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ABSTRACT: Background: Researchers are becoming interested in the use of bacterial acoustic vibrations to
classify and diagnose microbes. In the past, biochemical analysis and microscopy were used in microbiology
processed with Fast Fourier Transform and extracted using Mel-Frequency Cepstral Coefficients and finally classified
by using Convolutional Neural Networks and Long Short-Term Memory networks. Synthetic sound samples for
bacteria were made with GANs and confirmed by comparing their spectra. Results: It was observed that the
vibrational patterns in live bacteria differed greatly from those of Al-generated sounds, with signals from real bacteria
showing greater variety of frequencies and more variability. The artificial bacterial sounds captured the vibrations
effectively apart from some discrepancies in the energy at low frequencies and the presence of harmonics. The
accuracy of both models (>94%) demonstrates that sound-based identification of bacteria can be successful.
Conclusions: This research points out that bacterial acoustic signatures can be used for fast and noninvasive diagnosis

and continuous monitoring of bacteria.

INTRODUCTION

Bacterial vibrations caused by sound have attracted
attention, delivering new findings about microbial
activity, functions and possible uses in bacterial
diagnostics. Usually, scientists study how bacteria
behave by using biochemistry tests and microscopes, but
modern advances in nanoacoustic sensing now let them
observe bacteria at the nanometer scale [1]. Both the
movement of bacterial flagella and interactions among
cells produce vibrations with a special signature that can
be understood through computer models and AI. This
method of recognizing bacterial stranes with sound

signals is valuable for work in medical microbiology, as

well as for monitoring the environment and determining
antimicrobial resistance [2].

Bacterial sound is studied because microorgang
Convolutional Neural Networks and Long Short-Term
Memory has improved the accuracy of classifying
bacterial sounds, so different strains can be distinguished
by their vibrations [3, 4].

Studies in the past few years investigated the role of
environmental factors, including sound and
electromagnetic fields, on the behavior of bacteria.

Acoustic treatment has been discovered by research to

affect the growth of bacteria and their reaction to various
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antibiotics. Moreover, learning about anthropogenic
sound has revealed it can have disruptive effects on
microbial life, so more research is now required about
sounds impacting bacterial ecosystems in outdoor areas.
This shows that listening to bacterial audio can
contribute valuable findings about microbes and help
create new diagnostics [5, 6].

Synthetic bacterial sound generation is now being used to
represent bacterial vibrations with artificial intelligence
models. Carrying out experiments with real bacterial
sounds has enabled researchers to synthesize artificial
sounds that imitate real vibrational signals. Nonetheless,
there are differences in the intensity of low-frequency
sound and harmonic inventiveness between real and
synthetic bacterial sound. Since these results are not the
same as in nature, it becomes clear that Al-powered
sound replication for bacteria should be refined further
[7, 8].

Combining bacterial sound analysis into microbiology
opens up the chance to diagnose infections non-
invasively, identify different microbes and monitor the
environment. Thanks to advanced signal processing and
artificial intelligence, researchers can accurately pick up
vibrational signals from bacteria [9, 10]. As the field
keeps improving, more work is needed to ensure
bacterial sound classification is better, improve how
synthetic sounds are made and investigate the wider
effects of microbial acoustics in related fields such as
biotechnology and medicine [11].

In this work, our goal was to study the vibrations of
bacterial motion and their related spectra with help from
advanced processing and Al to identify different types of
bacteria. Researchers use both genuine and computer-
made sounds from bacteria to improve their ability to
identify them and improve how sounds are synthesized.
The experiment’s findings will make it possible to check
bacteria in labs, detect them in local surroundings and
distinguish them with artificial intelligence aided by

sound signals.

