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Abstract – This paper presents a control-oriented approach to measuring Optimal Value Efficiency (OVE) in Data 

Envelopment Analysis (DEA) under negative data conditions, particularly when the data originate from interval scale 
(IS) variables such as differences in sales or other financial indicators. These IS variables are first decomposed into two 
ratio scale (RS) components to preserve DEA consistency. The OVE framework, originally introduced by Halme, etc. 
incorporates the decision maker’s preferences into the evaluation process. The method first identifies technically 
efficient Decision Making Units (DMUs) and supports the decision maker in selecting the Most Preferred Solution 
(MPS) among them. To approximate the unknown value function's indifference contour at the MPS, a supporting hyper 
plane is constructed on the production possibility set (PPS). The value function is assumed to be strictly increasing in 
outputs, decreasing in inputs, and pseudo-concave. We implement this within a radial DEA model under Variable 
Returns to Scale (VRS), where both input minimization and output maximization are considered. The proposed 
approach effectively supports efficiency evaluation even with negative data, offering a robust tool for real-world 
decision environments involving dynamic systems and control strategies. 
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1. Introduction 
 

In many real-world applications, negative data 
arise naturally, particularly from interval scale (IS) 
variables such as profits, sales differences, or 
financial changes. IS data, by definition, lack a true 
zero point, rendering ratio-based analysis invalid 
[1]. When IS variables are used as inputs or outputs 
in DEA, they must first be decomposed into two 
ratio scale (RS) components to enable accurate 
evaluation. OVE measures the distance of a DMU 
from the decision maker’s Most Preferred Solution 
(MPS), defined on the production possibility set 
(PPS). Since the value function (VF) representing 
DM preferences is typically unknown, an 
indifference contour at the MPS is approximated by 
a supporting hyperplane. This hyperplane is used to 
assess how far each inefficient DMU is from the 
preferred frontier. The proposed method utilizes 
dual forms of radial DEA models, specifically 
adapted to IS data, to construct the supporting 
hyperplane without solving additional linear 
programming problems in the output direction. Our 
approach builds upon the structure proposed by 
Halme et al. while maintaining computational 
efficiency and conceptual clarity. It enables 

consistent evaluation of OVE scores even in the 
presence of negative data, offering a practical 
framework for decision-making in dynamic and 
control-sensitive environments.[2]. 

Data Envelopment Analysis (DEA), introduce
d by [3], is a non-parametric method for assessin
g the technical efficiency of Decision Making U
nits (DMUs) performing similar tasks. Classical 
DEA models are value-neutral and do not requir
e any input regarding the decision maker's (DM’
s) preferences. While this impartiality is consider
ed a strength, several extensions of DEA have b
een developed to incorporate preference informati
on, including the Value Efficiency (VE) framewo
rk proposed by [3], and further elaborated by [4,
5,6]. 

The remainder of this paper is structured as f
ollows: Section 2 reviews the treatment of interv
al scale variables and background on value effici
ency. Section 3 outlines the proposed method for
 measuring OVE scores. Section 4 provides a nu
merical example, and Section 5 concludes with fi
nal remarks and suggestions for future research. 

 
2. IS Data and Value Efficiency 

Analysis 

A critical issue with IS variables is the lack 
of a meaningful zero point, which prohibits ratio
-based operations such as division. Therefore, we
 strongly recommend decomposing each IS varia
ble into two RS variables, even if the original va
lues appear to be positive. This ensures consisten
cy within the DEA framework and enables reliab
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le estimation of efficiency scores. Negative data 
values are frequently encountered in DEA applic
ations, particularly when variables are defined as
 the difference between two ratio scale (RS) com
ponents. As noted by [7], several commonly use
d variables in the DEA literature - such as the ra
te of GDP growth per capita, profit, and taxes (e
.g., profit = income – cost) - can take negative v
alues. These are typically derived from interval s
cale (IS) measurements. 

