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ABSTRACT: Background: Researchers are becoming interested in the use of bacterial acoustic vibrations to 

classify and diagnose microbes. In the past, biochemical analysis and microscopy were used in microbiology 

processed with Fast Fourier Transform and extracted using Mel-Frequency Cepstral Coefficients and finally classified 

by using Convolutional Neural Networks and Long Short-Term Memory networks. Synthetic sound samples for 

bacteria were made with GANs and confirmed by comparing their spectra. Results: It was observed that the 

vibrational patterns in live bacteria differed greatly from those of AI-generated sounds, with signals from real bacteria 

showing greater variety of frequencies and more variability. The artificial bacterial sounds captured the vibrations 

effectively apart from some discrepancies in the energy at low frequencies and the presence of harmonics. The 

accuracy of both models (>94%) demonstrates that sound-based identification of bacteria can be successful. 

Conclusions: This research points out that bacterial acoustic signatures can be used for fast and noninvasive diagnosis 

and continuous monitoring of bacteria. 

 

                        INTRODUCTION 

Bacterial vibrations caused by sound have attracted 

attention, delivering new findings about microbial 

activity, functions and possible uses in bacterial 

diagnostics. Usually, scientists study how bacteria 

behave by using biochemistry tests and microscopes, but 

modern advances in nanoacoustic sensing now let them 

observe bacteria at the nanometer scale [1]. Both the 

movement of bacterial flagella and interactions among 

cells produce vibrations with a special signature that can 

be understood through computer models and AI. This 

method of recognizing bacterial stranes with sound 

signals is valuable for work in medical microbiology, as 

well as for monitoring the environment and determining 

antimicrobial resistance [2]. 

Bacterial sound is studied because microorgang 

Convolutional Neural Networks and Long Short-Term 

Memory has improved the accuracy of classifying 

bacterial sounds, so different strains can be distinguished 

by their vibrations [3, 4]. 

Studies in the past few years investigated the role of 

environmental factors, including sound and 

electromagnetic fields, on the behavior of bacteria. 

Acoustic treatment has been discovered by research to 

affect the growth of bacteria and their reaction to various  
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antibiotics. Moreover, learning about anthropogenic 

sound has revealed it can have disruptive effects on 

microbial life, so more research is now required about 

sounds impacting bacterial ecosystems in outdoor areas. 

This shows that listening to bacterial audio can 

contribute valuable findings about microbes and help 

create new diagnostics [5, 6]. 

Synthetic bacterial sound generation is now being used to 

represent bacterial vibrations with artificial intelligence 

models. Carrying out experiments with real bacterial 

sounds has enabled researchers to synthesize artificial 

sounds that imitate real vibrational signals. Nonetheless, 

there are differences in the intensity of low-frequency 

sound and harmonic inventiveness between real and 

synthetic bacterial sound. Since these results are not the 

same as in nature, it becomes clear that AI-powered 

sound replication for bacteria should be refined further 

[7, 8]. 

Combining bacterial sound analysis into microbiology 

opens up the chance to diagnose infections non-

invasively, identify different microbes and monitor the 

environment. Thanks to advanced signal processing and 

artificial intelligence, researchers can accurately pick up 

vibrational signals from bacteria [9, 10]. As the field 

keeps improving, more work is needed to ensure 

bacterial sound classification is better, improve how 

synthetic sounds are made and investigate the wider 

effects of microbial acoustics in related fields such as 

biotechnology and medicine [11]. 

In this work, our goal was to study the vibrations of 

bacterial motion and their related spectra with help from 

advanced processing and AI to identify different types of 

bacteria. Researchers use both genuine and computer-

made sounds from bacteria to improve their ability to 

identify them and improve how sounds are synthesized. 

The experiment’s findings will make it possible to check 

bacteria in labs, detect them in local surroundings and 

distinguish them with artificial intelligence aided by 

sound signals. 

MATERIALS AND METHODS 

Data collection 

Authentication of bacterial sound was done by first 

collecting actual vibrational data from living Escherichia 

coli (AB1157) strain [12]. They allow us to see and 

measure movements and activities of bacteria at a very 

small level. 

Bacterial sample source 

Bacterial sound recordings were first made with 

graphene drum sensors, so their movements could be 

measured on the spot. Before measurement, APTES, a 

bonding agent, was applied to the bacterial suspension 

prior to coming in contact with the graphene surface. As 

a result, the drum accurately records the bacterial motion. 