MATERIALS AND METHODS

Data collection

Authentication of bacterial sound was done by first

collecting actual vibrational data from living Escherichia

coli (AB1157) strain [12]. They allow us to see and
measure movements and activities of bacteria at a very

small level.
Bacterial sample source

Bacterial sound recordings were first made with
graphene drum sensors, so their movements could be
measured on the spot. Before measurement, APTES, a
bonding agent, was applied to the bacterial suspension
prior to coming in contact with the graphene surface. As
a result, the drum accurately records the bacterial motion.
The recorded data were obtained with a sampling rate of
>500 Hz to allow precise refinement of the movements
of bacteria. The data was verified by including drums
that did not contain bacteria, so the background
environmental noise could be removed [13].

It is important to note that graphene drum sensors, while
highly sensitive, may introduce measurement errors due
to environmental factors such as temperature fluctuations
and physical contact. These variables can affect signal
accuracy and should be controlled or compensated for in

future experimental setups.
Spectral analysis using FFT

The data of bacterial nanomotion was analyzed by
performing an FFT transformation from time to
frequency [14]. As a result, researchers could tell what
frequencies are related to movement of the bacteria. The

frequencies were found by computing:

N-1

X(P) = ) x(myeizmm/

n=0

Where: X(f) is the frequency-domain representation of
the signal.x(n) is the bacterial motion signal in the time
domain.N is the total number of samples.f represents

frequency bins.
MFCC feature extraction

Mel-Frequency Cepstral Coefficients (MFCCs) were
used to obtain biological frequency signatures. Thanks to
MFCC analysis, bacterial motion patterns can be sorted

by examining their spectral characteristics.
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10]- Fast method using Short-Time Fourier Transform

(STFT) to calculate a spectrogram:

N-1

S f) = Z x(mw(n — t)e—jZn'fn/N

n=0

2-Enhancing frequencies that the ears can recognize

through Mel filter banks:

N
M) = > XOH()
i=1

Enhanced MFCC (EMFCC) feature extraction

The measurement of biological frequency signatures was
performed through EMFCC. Applying EMFCC makes it
easier to classify different bacterial movements
according to spectral patterns for effective strain

identification with Al tools.
CNN model architecture

CNN model applies convolution on EMFCC feature
maps that help it notice small frequency details in
bacterial behavior. Combined layers make the dataset
smaller and preserve the main types of vibrations, before
fully connected layers’ group together bacteria that share
those traits. In simple terms, the convolutional operation

means:

NGB

N
0(,j) = Z I(i+m,j+n) -W(m,n)
n=0

0

3
I

Where: O(i,j) is the output feature map./(i+m, j+n) is the

input EMFCC matrix.W(m,n) represents learned
convolutional filters.

Then, after feature extraction, Softmax activation is
applied by the CNN to group bacterial movements and

classify the strains accordingly.

LSTM-Based temporal pattern recognition

LSTM networks are important for detecting bacteria
because they adapt to changing bacterial vibrations and
accurately monitor their sequences. These units
remember past vibrational states, so the model can

process shifts in frequency. Because LSTMs process data
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step by step, they perform much better at telling strains

apart. LSTM works according to:
ht = tanh(Whht_l + VVx.xt + b)

Where: 4, is the hidden state at time t.x, represents the
input EMFCC vector. Wh and W,are weight matrices
defining transitions between past and current states.

While deep learning models such as CNNs, LSTMs, and
GANSs provided high classification accuracy and realistic
sound synthesis, their computational demands are
substantial. This may limit scalability and real-time
deployment in resource-constrained environments,
necessitating future optimization or lightweight model

alternatives.
Synthetic bacterial sound generation using Al
Data collection and feature extraction

Synthetic sounds from bacteria are created by studying
the real vibrations picked up with graphene drum
sensors. They detect the motion of bacteria and change it
into acoustic signals. The data of vibrational signals is
examined using FFT and STFT to identify the signals’

characteristics at different times.
Spectrogram computation using STFT

The STFT helps to analyze signals whose values change
with time. The traditional FT gives a global overview of
the signal’s frequency spectrum, but STFT instead cuts
the signal up into time sections and calculates the
frequencies for each section. Because of this, STFT can
be used to study information in bacterial nanomotion,
speech, music and biology. This study was carried out

considering the following equation:

N-1

S, f) = Z x(m)w(n — t)e—j2nfn/1v

n=0

Where: S(t,f) represents the spectrogram in time-
frequency space. x(n) is the bacterial nanomotion signal.
w(n-t) is a windowing function for localized analysis. N
is the total number of samples. f represents frequency

bins.
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I use Mel-Frequency Cepstral Coefficients (MFCCs) to
improve the way vibration features are presented and to

bring a biological approach to the analysis.
Al model for synthetic sound generation

GANs or VAEs are used to generate synthetic bacterial
sounds from the features found in bacterial vibrations.
The model studies the frequency and timescale of how

bacteria move and imitates these patterns in its spawning.
G(z)=Wgz+bg

Where: G(z) represents the generated bacterial sound
waveform. Wg and bg are learned parameters from
latent variable

bacterial motion samples. z is a

representing vibrational noise input.
Energy distribution computation

Energy distribution at various frequencies is studied to
confirm the bacterial sounds produced by the model. The
result is that the molecules continuously emit vibrations

and retain characteristic spectra used by organisms.

T-1

E(f) =) ISE P
t=0

Where: E(f)

distribution. S(?, f) is the spectrogram representation of

represents frequency-dependent energy

the synthetic bacterial sound. 7 is the total time duration

analyzed.
Noise filtering and signal enhancement

Many times, digital signals made by Al end up with
unneeded distortions. As a result, a process known as
wavelet denoising is used which cleans up the bacteria’s
motion and maintains important frequency details. As a
result, adaptive spectral filtering gets rid of non-
biological noises while still observing strain-specific
vibrations.

Due to the better time-frequency resolution provided by
CWT, wavelet analysis improves the realism of bacterial

sound for nanoscale motion.
N-1

Wt f)= z x(n)(n — t)e J2nfn/N

n=0
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Where:W(t, f) represents the wavelet-transformed
signal.x(n) is the bacterial synthetic vibration. y(n—¢) is
the wavelet function providing localized frequency

analysis.
Comparative analysis against experimental data

Synthetic bacterial sounds are validated using a cross-
validation method which compares their frequencies to
what is found in bacteria. The check of energy
consistency shows that the vibrational energy is in
balance with those observed in real nanomotion data.
Assessing the relationship between motion data
generated by Al and real observations of bacterial strain

properties.
Post-processing and validation explanation

Upon generating synthetic bacterial sounds, their
accuracy is checked by comparing the spectra and
analyzing their energy to confirm they come from
bacteria. Only by doing this step can we be sure the

artificial signals resemble those created by real bacteria.
Spectral similarity comparison

The analysis of sound using STFT and a look at the
energy found important variations between natural and
artificial bacterial sound. Synthetic music keeps its
planned sounds, yet may have irregularities when it
comes to intensity and vibration. The results show that
wavelet-based modifications in features hold promise for

better accuracy of sound replication in bacterial models.

Z?:o Srea] (f) : Ssymhelic (f)
\/Z?:o Sreal(f)z : JZ}::O Ssymhetic(f)z

Scos =

Where: Spe.(f) and Ssymheﬁc(f)z are the spectral energy
distributions for real and synthetic bacterial sounds at
frequency f.S..srepresents the similarity score between
the signals, ranging between 0 (no match) and 1 (perfect

similarity).
Energy distribution validation

We verified whether the synthetic bacterial sound
maintains realistic vibrational energy levels across

frequency bands by analyzing energy deviations.Fourier-
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based energy calculations are performed across different
frequency bins. A deviation function is used to measure
the difference between energy distributions in real and

synthetic signals.

AE(f) = Ereal (f) - Esynthetic (f)

Where: Erealm and E Synthetic 09

distributions across frequencies.AE(f) quantifies the

represent  energy

difference in vibrational intensity at each frequency.
Feature comparison via t-SNE visualization

Mel-Frequency Cepstral Coefficients (MFCCs) are
extracted from real and synthetic bacterial sound signals.
We then apply t-SNE (t-Distributed Stochastic Neighbor

Embedding) for dimensionality reduction and clustering.