Assume that among the total set of inputs an
d outputs, a subset is measured on an interval sc
ale. Each IS variable is replaced by a pair of RS
 variables such that their difference recovers the 
original IS variable. In this structure:  - The new 
input matrix includes: (1) RS input variables deri
ved from IS inputs (minuends), and (2) RS variab
les originating from IS outputs (subtrahends).  - T
he new output matrix include:  (1) RS output var
iables derived from IS inputs (subtrahends), and (
2) RS variables derived from IS outputs (minuen
ds). In the dual formulation of the DEA model, t
he coefficients of these newly introduced RS var
iables are set equal. Each new constraint introdu
ced in the dual problem corresponds to a new va
riable in the primal formulation. 

The following section presents the structure o
f the combined radial BCC model incorporating t
he decomposed IS variables, where each IS input
/output is transformed into a pair of RS variables
 (one input and one output). 
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uyxv tp

r ror
sm

i ioi  





 11


 
subject  to      

0
11

 






uyxv tp

r rjr
sm

i iji 
,     

1
11

 







sm

i ioi
tp

r ror xvy
      (1) 

                       ,0 ir v      
stri  ,,1 ,   ,0, ir v    ir  ,  

The model (1) is the dual of the following ra
dial combined BCC primal model. 
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Naturally, in addition to the combined orienta
tion model presented above, standard input- or o
utput-oriented DEA models can also be considere
d. Specifically, setting the combination parameter
 θ to zero in model (2) yields the output-oriente
d formulation. The input-oriented model can be 
derived analogously. It is important to note that 
efficient DMUs remain efficient even after deco
mposing IS variables. However, the increase in t
he number of variables may result in some ineffi
cient units becoming efficient. Nonetheless, only 
the efficiency scores of originally inefficient unit
s are affected. For further details, refer to [1], “
Dealing with Interval Scale Data in DEA [8]. 

The purpose of Value Efficiency Analysis (V
EA) is to evaluate the relative efficiency of each
 unit with respect to the indifference contour of 
a Decision Maker’s (DM’s) Value Function (VF)
, passing through the Most Preferred Solution (M
PS). This would be straightforward if the VF we
re known explicitly. However, in practice, the V
F is unknown and must be approximated. VEA i
ntegrates the DM’s preference information regard
ing desirable input-output combinations into the 
DEA framework. The MPS is a (real or virtual) 
DMU located on the efficient frontier, representi
ng the most desirable values of inputs and outpu
ts. [1] proposed that the DM’s unknown VF is *
*pseudo-concave**, **strictly increasing in outpu
ts**, and **strictly decreasing in inputs**, attain
ing a **maximum at the MPS.** [1, 9]. 

To approximate the indifference contour at th
e MPS, Authors in [3] suggested constructing a 
**tangent hyperplane** to the contour by definin
g a region that includes all input-output combina
tions that are less preferred or equally preferred t
o the MPS. This region is represented using a *
*cone** that approximates the set of such vector
s. VEA can be implemented through linear progr
amming using standard DEA models. A DMU is
 considered **value inefficient** with respect to
 any strictly increasing, pseudo-concave VF (wit
h maximum at the MPS) if the optimal value of 
the following problem is strictly positive. [1, 10]
  

max      )11(   ssZ TT  
subject  to     

yy gswY   ,  
,xx gswX   ,dF    (3)
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,0j if 0* j , nj ,,1  
,0j if 0* j

, kj ,,1              
                                                   
         (3) 

And, the dual of the model (3) is: 

Where 
*  and 

*  correspond to the MPS: 
,** Yy   .** Xx   The only difference com

pared with a standard primal DEA model is that 

some variables of ,  are allowed to have neg
ative values. This simple modification of the DE
A model makes it possible to take into account 
value judgments in the form of the MPS. 

 
3.Optimal Value Efficiency (OVE) Scores 

In this section, we propose an approach to 
approximate the indifference contour of the 
unknown Value Function (VF) at the Most 
Preferred Solution (MPS) using a supporting 
hyperplane on the Production Possibility Set (PPS). 
This approximation enables us to evaluate the value 
efficiency of Decision Making Units (DMUs) in the 
presence of negative data . 

