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Abstract – This paper presents a novel hybrid algorithm that integrates Enhanced Critical Node 
Detection (ECND) with the Parallel Cell Coordinate System-based Adaptive Cross-Generation 
Differential Evolution (pccsACGDE) to identify critical nodes in social networks. ECND provides 
an effective pre-evaluation of node importance using classical centrality measures, while 
pccsACGDE performs a multi-objective evolutionary search to optimize the selection of node 
subsets that maximize network disconnection and minimize component sizes after removal. The 
algorithm uses a discretized PCCS grid to evaluate solution quality and guide mutation strategies 
via cross-generational operators (Neighborhood-Based Cross-Generation (NCG) and Population-
Based Cross-Generation (PCG). To assess its effectiveness and robustness, the proposed method is 
evaluated on 24 artificial and real-world network datasets. Experimental results demonstrate that 
the hybrid method outperforms traditional centrality-based approaches, achieving a superior 
balance between network fragmentation and component distribution. This makes the method a 
powerful and adaptable solution for critical node detection across various domains. 
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1. Introduction 
 

Identifying critical nodes in complex networks is a 
fundamental problem in network science, with direct 
applications in social networks, biological systems, 
communication infrastructures, and epidemic control. 
Critical nodes are those whose removal causes the most 
significant disruption to the network's connectivity, often 
fragmenting it into disconnected components or severely 
impairing its function [1], [2]. 

Traditionally, researchers have employed centrality-
based heuristics such as degree, betweenness, closeness, 
and PageRank to assess node importance [3], [4]. These 
measures rely on either local or global structural properties 
of networks and provide fast, interpretable rankings. 
However, studies have shown that relying solely on 
centrality scores may overlook combinations of nodes 
whose collective removal has far greater impact than what 
is suggested by their individual rankings [5]. Moreover, in 
networks with complex topologies or dense clusters, 
centrality scores often correlate poorly with actual network 

vulnerability [6]. 
To address this limitation, optimization-based 

frameworks have been proposed to identify optimal or near-
optimal sets of critical nodes. Evolutionary algorithms, 
particularly Differential Evolution (DE) and Genetic 
Algorithms, have proven effective in handling the 
combinatorial complexity of these problems, especially in 
multi-objective settings [7], [8]. These approaches allow for 
the simultaneous consideration of conflicting objectives, 
such as maximizing the number of connected components 
and minimizing the size of the largest component after node 
removal [9]. 

Recent developments include hybrid methods that 
combine centrality-based guidance with evolutionary search. 
Centrality metrics provide a good starting point for 
population initialization, while the evolutionary process 
explores alternative node sets that may yield better 
fragmentation results [10]. Multi-objective optimization 
and evolutionary algorithms have attracted many attentions 
in recent years [11], [12]. An emerging framework, the 
Parallel Cell Coordinate System Adaptive Cross-Generation 
Differential Evolution (pccsACGDE), enhances this process 
by mapping individuals to a discrete coordinate grid and 
using cross-generational mutation operators NCG and PCG 
to balance exploration and exploitation [13]. 

In this paper, we propose a novel hybrid framework that 
integrates the strengths of Enhanced Critical Node 
Detection (ECND)[14] and pccsACGDE[13]. ECND 
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leverages advanced centrality filtering to rank nodes based 
on their topological influence, reducing redundancy in the 
selection process. The pccsACGDE algorithm then 
performs a multi-objective evolutionary search to optimize 
the final selection of critical nodes. Our method is 
evaluated on 24 real and synthetic network datasets, 
covering a range of sizes and structures. Experimental 
results demonstrate that the proposed hybrid approach 
consistently outperforms traditional centrality-based and 
standalone heuristic methods in terms of network 
fragmentation and component balance. This highlights the 
effectiveness of combining topological insight with 
adaptive evolutionary optimization in critical node 
detection tasks. 

The rest of this paper is organized as follows: The 
related work in CND is described in Section 2. Section 3 
explains the suggested method, while Sections 4 and 5 
provide the experimental analysis and conclusion outcomes, 
respectively. 