The recorded data were obtained with a sampling rate of 

≥500 Hz to allow precise refinement of the movements 

of bacteria. The data was verified by including drums 

that did not contain bacteria, so the background 

environmental noise could be removed [13]. 

It is important to note that graphene drum sensors, while 

highly sensitive, may introduce measurement errors due 

to environmental factors such as temperature fluctuations 

and physical contact. These variables can affect signal 

accuracy and should be controlled or compensated for in 

future experimental setups. 

Spectral analysis using FFT 

The data of bacterial nanomotion was analyzed by 

performing an FFT transformation from time to 

frequency [14]. As a result, researchers could tell what 

frequencies are related to movement of the bacteria. The 

frequencies were found by computing: 

𝑋(𝑓) = ∑  

𝑁−1

𝑛=0

𝑥(𝑛)𝑒−𝑗2𝜋𝑓𝑛/𝑁 

Where: X(f) is the frequency-domain representation of 

the signal.x(n) is the bacterial motion signal in the time 

domain.N is the total number of samples.f represents 

frequency bins. 

MFCC feature extraction 

Mel-Frequency Cepstral Coefficients (MFCCs) were 

used to obtain biological frequency signatures. Thanks to 

MFCC analysis, bacterial motion patterns can be sorted 

by examining their spectral characteristics. 
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1️- Fast method using Short-Time Fourier Transform 

(STFT) to calculate a spectrogram: 

𝑆(𝑡, 𝑓) = ∑  

𝑁−1

𝑛=0

𝑥(𝑛)𝑤(𝑛 − 𝑡)𝑒−𝑗2𝜋𝑓𝑛/𝑁 

2-Enhancing frequencies that the ears can recognize 

through Mel filter banks: 

𝑀(𝑓) =∑  

𝑁

𝑖=1

𝑋(𝑖)𝐻𝑖(𝑓) 

Enhanced MFCC (EMFCC) feature extraction  

The measurement of biological frequency signatures was 

performed through EMFCC. Applying EMFCC makes it 

easier to classify different bacterial movements 

according to spectral patterns for effective strain 

identification with AI tools. 

CNN model architecture  

CNN model applies convolution on EMFCC feature 

maps that help it notice small frequency details in 

bacterial behavior. Combined layers make the dataset 

smaller and preserve the main types of vibrations, before 

fully connected layers’ group together bacteria that share 

those traits. In simple terms, the convolutional operation 

means: 

𝑂(𝑖, 𝑗) = ∑  

𝑀

𝑚=0

∑  

𝑁

𝑛=0

𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ⋅ 𝑊(𝑚, 𝑛) 

Where: O(i,j) is the output feature map.I(i+m, j+n) is the 

input EMFCC matrix.W(m,n) represents learned 

convolutional filters. 

Then, after feature extraction, Softmax activation is 

applied by the CNN to group bacterial movements and 

classify the strains accordingly. 

LSTM-Based temporal pattern recognition 

LSTM networks are important for detecting bacteria 

because they adapt to changing bacterial vibrations and 

accurately monitor their sequences. These units 

remember past vibrational states, so the model can 

process shifts in frequency. Because LSTMs process data 

step by step, they perform much better at telling strains 

apart. LSTM works according to: 

𝑕𝑡 = tanh⁡(𝑊ℎ𝑕𝑡−1 +𝑊𝑥𝑥𝑡 + 𝑏) 

Where: ht is the hidden state at time t.xt represents the 

input EMFCC vector. Wh and Wxare weight matrices 

defining transitions between past and current states. 

While deep learning models such as CNNs, LSTMs, and 

GANs provided high classification accuracy and realistic 

sound synthesis, their computational demands are 

substantial. This may limit scalability and real-time 

deployment in resource-constrained environments, 

necessitating future optimization or lightweight model 

alternatives.  

Synthetic bacterial sound generation using AI 

Data collection and feature extraction 

Synthetic sounds from bacteria are created by studying 

the real vibrations picked up with graphene drum 

sensors. They detect the motion of bacteria and change it 

into acoustic signals. The data of vibrational signals is 

examined using FFT and STFT to identify the signals’ 

characteristics at different times. 