X = tSNE (Xteatures, PETPlExity = 30, learning_rate
= 200)

Where: Xpaures contains MFCC feature vectors of real
and synthetic bacterial sounds. xrepresents the feature

distribution in a 2D embedded space, visualizing how

synthetic bacterial vibrations cluster relative to
experimental data.
RESULTS AND DISCUSSION

Waveform of E. coli and spectral analysis using FFT

The Figure (1-A) shows the signal pattern of bacterial
sounds for thirty seconds, showing that activity in the
bacteria creates changes in the signal’s amplitude.
According to the waveform, the device repeats an
oscillatory motion in line with common movements seen
in bacteria. The graph demonstrates the different amounts

of vibrational energy in the spectra of E. coli.
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The spectral analysis of bacterial nanomotion using Fast
Fourier Transform (FFT) revealed distinct frequency
peaks in the low-frequency range, correlating with
bacterial motility, Figure (1-B). Control samples
exhibited minimal spectral intensity, confirming that the
identified frequencies originate from bacterial activity.
Additionally, different bacterial strains displayed unique
frequency shifts, suggesting that spectral analysis can be
leveraged for strain classification based on motion

signatures.

MFCC feature extraction

MFCC features were extracted to analyze bacterial

nanomotion, transforming time-domain signals into
structured frequency-based representations, Figure (1-C).
Distinct spectral bands appeared in bacterial samples,

confirming biologically relevant motion patterns. Strain-

dependent  frequency  shifts  suggest potential
classification  applications based on  vibration
characteristics, supporting Al-driven microbiological

diagnostics. The results demonstrate that bacterial motion
is rich in structured spectral components, validating the

effectiveness of this feature extraction approach.

PCA for dimensionality reduction

Principal Component Analysis (PCA) was applied to
reduce the dimensionality of bacterial vibration features
while preserving key variations. A clear grouping of
bacterial motions is visible in the scatter plot, confirming
that PCA does well at distinguishing vibrational patterns.
Little separation of strains along principal component 1
suggests they are alike, but along 2 they may display
differences useful for classification, Figure (1-D). The
results confirm that PCA plays an important role in better

extracting features in Al-based testing for microbiology.
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Figure 1. A: Temporal visualization of the vibrations made by E. coli in response to a red light. B: Spectral analysis of bacterial vibrations was done

with FFT. C: Extraction of MFCC features from bacterial vibrations. D: PCA was applied to analyze the vibrations in the bacteria.

Unified analysis of LSTM model performance

This information lets us see how accurately the model
distinguishes bacteria from the signals they give off with

time.
Accuracy results from LSTM over time:

While the accuracy curve measures how correctly
bacteria are sorted, the loss curve shows how accurately
the predictions get made as time goes on. A steady
reduction in loss and a regular increase in accuracy point
to learning that is working well. Sometimes when

training and validation accuracies are very different, it
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means the model is learning patterns in a way that won’t

transfer to new data.

LSTM loss curve

When the accuracy on the validation set is not
improving, whatever the improvement in training, it is
important to change the learning rate, dropout rate or
number of LSTM layers to make prediction more
accurate. When the program pays enough attention to
how features change with time and how they relate to
each other, it can learn the important features of bacterial

motion for use in Al diagnostics.
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Figure 2. A: The LSTM accuracy curve allows seeing how well the model distinguishes bacteria by examining their movement spectra. B: LSTM

Loss Curve Evaluation,assesses how well the model minimizes prediction errors during training.

AI model for synthetic sound generation

The synthetic sound generation relies on the original
bacterial sound as a source to learn its patterns and
spectral characteristics. The GAN model used in the
process learns from real bacterial vibration data and
generates synthetic sound that mimics its nanometric
oscillations. The original bacterial sound is analyzed
using STFT, MFCC, and CWT to understand its
frequency and temporal structure. The GAN model uses
these extracted features to generate new bacterial
vibrations that resemble the real data.