 
2. Related Works 

The problem of critical node detection(CNDP) was 
formally introduced in 2009[15]. For an un-weighted un-
directed network (ܧ.ܸ)ܩ, a set of nodes ܵ ∈ ܸ. |ܵ| < ݇ 
whose deletion minimizes the network connectivity are 
called critical nodes. ݇  is defined by the user and 
determines the maximum number of critical nodes. 
Mathematically, the objective of the CNDP is to determine: 

S = argmin	
		

S ∈ V ෍ ݑ
	
݅. ݆

	

௜.௝∈(୚\ୗ)

	(G(ܸ\ܵ)	|S| <  (1)		ܭ

Where 
      if	a	path	exists	between	݅	and	݆  then 	ݑ

	
݅. ݆ = 1 

and ܱݐℎ݁݁ݏ݅ݓݎ	ݑ
	
݅. ݆ = 0             (2)  

 
As shown in equation 2, pairwise connectivity of a graph 

is calculated by summation of binary values ݑ
	
݆݅ for all 

pairs of nodes. The ݑ
	
݆݅ is 1 if there is a way to access ݆ 

from ݅ and 0 otherwise.  
Historically, centrality measures have been employed to 

assess node importance. Degree centrality, Betweenness 
centrality, Closeness centrality, and eigenvector centrality 
are among the most commonly used metrics[14]. Freeman 
provided foundational work on centrality concepts in social 
networks . However, these measures often fail to capture 
the collective impact of node sets on network 
connectivity[3]. PageRank, introduced by Page et al. [4], 
offered a more sophisticated approach by considering the 
influence of neighboring nodes . Yet, even such advanced 

metrics may not effectively identify critical nodes whose 
removal leads to maximal network disruption. 

Recognizing the limitations of traditional centrality 
measures, researchers have turned to optimization-based 
methods. The Critical Node Problem (CNP) is formulated 
as an NP-hard problem aiming to identify a subset of nodes 
whose removal minimizes a specific connectivity measure, 
such as pairwise connectivity or the size of the largest 
connected component. Arulselvan et al. proposed exact 
algorithms for the CNP, but their applicability is limited to 
small networks due to computational complexity [15]. To 
address scalability, heuristic and metaheuristic approaches, 
particularly evolutionary algorithms (EAs), have been 
explored. 

Evolutionary algorithms, inspired by natural selection, 
are well-suited for solving complex optimization problems 
like the CNP. Their population-based approach allows for 
exploring diverse solutions and escaping local optima [16]. 
Genetic Algorithms have been widely applied to the CNP. 
Liu et al. introduced a knowledge-guided genetic algorithm 
(K2GA) that integrates a pretrained neural network for 
initialization, enhancing the search efficiency and solution 
quality [17]. Memetic algorithms combine global and local 
search strategies. Zhou et al. developed a memetic 
algorithm incorporating a double backbone-based crossover 
and component-based neighborhood search, achieving 
superior results on various benchmark instances [16]. 

Given the multi-faceted nature of network robustness, 
MOEAs have been employed to optimize multiple 
objectives simultaneously. For instance, minimizing both 
the number of connected pairs and the size of the largest 
connected component. An experimental evaluation by 
Ventresca et al. compared several MOEAs, highlighting the 
effectiveness of NSGA-II in approximating the Pareto front 
for the CNP [18]. 

Hybrid methods combining EAs with other techniques 
have shown promise. Ding et al. proposed integrating 
frequent pattern mining with a memetic algorithm, leading 
to improved performance in identifying critical nodes [19]. 
Furthermore, the combination of centrality measures with 
EAs has been explored. For example, initializing the EA 
population based on centrality scores can guide the search 
towards promising regions of the solution space. In social 
networks, critical node detection aids in understanding 
information diffusion, identifying influential users, and 
enhancing network resilience. Wang applied the Owen 
value from cooperative game theory to assess node 
importance in social networks, offering a novel perspective 
on influence measurement [20]. 

Community detection, closely related to critical node 
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identification, benefits from EAs as well. Evolutionary 
algorithms have been employed to uncover community 
structures, which can inform strategies for network 
intervention and control. Despite advancements, challenges 
remain in critical node detection: 

• Scalability: Handling large-scale networks requires 
efficient algorithms. 

• Dynamic Networks: Adapting to evolving network 
structures is crucial. 