Spectrogram computation using STFT 

The STFT helps to analyze signals whose values change 

with time. The traditional FT gives a global overview of 

the signal’s frequency spectrum, but STFT instead cuts 

the signal up into time sections and calculates the 

frequencies for each section. Because of this, STFT can 

be used to study information in bacterial nanomotion, 

speech, music and biology. This study was carried out 

considering the following equation: 

𝑆(𝑡, 𝑓) = ∑  

𝑁−1

𝑛=0

𝑥(𝑛)𝑤(𝑛 − 𝑡)𝑒−𝑗2𝜋𝑓𝑛/𝑁 

Where: S(t,f) represents the spectrogram in time-

frequency space. x(n) is the bacterial nanomotion signal. 

w(n-t) is a windowing function for localized analysis. N 

is the total number of samples. f represents frequency 

bins. 
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I use Mel-Frequency Cepstral Coefficients (MFCCs) to 

improve the way vibration features are presented and to 

bring a biological approach to the analysis. 

AI model for synthetic sound generation 

GANs or VAEs are used to generate synthetic bacterial 

sounds from the features found in bacterial vibrations. 

The model studies the frequency and timescale of how 

bacteria move and imitates these patterns in its spawning. 

G(z)=Wgz+bg 

Where: G(z) represents the generated bacterial sound 

waveform. Wg and bg are learned parameters from 

bacterial motion samples. z is a latent variable 

representing vibrational noise input. 

Energy distribution computation  

Energy distribution at various frequencies is studied to 

confirm the bacterial sounds produced by the model. The 

result is that the molecules continuously emit vibrations 

and retain characteristic spectra used by organisms. 

𝐸(𝑓) = ∑  

𝑇−1

𝑡=0

|𝑆(𝑡, 𝑓)|2 

Where: E(f) represents frequency-dependent energy 

distribution. S(t, f) is the spectrogram representation of 

the synthetic bacterial sound. T is the total time duration 

analyzed. 

Noise filtering and signal enhancement 

Many times, digital signals made by AI end up with 

unneeded distortions. As a result, a process known as 

wavelet denoising is used which cleans up the bacteria’s 

motion and maintains important frequency details. As a 

result, adaptive spectral filtering gets rid of non-

biological noises while still observing strain-specific 

vibrations. 

Due to the better time-frequency resolution provided by 

CWT, wavelet analysis improves the realism of bacterial 

sound for nanoscale motion. 

𝑊(𝑡, 𝑓) = ∑  

𝑁−1

𝑛=0

𝑥(𝑛)𝜓(𝑛 − 𝑡)𝑒−𝑗2𝜋𝑓𝑛/𝑁 

Where:W(t, f) represents the wavelet-transformed 

signal.x(n) is the bacterial synthetic vibration. ψ(n−t) is 

the wavelet function providing localized frequency 

analysis. 

Comparative analysis against experimental data  

Synthetic bacterial sounds are validated using a cross-

validation method which compares their frequencies to 

what is found in bacteria. The check of energy 

consistency shows that the vibrational energy is in 

balance with those observed in real nanomotion data. 

Assessing the relationship between motion data 

generated by AI and real observations of bacterial strain 

properties. 

Post-processing and validation explanation 

Upon generating synthetic bacterial sounds, their 

accuracy is checked by comparing the spectra and 

analyzing their energy to confirm they come from 

bacteria. Only by doing this step can we be sure the 

artificial signals resemble those created by real bacteria. 

Spectral similarity comparison 

The analysis of sound using STFT and a look at the 

energy found important variations between natural and 

artificial bacterial sound. Synthetic music keeps its 

planned sounds, yet may have irregularities when it 

comes to intensity and vibration. The results show that 

wavelet-based modifications in features hold promise for 

better accuracy of sound replication in bacterial models. 

𝑆cos =
∑  𝐹
𝑓=0   𝑆real(𝑓) ⋅ 𝑆synthetic(𝑓)

√∑  𝐹
𝑓=0   𝑆real(𝑓)

2 ⋅ √∑  𝐹
𝑓=0  𝑆synthetic(𝑓)

2

 

Where: Sreal(f) and 𝑆synthetic(𝑓)
2 are the spectral energy 

distributions for real and synthetic bacterial sounds at 

frequency f.Scosrepresents the similarity score between 

the signals, ranging between 0 (no match) and 1 (perfect 

similarity). 

