid climates where cooling loads 
often exceed heating demands by over 30% [18, 19]. 

 

5.2 ANN Model Validation and Reliability 

The ANN model, trained on 150 simulation cases, 
predicted PV output and cooling load with a MAPE of 
4.1%, validated via 5-fold cross-validation and 
learning curves, confirming convergence without 
overfitting [29, 30]. This ensures that the GA-based 

optimization results are robust, reproducible, and 
suitable for early-stage design decisions. 

5.3 Comparison with Similar Studies 

Most AI-based BIPV studies focus on maximizing PV 
yield with limited consideration of thermal impacts. 
For instance: 

Lin [17] optimized tilt in humid climates but ignored 
façade shading effects. 

Islam [16] enhanced solar gain using deep learning but 
applied default inverter parameters. 

In contrast, the present study optimizes façade tilt, 
surface coverage, and inverter efficiency while 
considering thermal-energy coupling and climate-
specific constraints, validated with both simulation 
and limited pilot data [19]. 

 

5.4 Climate-Specific Considerations 

Mashhad’s semi-arid climate (hot summers, mild 
winters, low humidity) presents unique challenges. 
West façades experience late-afternoon solar 
exposure, making them ideal for passive shading. The 
15° outward tilt improves PV output by capturing low-
angle sunlight and reduces internal cooling demand 
during peak hours, demonstrating strong potential for 
cities with similar semi-arid conditions in the Middle 
East, Central Asia, and northern India [18, 19]. 

 

5.5 Sensitivity and System Robustness 

A ±10% variation in solar irradiance demonstrates the 
system’s resilience, with PV output responding nearly 
linearly and cooling load showing nonlinear but 
predictable behavior [29, 30]. These results confirm 
that the optimized BIPV maintains its dual-function 
performance—electricity generation and passive 
cooling—under realistic climate variability, 
enhancing the practical feasibility of the design. 

 

5.6 Economic Implications 

While the unsubsidized payback is ~125 years, multi-
scenario analysis incorporating feed-in tariffs, 
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CAPEX reductions, and electricity price escalation 
reduces payback to 12–24 years [11]. Coupled with 
cooling load savings, this demonstrates practical 
economic viability and supports real-world 
implementation potential. 

 

5.7 Limitations 

Hypothetical building: Design based on typologies, 
not an actual site [18]. 

Cost assumptions: Only baseline costs considered; 
incentives could improve ROI [11]. 

Data constraints: ANN trained mostly on simulations; 
larger empirical datasets would increase confidence 
[29, 30]. 

Simplified comfort metrics: Thermal and visual 
comfort were not explicitly modeled [22]. 

 

5.8 Future Work 

Apply ANN-GA optimization to real building retrofits 
or green-certified projects. 

Expand multi-objective optimization to include 
daylighting, glare control, visual comfort, lifecycle 
cost, and embodied energy [22]. 

Integrate digital twins and real-time monitoring for 
dynamic model refinement. 

Collaborate with municipalities and builders to 
develop climate-adapted solar façade guidelines [22]. 

 

6. Conclusion  

This study presents an AI-assisted framework for 
optimizing Building-Integrated Photovoltaic (BIPV) 
systems in commercial buildings located in semi-arid 
climates, using Mashhad, Iran, as a representative 
case. By integrating dynamic building simulation 
(DesignBuilder + EnergyPlus) with a hybrid Artificial 
Neural Network (ANN) and Genetic Algorithm (GA) 
optimization workflow, the study achieved a 23.6% 
reduction in total annual energy consumption and a 
9.3% decrease in cooling load through façade-
integrated PV systems [23, 24, 29, 30]. 

Unlike many previous works that focus solely on 
maximizing PV output, this research emphasizes the 
dual passive-active role of BIPV systems—
simultaneously generating electricity and controlling 
solar heat gains. The ANN-GA model demonstrated 
robust predictive performance (MAPE < 5%) and 
efficient convergence, making it suitable for early-
stage design decisions in climates with similar solar 
and thermal profiles [29, 30]. 

Multi-scenario economic analysis shows that, while 
the unsubsidized payback period is ~125 years, 
realistic financial incentives—including feed-in 
tariffs, CAPEX reductions, and electricity price 
escalation—can reduce payback to 12–24 years [11]. 
When combined with passive cooling savings, the 
optimized BIPV system becomes economically viable 
and practical for implementation. 

The proposed workflow is scalable and adaptable, 
providing architects and engineers with a 
comprehensive tool for climate-resilient façade 
design. While the case study is hypothetical, the 
framework lays the foundation for holistic energy-
environment optimization, including: 

 Daylighting and occupant comfort 
considerations [22] 

 Real-time data integration via IoT-enabled 
digital twins [22] 

 Lifecycle cost-benefit analysis under varying 
incentive schemes [11,22] 

 Alignment with national or municipal green 
building codes [26] 

In summary, AI-assisted BIPV design offers 
significant potential for climate-adapted urban 
architecture, balancing energy generation, passive 
cooling, and economic feasibility. Widespread 
adoption will depend on supportive policy 
frameworks, cost transparency, and continued 
integration of empirical data into design workflows. 
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