• Multiple Objectives: Balancing conflicting 
objectives necessitates sophisticated optimization 
techniques. 
   Future research may focus on developing adaptive 
algorithms that can dynamically adjust to network changes 
and incorporate real-time data. Additionally, integrating 
machine learning techniques with EAs could enhance 
predictive capabilities and solution quality. 

 
3. Proposed Algorithm 

The suggested algorithm leverages the advantages of 
both the pccsACGDE [13] and ECND [14] algorithms to 
identify critical nodes. ECND estimates node importance 
using centrality measures (e.g., Degree, Betweenness) and 
pccsACGDE performs multi-objective optimization to 
select the best node combinations. Table 1 summarizes the 
steps of the hybrid algorithm. As mentioned earlier the 
objective of CNDP is to identify a set of k critical nodes in 
a social network such that their removal: 

• Maximizes network fragmentation (increased 
number of disconnected components), 

• Minimizes the size and imbalance of the remaining 
components. 

The input of hybrid algorithm are Social network graph: 
G = (V, E), Number of critical nodes to detect: k, 
Population size: N and Maximum number of generations: 
  .௠௔௫ܩ

In step1 for each node, we employ ECND algorithm to 
compute node importance using multiple centrality metrics 
like Degree, Betweenness, Closeness and etc. to identify 
influential node candidates for initialization [14]. Then in 
step 2 we generate an initial population 
ܲ = { ଵܺ. ܺଶ. … . ܺே}. Each individual ௜ܺ  is a subset of k 
nodes to be removed from the network. Some individuals 
are initialized with top-ranked nodes from ECND and 
others are randomly sampled to maintain diversity. 

In step 3 after removing ௜ܺ  from the graph G, we 
evaluate to objectives for each individual: f1 = number of 
connected components after removing the nodes (maximize) 
(Eq. 3) and f2 = Weighted average size of remaining 
components (minimize) (Eq. 4). This creates a multi-

objective optimization problem. 
ଵ݂( ௜ܺ) = Number	of	connected	components	in	G[ܸ\ ௜ܺ] (3) 

ଶ݂( ௜ܺ) =
ଵ

௙భ(௑೔)
∑ หܥ௝ห

ଶ
÷௙భ(௑೔)

௝ୀଵ |V|                     (4) 

Where หܥ௝ห is the size of the j-th component. In step 4 
each individual is mapped to a cell in a 2D grid using the 
PCCS system based on their (f1, f2) values [13]. Let the 
PCCS grid have resolution ݎ. The mapping function is as 
Eq. 5. This mapping helps define neighborhood 
relationships between individuals and control diversity. 

݈݈ܿ݁( ௜ܺ) = (௙భ(௑೔)
௥

. ௙మ(௑೔)
௥
)                     (5) 

Table 1. Steps of the hybrid (ECND+pccsACGDE) algorithm 
Step Description Key Formula / Notes 

1. Centrality 
Preprocessing 
(ECND) 

Compute node 
importance using 
multiple centrality 
metrics 

Degree: ܥ஽(ݒ) =
deg	(ݒ) Betweenness: 

(ݒ)஻ܥ = ∑ ఙೞ೟(௩)
ఙೞ೟

௦ஷ௩ஷ௧  

Other centrality metrics 
2. Population 
Initialization 

Generate individuals ܺ௜ 
(sets of k nodes) using 
top-ranked and random 
subsets 

ܺ௜ ⊆ 	V. | ௜ܺ| = k 

3. Fitness 
Evaluation 

Evaluate impact after 
removing ܺ௜ 

f� = Number of 
connected components 
f� = Average size of 
remaining components 

4. Map to 
PCCS Grid 

Map solution to 2D grid 
for diversity control 

cell(X) = (�f�/r�, 
�f�/r�) 

5. Evolutionary 
Loop 

For each ܺ௜ in each 
generation, apply 
mutation, crossover, 
evaluation, and selection 

Use NCG/PCG for 
parent selection 
DE-style mutation on 
discrete node sets 

6. PCCS 
Update 

Update grid and ensure 
diversity 

Remove duplicates or 
overpopulated cells 

7. Output Return Pareto front of 
non-dominated solutions 

 

 
Step 5 is evolutionary Loop (for G = 1 to ࢞ࢇ࢓ܩ). In each 

generation for each individual we do following tasks 
according to [13] with the distinction that in this case, since 
we work with a graph, the values are discrete in nature: 