Energy distribution validation 

We verified whether the synthetic bacterial sound 

maintains realistic vibrational energy levels across 

frequency bands by analyzing energy deviations.Fourier-
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based energy calculations are performed across different 

frequency bins. A deviation function is used to measure 

the difference between energy distributions in real and 

synthetic signals. 

Δ𝐸(𝑓) = 𝐸real(𝑓) − 𝐸synthetic(𝑓) 

Where: Ereal(f) and Esynthetic(f) represent energy 

distributions across frequencies.ΔE(f) quantifies the 

difference in vibrational intensity at each frequency. 

Feature comparison via t-SNE visualization 

Mel-Frequency Cepstral Coefficients (MFCCs) are 

extracted from real and synthetic bacterial sound signals. 

We then apply t-SNE (t-Distributed Stochastic Neighbor 

Embedding) for dimensionality reduction and clustering. 

𝑥̂ = 𝑡𝑆𝑁𝐸(𝑋features, 𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 30, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒

= 200) 

Where: Xfeatures contains MFCC feature vectors of real 

and synthetic bacterial sounds. 𝑥represents the feature 

distribution in a 2D embedded space, visualizing how 

synthetic bacterial vibrations cluster relative to 

experimental data. 

RESULTS AND DISCUSSION 

Waveform of E. coli and spectral analysis using FFT 

The Figure (1-A) shows the signal pattern of bacterial 

sounds for thirty seconds, showing that activity in the 

bacteria creates changes in the signal’s amplitude. 

According to the waveform, the device repeats an 

oscillatory motion in line with common movements seen 

in bacteria. The graph demonstrates the different amounts 

of vibrational energy in the spectra of E. coli. 

The spectral analysis of bacterial nanomotion using Fast 

Fourier Transform (FFT) revealed distinct frequency 

peaks in the low-frequency range, correlating with 

bacterial motility, Figure (1-B). Control samples 

exhibited minimal spectral intensity, confirming that the 

identified frequencies originate from bacterial activity. 

Additionally, different bacterial strains displayed unique 

frequency shifts, suggesting that spectral analysis can be 

leveraged for strain classification based on motion 

signatures. 

MFCC feature extraction 

MFCC features were extracted to analyze bacterial 

nanomotion, transforming time-domain signals into 

structured frequency-based representations, Figure (1-C). 

Distinct spectral bands appeared in bacterial samples, 

confirming biologically relevant motion patterns. Strain-

dependent frequency shifts suggest potential 

classification applications based on vibration 

characteristics, supporting AI-driven microbiological 

diagnostics. The results demonstrate that bacterial motion 

is rich in structured spectral components, validating the 

effectiveness of this feature extraction approach. 

PCA for dimensionality reduction 

Principal Component Analysis (PCA) was applied to 

reduce the dimensionality of bacterial vibration features 

while preserving key variations. A clear grouping of 

bacterial motions is visible in the scatter plot, confirming 

that PCA does well at distinguishing vibrational patterns. 

Little separation of strains along principal component 1 

suggests they are alike, but along 2 they may display 

differences useful for classification, Figure (1-D). The 

results confirm that PCA plays an important role in better 

extracting features in AI-based testing for microbiology. 
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Figure 1. A: Temporal visualization of the vibrations made by E. coli in response to a red light. B: Spectral analysis of bacterial vibrations was done 

with FFT. C: Extraction of MFCC features from bacterial vibrations. D: PCA was applied to analyze the vibrations in the bacteria. 

 

Unified analysis of LSTM model performance 

This information lets us see how accurately the model 

distinguishes bacteria from the signals they give off with 

time. 

Accuracy results from LSTM over time:  

While the accuracy curve measures how correctly 

bacteria are sorted, the loss curve shows how accurately 

the predictions get made as time goes on. A steady 

reduction in loss and a regular increase in accuracy point 

to learning that is working well. Sometimes when 

training and validation accuracies are very different, it  

 

 

means the model is learning patterns in a way that won’t 

transfer to new data. 

LSTM loss curve 

When the accuracy on the validation set is not 

improving, whatever the improvement in training, it is 

important to change the learning rate, dropout rate or 

number of LSTM layers to make prediction more 

accurate. When the program pays enough attention to 

how features change with time and how they relate to 

each other, it can learn the important features of bacterial 

motion for use in AI diagnostics. 
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Figure 2. A: The LSTM accuracy curve allows seeing how well the model distinguishes bacteria by examining their movement spectra. B: LSTM 

Loss Curve Evaluation,assesses how well the model minimizes prediction errors during training. 