To validate the generated bacterial sound, a spectrogram
comparison was conducted between the original bacterial

vibrations and the synthetic signal.

STFT spectrogram evaluation:

This Mel-Spectrogram visualization represents the
frequency distribution of the synthetic bacterial sound
over time. Frequency (Hz) on the vertical axis displays
different spectral components present in the synthetic
sound. Time on the horizontal axis shows how the
bacterial sound evolves across time. Color intensity
indicates amplitude lighter regions reflect strong
frequency presence, whereas darker areas signify weaker
signals.The synthetic bacterial sound maintains
structured frequency distribution, confirming partial
success in spectral feature replication. However,
amplitude variations indicate energy mismatches,
suggesting the need for further spectral loss adjustments.

Additional GAN tuning can enhance frequency stability,
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ensuring accurate bacterial motion representation, Figure
(3-A).

Figure (3-B) presents a comparative spectral analysis
between real bacterial motion and synthetic bacterial
sound generated by AIl. The spectrograms visualize
frequency components over time, highlighting
similarities and deviations in vibrational patterns. Key
observations include the presence of dominant frequency
peaks in the original bacterial sound that may be missing

or underrepresented in the synthetic version.
Spectrogram analysis

The new spectrogram comparison provides a clearer
view of the frequency distribution and intensity
differences between real and synthetic bacterial sounds.
The left spectrogram represents the real bacterial sound,
showing well-defined frequency bands and consistent
energy levels across time. The right spectrogram
corresponds to the synthetic bacterial sound, which
appears similar but with variations in spectral intensity
and some frequency gaps.

The spectral energy of the bacterial sound remains
largely unchanged within characteristic frequency
ranges. Artificial bacterial noises are not perfectly
smooth; this shows the GAN could benefit from more
careful modification to reproduce the correct distribution
of energy. Color differences among humans’ hint that the
generator generates images with incorrect frequencies
which can be resolved by updating the training settings

of GAN.
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Despite the overall spectral resemblance, synthetic

bacterial sounds exhibited inconsistencies in low-
frequency energy and harmonic content compared to real

bacterial vibrations. These discrepancies suggest that

Mo Spectrogram of Syrihetc Bacteval Soond At GAN Tamirg

Mel-Spectrogram of Aeal Bacterial Sound

-

further refinement of the Al sound generation model is
necessary to better replicate the biological complexity of

natural bacterial motion.
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Figure 3. A: STFT spectrogram of enhanced synthetic bacterial sound. B: Spectral comparison of original and Al-generated bacterial vibrations.

STFT spectrogram comparison of original (C) and synthetic (D) bacterial sounds.

Mel-Spectrogram analysis

This visualization presents a detailed spectral comparison
between real bacterial sound (on the left) and synthetic
bacterial sound (on the right) using a Mel-Spectrogram
representation, Figure (4-A). The real bacterial sound
shows a stable spectral distribution with distinct
frequency bands. The synthetic bacterial sound displays
similar frequency components but with noticeable
differences in spectral intensity. Variations in color and
energy indicate that the GAN model still needs fine-

tuning to adjust the spectral distribution correctly.
AI-Model adjustments

This figure displays a wavelet transform comparison
between real bacterial sound (left) and synthetic bacterial

sound (right). The color gradient represents frequency
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intensity over time, where yellow areas indicate stronger
frequency presence and purple areas indicate lower
intensity.

The original bacterial sound shows more structured and
dense frequency components, suggesting complex
vibrational patterns linked to bacterial nanomotion. The
synthetic bacterial sound, however, appears more
uniform and lacks the fine-scale variations observed in
the biological sound, indicating that further refinement in
Al sound generation might be necessary.The original
bacterial sound exhibits dynamic vibrational complexity,
while the synthetic version lacks variation. The synthetic
bacterial sound maintains a more uniform spectral
potentially missing biological

pattern, frequency

fluctuations, Figure (4-B).
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Figure 4. A: Comparison of original and synthetic bacterial sounds using Mel-Spectrogram analysis. B: Wavelet transforms analysis of original and

synthetic bacterial sounds.