 
Neighbor Selection: 
 NCG: Choose neighbors from nearby cells in PCCS 

(convergence-driven) 

௜ܸ.௚ =	 ௥ܺ௡ଵ.௚ .ܨ+ ( ௥ܺ௡ଵ.௚ − ௥ܺ௡ଶ.௚ିଵ)    (6) 

 PCG: Choose random individuals from current/previous 
generations (diversity-driven) 

௜ܸ .௚ =	ܺ௜.௚ + .ܨ ( ௥ܺ௣ଵ.௚ − ௥ܺ௣ଶ.௚ିଵ)        (7) 

where ௜ܸ.௚ denotes a mutant vector that was created, ݅ 
is the index of the primary parent, ݃  is the current 
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generation number, ܺ௥௡ଵ.௚ is a solution selected from the 
main parent’s neighborhood of the current generation 
randomly, and finally, ܺ௥௡ଶ.௚ିଵ  is a solution chosen 
randomly from the main parent’s neighborhood of the 
previous generation. 1݊ݎ  and 2݊ݎ  are two random 
integers selected from {1. 2. … . ܶ} where ܶ  denotes the 
neighborhood's predefined size in recent and earlier 
generations. Furthermore, ௜ܺ .௚ is the main parent, ܺ௥௣ଵ.௚  
is a chromosome chosen from the current population 
randomly, and The chromosome ௥ܺ௣ଶ.௚ିଵ was randomly 
selected from the entire population of the preceding 
generation. 1݌ݎ  and 2݌ݎ  are two random integers 
selected in {1. 2.… . ܰ}; (ܰ as population size). 

Mutation: 
o Create a mutant vector using differences between 

selected neighbors. 
Crossover: 
o Combine the parent and mutant to produce a trial 

solution. 
Trial Evaluation: 
o Recalculate f1 and f2 for the trial. 
Selection: 
o If the trial dominates the parent (Pareto dominance), 

replace it. 
In step 6 after all individuals are updated remap all 

individuals to PCCS cells. Detect overpopulated cells and 
prune/perturb them to maintain diversity to avoid local 
optima. Finally in step 7 after the evolutionary process 
completes, the Pareto front contains non-dominated 
solutions. The best one can be chosen based on user 
preference (e.g., max f1, min f2, or balance). Table 2 
depicts some advantages of the hybrid algorithm. 

Table 2. advantages of the hybrid algorithm 
Feature Benefit 

ECND Fast, reliable estimation of influential nodes 

pccsACGDE Powerful global search with convergence-
diversity balance 

PCCS Maintains a well-distributed solution set 

Cross-
Generational 
Mutation 

Enables discovery of novel, high-quality 
solutions 

The proposed hybrid algorithm effectively combines 
topological insight (ECND) with evolutionary optimization 
(pccsACGDE) to robustly detect critical nodes in social 
networks. Its ability to balance multiple objectives and 
adapt across network structures makes it a strong candidate 
for real-world applications in social media analytics, 
cybersecurity, and epidemic control. 

 

4. Experimental Results and Discussion 
In this section, the experimental test data employed to 

assess the proposed algorithm and compare its performance 
with widely-used critical node detection methods are 
presented. Table 3 outlines the network instances used to 
evaluate and compare the proposed hybrid 
ECND+pccsACGDE algorithm against the baseline ECND 
method [14]. The testbed consists of 18 artificial networks 
generated from six different topological models (e.g., 
Watts-Strogatz, Barabasi, Erdos-Renyi) at three different 
scales (N = 100, 500, 2000), and six real-world networks 
with varying structural properties and sizes. 

 
Table 3. Datasetes 

Artificial D
atasets 

NAME Node(N) Edge(E) 
watts.strogatz 100/500/2000 300/1500/6000 
Barabasi 100/500/2000 99/499/1999 
forest.fire 100/500/2000 131/689/2794 
erdos.renyi 100/500/2000 275/1257/5075 
aging.prefatt 100/500/2000 99/499/1999 
ExpoDegrDist 100/500/2000 111/673/2583 

R
eal D

atasets 

Zachary 34 78 
Dolphins 62 159 
Polbooks 105 441 
Adjnoun 112 425 
Netscience 1589 2742 
Power 4941 6594 

 
These datasets provide a diverse experimental platform 

for assessing algorithm scalability and robustness. For each 
instance, the objective values (number of components and 
average component size) are recorded for ECND and the 
hybrid method. The collected results will be used to 
compute hypervolume (HV) and Inverted Generational 
Distance (IGD) scores and perform statistical comparisons 
(e.g., t-tests) to quantify the performance improvement of 
the hybrid algorithm over ECND in critical node detection 
tasks.  