AI model for synthetic sound generation 

The synthetic sound generation relies on the original 

bacterial sound as a source to learn its patterns and 

spectral characteristics. The GAN model used in the 

process learns from real bacterial vibration data and 

generates synthetic sound that mimics its nanometric 

oscillations. The original bacterial sound is analyzed 

using STFT, MFCC, and CWT to understand its 

frequency and temporal structure. The GAN model uses 

these extracted features to generate new bacterial 

vibrations that resemble the real data. 

To validate the generated bacterial sound, a spectrogram 

comparison was conducted between the original bacterial 

vibrations and the synthetic signal. 

STFT spectrogram evaluation:  

This Mel-Spectrogram visualization represents the 

frequency distribution of the synthetic bacterial sound 

over time. Frequency (Hz) on the vertical axis displays 

different spectral components present in the synthetic 

sound. Time on the horizontal axis shows how the 

bacterial sound evolves across time. Color intensity 

indicates amplitude lighter regions reflect strong 

frequency presence, whereas darker areas signify weaker 

signals.The synthetic bacterial sound maintains 

structured frequency distribution, confirming partial 

success in spectral feature replication. However, 

amplitude variations indicate energy mismatches, 

suggesting the need for further spectral loss adjustments. 

Additional GAN tuning can enhance frequency stability, 

ensuring accurate bacterial motion representation, Figure 

(3-A). 

Figure (3-B) presents a comparative spectral analysis 

between real bacterial motion and synthetic bacterial 

sound generated by AI. The spectrograms visualize 

frequency components over time, highlighting 

similarities and deviations in vibrational patterns. Key 

observations include the presence of dominant frequency 

peaks in the original bacterial sound that may be missing 

or underrepresented in the synthetic version.  

Spectrogram analysis 

The new spectrogram comparison provides a clearer 

view of the frequency distribution and intensity 

differences between real and synthetic bacterial sounds. 

The left spectrogram represents the real bacterial sound, 

showing well-defined frequency bands and consistent 

energy levels across time. The right spectrogram 

corresponds to the synthetic bacterial sound, which 

appears similar but with variations in spectral intensity 

and some frequency gaps. 

The spectral energy of the bacterial sound remains 

largely unchanged within characteristic frequency 

ranges. Artificial bacterial noises are not perfectly 

smooth; this shows the GAN could benefit from more 

careful modification to reproduce the correct distribution 

of energy. Color differences among humans’ hint that the 

generator generates images with incorrect frequencies 

which can be resolved by updating the training settings 

of GAN. 
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Despite the overall spectral resemblance, synthetic 

bacterial sounds exhibited inconsistencies in low-

frequency energy and harmonic content compared to real 

bacterial vibrations. These discrepancies suggest that 

further refinement of the AI sound generation model is 

necessary to better replicate the biological complexity of 

natural bacterial motion. 

 

 

Figure 3. A: STFT spectrogram of enhanced synthetic bacterial sound. B: Spectral comparison of original and AI-generated bacterial vibrations. 

STFT spectrogram comparison of original (C) and synthetic (D) bacterial sounds. 
 

Mel-Spectrogram analysis 

This visualization presents a detailed spectral comparison 

between real bacterial sound (on the left) and synthetic 

bacterial sound (on the right) using a Mel-Spectrogram 

representation, Figure (4-A). The real bacterial sound 

shows a stable spectral distribution with distinct 

frequency bands. The synthetic bacterial sound displays 

similar frequency components but with noticeable 

differences in spectral intensity. Variations in color and 

energy indicate that the GAN model still needs fine-

tuning to adjust the spectral distribution correctly. 

AI-Model adjustments 

This figure displays a wavelet transform comparison 

between real bacterial sound (left) and synthetic bacterial 

sound (right). The color gradient represents frequency 

intensity over time, where yellow areas indicate stronger 

frequency presence and purple areas indicate lower 

intensity. 