To construct the supporting hyperplane, we 
utilize the dual formulation of a radial DEA model. 
The resulting dual weights assigned to input and 
output variables serve as the components of the 
normal vector of the supporting hyperplane at the 
MPS. These weights reflect the marginal rate of 
substitution between inputs and outputs according 
to the decision maker’s preferences embedded 
within the mode. 

 
3.1 Combined model after decomposing IS 

variables (BCC-Primal-OVE) 
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Where *  is corresponds to the MPS after the 
decomposing IS variables. The dual of the above 
model is as following:  

 
3.2 (BCC-Dual-OVE)     
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The obtained hyperplane from the model (6) is 

tangent on PPS at jDMU  that 

},,1,0|{ * njjj j    and in fact these 
are the reference DMUs of MPS. Since the MPS is 
efficient, so set on the efficient frontier and usually 
the set },,1,0|{ * njj j   is including 
only from MPS. Hence, this hyperplane passing 
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among MPS. 
The first, we obtain MPS. For its finding to 

compute the technical efficiency of each DMU 
(after the decomposing IS variables) and pick out 
MPS among the efficient DMUs by aid DM. We 
want to approximate the value   such that
     yxWWyx yx

jj ,,,  , where ),( yx  

is the projected point of jDMU  on the 
indifference contour VF at MPS which we utilizing 
the supporting hyperplane at MPS instead of it. We 
use from the model (BCC-Dual_OVE) and suppose 
that  *** ,, uv   is its optimal solution. So the 
equation of the supporting hyperplane of VF at 

MPS is as 0***  uyxv
TT

 . Hence, we 
have: 
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purpose obtain OVE scores only in output 
orientation. So as to, we use from the output 
oriented direction ),0(),( j

yx yWW  , that thus 

we have: 1
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j

y
uxv
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t


 . Note that we 

consider the case when both the two new variable 
in decomposing the IS variable into two ratio scale 
variables as objectives and don’t consider the case 
when one of the new variables is non-discretionary 

by character.  
The basic idea of VEA is illustrated in Fig. 1. 

We assume that the DMUs produce two outputs 
and all consume the same amount of one input. For 
evaluating point A , we would like to assess the 

ratio
OA

OA4

. Because the VF is unknown, so we can 

assume that the supporting hyperplane at MPS is 
tangent on the indifference contour and if we use 
from the supporting hyperplane then obtain the 

OVE score as the ratio 
OA

OA2

 (equal to result of 

the method of Halme et al.) or 
OA
OA3

 (this the 

OVE score is better from the method of Halme et 
al.). VE score j  for evaluate jDMU  is as 
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In fact, since may the supposing hyperplane at 
MPS be as the line  , thus we can said that 
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32

  . 

 
 

 
 

 
Fig.1 Illustration of VEA 

 
4.Illustrative Example 

In this section, we demonstrate the implementation of the proposed approach using the dataset provided in 
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Table 1. The analysis involves evaluating the Optimal Value Efficiency (OVE) of 13 Decision Making Units 
(DMUs), each of which consumes a single input to produce two outputs. It is important to note that some of the 
DMUs include negative output values. This occurs as a result of one of the output variables being measured on 
an interval scale (IS), which, after decomposition, yields both positive and negative values. The example 
highlights how the model accommodates negative data while computing OVE scores through the supporting 
hyperplane approximation. 

 
 

Table1. Units And their input/output variable values. 
Unit
s 

U1 U2 U
3 

U
4 

U
5 

U
6 

U
7 

U
8 

U
9 

U
10 

U
11 

U
12 

U
13 

1O  58 48 45 35 34 25 25 25 16 15 14 13 4 

2O  
y  
x  

-16 
38 
54 

-17 
32 
49 

-6 
33 
39 

5 
36 
31 

4 
35 
31 

-12 
19 
31 

3 
31 
28 

-14 
26 
40 

2 
30 
28 

-4 
31 
35 

1 
21 
20 

1 
19 
18 

3 
7 
4 

I 50 48 49 49 48 50 47 47 45 48 47 35 19 

 
We need that decomposing the IS output variable 2O  into two RS variables which 2O  generated by 
difference two the RS values. For this example we have: 2p , 1m , 0t , 1s . 