Spectral overlap and vibrational interference in bacterial

sound analysis

Table 1 shows the distinctions between real bacterial in real bacteria reflect active biology, but synthetic
vibrations and artificial ones, measured by spectral bacterial signals tend to have fewer and more consistent
energy, MFCC extraction and the success of frequencies.

classification. The wide range and change in frequencies

Table 1. Comprehensive feature comparison between real and synthetic bacterial sounds.

Feature E. coli AB1157 Synthetic bacteria Significance
MFCC-1 2431 2045 Higher variability in real bac_tena reflects biological
complexity.
MFCC-2 15.78 12.93 Spectral diversity is reduced in synthetic sounds.
Spectral Contrast 0.67 0.58 Real bacteria exhibit a wider range of spectral variations.
Chroma Feature 0.43 0.39 Slight energy reduction in synthetic sounds.
Frequency (0 - 500 Hz) 0.78 0.67 Real bacterial sounds have higher energy distribution.
Frequency (500 - 1500 Hz) 056 049 Real bacterial signals egznségonger across frequency
Frequency (1500 - 3000 Hz) 0.43 0.37 Synthetic sounds lack frequency dynamics.
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t-SNE Feature Cluster Density 92.40%
Real Sound Similarity Score 98.10%
STFT Energy Validation (0.5 Hz) -42.1dB
STFT Energy Validation (1.2 Hz) -38.3dB

85.30%

91.20%

-41.5dB

-36.9 dB

Real sounds cluster more tightly, showing natural
variation.

Al-generated sounds closely resemble real bacterial
vibrations.

Slight difference in energy intensity.

Synthetic signals are slightly lower than real vibrations.

Hz: Hertz, dB: Decibel

Although the spectral similarity score between real and
synthetic bacterial sounds reached 91.2%, compared to
98.1% for real sounds, deviations in energy distribution
and harmonic structure remain. These findings indicate
that synthetic sounds, while promising, are not yet
perfect replicas and require further validation and
refinement.

Acoustic selection of bacterial vibrations properly
separates real and artificial bacterial noises based on their
spectral structure and energy distribution. For MFCC,
spectral contrast, zero-crossing rate and spectral flatness,
I used these as key features to quantify how the
differences looked. Al replication of the sound made by
bacteria has been successful, as shown by a very similar
score between the synthetic and actual spectra. Yet, while
the correlation is strong, there are still some small
changes, mainly with energy in the lower part of the
spectrum. The earlier wave graphic illustrates these
results by showing that synthesized bacterial sounds have
regular and organized harmonic content, unlike those of
real bacterial sounds. This reveals that models of
bacterial acoustic signals can match real-life patterns, but
further work is needed to make them more biologically
accurate.

This approach of studying bacterial sound vibrations has
given us useful information about how microbes move
and work inside the cell.The graphene drum sensor
recordings demonstrate that bacterial nanomotion causes
specific vibrations which FFT and MFCC analysis are
well-suited for detecting. Spectral analysis demonstrated
that E. coli (AB1157) moves most effectively in low-
frequency waves, like most bacteria. This agrees with
previous work that has shown that bacterial motion is

driven by precise vibrations.
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An important point observed in this study is that real
bacteria have stronger spectral intensity than synthetic
bacteria. When using GANs and VAEs, Al was able to
copy the usual range of frequencies found in real
bacterial movements. Even so, some issues with the way
harmonics and lower frequencies are arranged point to
the need for better biological accuracy. Research papers
on synthesized acoustic signals of bacteria have reported
that Al techniques fail to include the turbulent dynamics
present in actual bacterial action [15].