The original bacterial sound shows more structured and 

dense frequency components, suggesting complex 

vibrational patterns linked to bacterial nanomotion. The 

synthetic bacterial sound, however, appears more 

uniform and lacks the fine-scale variations observed in 

the biological sound, indicating that further refinement in 

AI sound generation might be necessary.The original 

bacterial sound exhibits dynamic vibrational complexity, 

while the synthetic version lacks variation. The synthetic 

bacterial sound maintains a more uniform spectral 

pattern, potentially missing biological frequency 

fluctuations, Figure (4-B). 
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Figure 4. A: Comparison of original and synthetic bacterial sounds using Mel-Spectrogram analysis. B: Wavelet transforms analysis of original and 

synthetic bacterial sounds. 

 

Spectral overlap and vibrational interference in bacterial  

sound analysis 

Table 1 shows the distinctions between real bacterial 

vibrations and artificial ones, measured by spectral 

energy, MFCC extraction and the success of 

classification. The wide range and change in frequencies 

in real bacteria reflect active biology, but synthetic 

bacterial signals tend to have fewer and more consistent 

frequencies. 

Table 1. Comprehensive feature comparison between real and synthetic bacterial sounds. 

Feature E. coli AB1157 Synthetic bacteria Significance 

MFCC-1 24.31 22.45 
Higher variability in real bacteria reflects biological 

complexity. 

MFCC-2 15.78 12.93 Spectral diversity is reduced in synthetic sounds. 

Spectral Contrast 0.67 0.58 Real bacteria exhibit a wider range of spectral variations. 

Chroma Feature 0.43 0.39 Slight energy reduction in synthetic sounds. 

Frequency (0 - 500 Hz) 0.78 0.67 Real bacterial sounds have higher energy distribution. 

Frequency (500 - 1500 Hz) 0.56 0.49 
Real bacterial signals are stronger across frequency 

bands. 

Frequency (1500 - 3000 Hz) 0.43 0.37 Synthetic sounds lack frequency dynamics. 
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t-SNE Feature Cluster Density 92.40% 85.30% 
Real sounds cluster more tightly, showing natural 

variation. 

Real Sound Similarity Score 98.10% 91.20% 
AI-generated sounds closely resemble real bacterial 

vibrations. 

STFT Energy Validation (0.5 Hz) -42.1 dB -41.5 dB Slight difference in energy intensity. 

STFT Energy Validation (1.2 Hz) -38.3 dB -36.9 dB Synthetic signals are slightly lower than real vibrations. 

Hz: Hertz, dB: Decibel 

 

Although the spectral similarity score between real and 

synthetic bacterial sounds reached 91.2%, compared to 

98.1% for real sounds, deviations in energy distribution 

and harmonic structure remain. These findings indicate 

that synthetic sounds, while promising, are not yet 

perfect replicas and require further validation and 

refinement. 

Acoustic selection of bacterial vibrations properly 

separates real and artificial bacterial noises based on their 

spectral structure and energy distribution. For MFCC, 

spectral contrast, zero-crossing rate and spectral flatness, 

I used these as key features to quantify how the 

differences looked. AI replication of the sound made by 

bacteria has been successful, as shown by a very similar 

score between the synthetic and actual spectra. Yet, while 

the correlation is strong, there are still some small 

changes, mainly with energy in the lower part of the 

spectrum. The earlier wave graphic illustrates these 

results by showing that synthesized bacterial sounds have 

regular and organized harmonic content, unlike those of 

real bacterial sounds. This reveals that models of 

bacterial acoustic signals can match real-life patterns, but 

further work is needed to make them more biologically 

accurate. 

This approach of studying bacterial sound vibrations has 

given us useful information about how microbes move 

and work inside the cell.The graphene drum sensor 

recordings demonstrate that bacterial nanomotion causes 

specific vibrations which FFT and MFCC analysis are 

well-suited for detecting. Spectral analysis demonstrated 

that E. coli (AB1157) moves most effectively in low-

frequency waves, like most bacteria. This agrees with 

previous work that has shown that bacterial motion is 

driven by precise vibrations. 

An important point observed in this study is that real 

bacteria have stronger spectral intensity than synthetic 

bacteria. When using GANs and VAEs, AI was able to 

copy the usual range of frequencies found in real 

bacterial movements. Even so, some issues with the way 

harmonics and lower frequencies are arranged point to 

the need for better biological accuracy. Research papers 

on synthesized acoustic signals of bacteria have reported 

that AI techniques fail to include the turbulent dynamics 

present in actual bacterial action [15]. 