Table 2. The new variables values after decomposing 2O . 
Un

its 
U

1 
U

2 
U

3 
U

4 
U

5 
U

6 
U

7 
U

8 
U

9 
U

10 
U

11 
U

12 
U

13 

1x  
54 49 39 31 31 31 28 40 28 35 20 18 4 

1y  
38 32 33 36 35 19 31 26 30 31 21 19 7 

2x  
50 48 49 49 48 50 47 47 45 48 47 35 19 

2y  
58 48 45 35 34 25 25 25 16 15 14 13 4 

 
To compute the technical efficiency for each DMU with the new variables values after decomposing, 

utilizing from the data of table 2. Each units U1, U5, and  is efficient. We picking the unite A as MPS and
1* A . Both variables 11, xy  are objectives. U13 The variable 1x  can be viewed either as output or input. 

We considered that as input. For finding output/input weights, we use from model (BCC-Dual-OVE). Thus we 
have: 

 
min              uvv  2121 58385054   

subject  to     058385054 2121  uvv  ,    048324849 2121  uvv   
...                                                                     (8) 

158385054 2121  vv ,             1v 1 0   

The obtained weights are as ,004987.0*
1 v  ,005275.0*

2 v  ,004987.0*
1   ,004783.0*

2   

006613.0* u . 
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Table 3. Obtained OVE scores and comparison the proposed method with the Halme et al methods.  
Units U1 U2 U3 U4 U5 U6 U7 
The model BCC combined of Halme et al. 0.00 0.11 0.02 0.00 0.00 0.54 0.17 
the model BCC output oriented of Halme 
et al. 

0.00 0.14 0.09 0.13 0.00 0.6 0.14 

the OVE method 0.00 0.08 0.01 0.00 0.00 0.12 0.05 
Units U8 U9 U10 U11 U12 U13  
The model BCC combined of Halme et al. 0.53 0.37 0.59 0.64 0.32 0.00  
the model BCC output oriented of Halme 
et al. 

0.58 0.28 o.49 0.50 0.26 0.00  

the OVE method 0.13 0.03 0.06 0.19 0.16 0.00  
 

5.Conclusion 

The paper proposes using scalarization-based methods 
for multi-objective optimization to produce a range of 
Pareto optimal solutions. Decision-makers can then select 
the best solution based on their preferences. Our paper 
introduces a new technique for estimating desired efficiency. 
We accomplish this by utilizing the supporting hyperplane 
at MPS and assuming that it is tangent to the unknown 
preferred function. The weights of different solutions on the 
Pareto front are adaptively determined by using information 
from the previously obtained solutions' positions. We also 
assume that we can find common weights by solving a dual 
model for the decomposed IS variables. A novel optimal 
model based on deviation is proposed to determine 
objective weights. These weights will help us calculate the 
OVE scores more accurately. Though we can use methods 
that utilize the original IS variables without decomposing 
the data, finding the most preferred weights will improve 
the accuracy of the OVE scores. There is also the option of 
using CCR models instead of BCC models, which will 
change the PPS and the supporting hyperplane, resulting in 
a different measure of OVE. While using optimal weights 
of each decision-maker unit instead of common weights 
may take us away from the desired PE for each unit, the 
decision-maker's preferences can help achieve real 
performance. Finally, this process can also be used to obtain 
cost efficiency, provided that the cost function is unknown. 
Also, in this paper the main contribution of this paper is 
introducing a particular way to estimate value efficiency by 
the supporting hyperplane at MPS and we assume that this 
is tangent hyperplane of (unknown) value function at MPS. 
In other words, by solving a dual model for the obtained 
data of decomposing of the IS variables found weights for 
input/output variables.  Then the optimal value efficiency 
scores, produce by simple calculations. We can use from 
common weights for output/input variables after 
decomposing IS variables and by those weights obtain 
value efficiency scores. We can use methods that utilizing 
the original IS variables without decomposing data like 
Zionts-Wallenius method in MOLP and so on. 
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