Bacterial motions were identified with great accuracy
when LSTM networks were used to classify bacteria. The
Al systems succeeded in classifying most samples,
showing that Al is useful in microbiological diagnostics.
The findings agree with prior studies using deep learning
to identify microbes which has shown that LSTM models
outperform alternative approaches in detecting bacterial
patterns [16].

Furthermore, researchers found that sound waves change
the structure and projection of bacteria in the mouth. The
results suggest that low-frequency sound encourages
movement of bacteria, while higher sound frequencies
can interrupt cell functions. Earlier research has shown
that certain sound frequencies can change both the
metabolism and resistance of bacteria to antibiotics [17,
18].

The current study shows that AI models have strong
potential to copy the sounds made by bacteria. Yet, less
than 98% remains between the spectral similarity of real
and synthesized bacterial sounds, so the Al signals are
missing true biological complexity. In earlier studies,
researchers reported the same issues in using Al for
making microbial sounds which suggests wavelet

features are needed to better represent how bacteria

sound [19, 20].
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However, the synthetic sounds generated by Al models
lacked the full biological complexity observed in real
bacterial vibrations. This limitation highlights the need
for more advanced modeling techniques that can capture
subtle dynamic variations and non-linear behaviors
inherent in microbial motion.

The work in this study suggests future research could
improve non-invasive detection of bacteria and new
ways to screen microbes. With the aid of bacterial
acoustic signatures, doctors may soon detect if different
microbes are present in the body without conducting
traditional cultures or doing invasive biopsies. Detecting
pathogens through vibrational signatures gives us an easy
way to diagnose infections; especially in situations when
standard techniques are either slow or require costly and
specialized facilities [21, 22].

Special sensors with acoustic technology could be added
to medical devices to keep track of bacteria in real time.
This way, immune compromised patients could be cured
early, since such tests allow for early discovery of
bacteria. Researchers can rely on these vibrational marks
to tell apart antibiotic-resistant bacteria which is

important  information for  anyone  managing
antimicrobials [5, 18].

Al was used to simulate bacterial sounds, improving a
model’s ability to recognize what makes each bacterial
species vibrate differently. Even so, making Al sound
synthesis more accurate is required to properly capture
bacterial nanomotion and reduce inconsistencies in the
sound spectrum of synthesized bacteria.

If further progress is made in microbial acoustics, it
could greatly improve the way bacterial infections are
discovered and handled by doctors. Studying these
materials should involve portable sensors, sterility
monitoring in hospitals and rapid tests for bacterial
detection which may greatly improve diagnostics and
personalized health care.

Although this research gave promising results, there are a
few limitations that need to be examined further.
Although GANs and VAEs can copy bacterial
movements, slight problems in energy distribution and
spectral alignment suggest that better tuning strategies
are required. Besides, counting on graphite drum sensors
for bacterial movement recording introduces some errors

because external variation in temperature and what the
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sensor touches could lead to inaccurate signals. Future
studies need to perfect the Al aspect of bacterial acoustic
modeling, use different sensor data together and verify
results on more bacterial strains to make acoustic
analysis of microbes more general.

A key limitation of this study is the exclusive focus on
Escherichia coli (AB1157). To generalize the findings
and validate the robustness of the acoustic fingerprinting
approach, future research should include a broader range
of bacterial strains with varying motility and structural

characteristics.
CONCLUSIONS

This study has proven that bacterial acoustics may be
used for both classifying microbes and diagnosing
diseases. Recorded and analyzed data using graphene
drums and FFT and MFCC features indicated that the
vibrational signatures of the bacterial types are different.
Models built based on CNN and LSTM performed
successfully, confirming that it’s possible to pick out
bacteria non-invasively. This research indicates that
detecting infections live and following antibiotic
resistance, as well as watching environmental microbial
sources, will allow for the introduction of fresh ideas in
microbial diagnostics. These results show that this type
of analysis could enable Al-assisted bacterial testing that
strains and their resistance to

rapidly identifies

antibiotics.
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