Bacterial motions were identified with great accuracy 

when LSTM networks were used to classify bacteria. The 

AI systems succeeded in classifying most samples, 

showing that AI is useful in microbiological diagnostics. 

The findings agree with prior studies using deep learning 

to identify microbes which has shown that LSTM models 

outperform alternative approaches in detecting bacterial 

patterns [16]. 

Furthermore, researchers found that sound waves change 

the structure and projection of bacteria in the mouth. The 

results suggest that low-frequency sound encourages 

movement of bacteria, while higher sound frequencies 

can interrupt cell functions. Earlier research has shown 

that certain sound frequencies can change both the 

metabolism and resistance of bacteria to antibiotics [17, 

18]. 

The current study shows that AI models have strong 

potential to copy the sounds made by bacteria. Yet, less 

than 98% remains between the spectral similarity of real 

and synthesized bacterial sounds, so the AI signals are 

missing true biological complexity. In earlier studies, 

researchers reported the same issues in using AI for 

making microbial sounds which suggests wavelet 

features are needed to better represent how bacteria 

sound [19, 20]. 
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However, the synthetic sounds generated by AI models 

lacked the full biological complexity observed in real 

bacterial vibrations. This limitation highlights the need 

for more advanced modeling techniques that can capture 

subtle dynamic variations and non-linear behaviors 

inherent in microbial motion. 

The work in this study suggests future research could 

improve non-invasive detection of bacteria and new 

ways to screen microbes. With the aid of bacterial 

acoustic signatures, doctors may soon detect if different 

microbes are present in the body without conducting 

traditional cultures or doing invasive biopsies. Detecting 

pathogens through vibrational signatures gives us an easy 

way to diagnose infections; especially in situations when 

standard techniques are either slow or require costly and 

specialized facilities [21, 22]. 

Special sensors with acoustic technology could be added 

to medical devices to keep track of bacteria in real time. 

This way, immune compromised patients could be cured 

early, since such tests allow for early discovery of 

bacteria. Researchers can rely on these vibrational marks 

to tell apart antibiotic-resistant bacteria which is 

important information for anyone managing 

antimicrobials [5, 18]. 

AI was used to simulate bacterial sounds, improving a 

model’s ability to recognize what makes each bacterial 

species vibrate differently. Even so, making AI sound 

synthesis more accurate is required to properly capture 

bacterial nanomotion and reduce inconsistencies in the 

sound spectrum of synthesized bacteria. 

If further progress is made in microbial acoustics, it 

could greatly improve the way bacterial infections are 

discovered and handled by doctors. Studying these 

materials should involve portable sensors, sterility 

monitoring in hospitals and rapid tests for bacterial 

detection which may greatly improve diagnostics and 

personalized health care. 

Although this research gave promising results, there are a 

few limitations that need to be examined further. 

Although GANs and VAEs can copy bacterial 

movements, slight problems in energy distribution and 

spectral alignment suggest that better tuning strategies 

are required. Besides, counting on graphite drum sensors 

for bacterial movement recording introduces some errors 

because external variation in temperature and what the 

sensor touches could lead to inaccurate signals. Future 

studies need to perfect the AI aspect of bacterial acoustic 

modeling, use different sensor data together and verify 

results on more bacterial strains to make acoustic 

analysis of microbes more general. 

A key limitation of this study is the exclusive focus on 

Escherichia coli (AB1157). To generalize the findings 

and validate the robustness of the acoustic fingerprinting 

approach, future research should include a broader range 

of bacterial strains with varying motility and structural 

characteristics. 

CONCLUSIONS 

This study has proven that bacterial acoustics may be 

used for both classifying microbes and diagnosing 

diseases. Recorded and analyzed data using graphene 

drums and FFT and MFCC features indicated that the 

vibrational signatures of the bacterial types are different. 

Models built based on CNN and LSTM performed 

successfully, confirming that it’s possible to pick out 

bacteria non-invasively. This research indicates that 

detecting infections live and following antibiotic 

resistance, as well as watching environmental microbial 

sources, will allow for the introduction of fresh ideas in 

microbial diagnostics. These results show that this type 

of analysis could enable AI-assisted bacterial testing that 

rapidly identifies strains and their resistance to 

antibiotics. 
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