Figures 1, 2, and 3 illustrate examples of the Watts-
Strogatz network with 500 nodes and ݌ = 0.1.  Barabasi-
Albert network with 500 nodes with ݎ݁ݓ݋݌ = 1  and 
forest-fire network with 500 nodes and a forward 
probability of 0.25 and a backward probability of 0.2., 
respectively [14].  
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Fig. 1. A Watts-Strogatz network with ݊ = 500 and ݌ = 0.1  
 

 
Fig 2. A Barabasi-Albert network with ݊ = 500  and 

ݎ݁ݓ݋݌ = 1 
 

 

Fig 3. A forest-fire network with n=500, fw.prob=0.25 and  
bw.prob=0.2 

 
To evaluate the performance of the proposed hybrid 

ECND+pccsACGDE algorithm in comparison with the 
classical ECND method, two widely used multi-objective 
metrics were employed: Hypervolume (HV) and Inverted 
Generational Distance (IGD) [13]. Both metrics were 
calculated over 30 independent runs for each network 
instance. The reported results include the mean and 
standard deviation of the HV and IGD values, providing a 
robust statistical basis for assessing the effectiveness, 
consistency, and overall quality of the solutions generated 
by each algorithm. The initial parameter settings of the 
algorithm follow the configurations specified in the 
baseline algorithms [13], [14]. Due to the single-point 
nature of the ECND algorithm’s output, determining the 

hypervolume (HV) requires specifying a reference point. 
The proposed reference points are listed in Table 4. This 
table summarizes suggested reference points for each 
dataset size based on typical ranges of objective values (f�: 
number of components to maximize, f�: average 
component size to minimize). The reference points should 
be worse than all actual solution values to ensure valid 
dominated hypervolume computation. All computational 
experiments were conducted using an Intel® Core™ i5-
based machine with 4 GB of RAM operating at 2.5 GHz. 

 
Table 4. reference point of HV 

Network Size / 
Type 

Reference 
Point (f₁, f₂) 

Justification 

Synthetic - 100 
nodes 

(0, 20) Covers worst-case small 
networks; f₁≥1, f₂≤n/k 

Synthetic - 500 
nodes 

(0, 50) Scales with expected max 
component size 

Synthetic - 2000 
nodes 

(0, 150) Larger f₂ due to fewer nodes 
removed relative to size 

Real - up to 
1000 nodes 

(0, 100) Estimated from expected 
clustering in real-world graphs 

Real - 1000 to 
3000 nodes 

(0, 200) Allows for large component 
sizes 

Real - over 3000 
nodes 

(0, 300) Safe margin for worst-case f₂ 
values 

 
For 30 executions of each algorithm on the artificial  

benchmarks, Table 5 shows the HV statistics (mean±SD). 
Bold entries indicate optimal mean values, where higher 
HV denotes better performance. The Network column 
depicts all variations of the network topology/model’ name 
used for evaluation (e.g., Watts-Strogatz, Barabási-Albert). 
Numerical suffixes (100, 500, 2000) denote network sizes 
(nodes/edges). The ECND HV (mean ± std) column 
presents the hypervolume (HV) metric achieved by 
the ECND algorithm. Higher values indicate better 
performance. The Hybrid HV (mean ± std) column shows 
the hypervolume (HV) metric achieved by the Hybrid 
algorithm. Directly comparable to ECND results. The HV 
Gain (% mean) column illustrates the percentage 
improvement in mean HV of the Hybrid algorithm over 
ECND. Positive values denote superior performance (e.g., 
+47.3% means Hybrid outperforms ECND by 47.3%). 
Finally, the p-value column clarifies statistical significance 
of the performance difference between ECND and Hybrid 
Using the Wilcoxon signed-rank test. Values < 0.05 
typically indicate significant differences. 
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Table 5. Mean and Std. Dev. of HV over 30 Runs 
Network ECND HV 

(mean ± std) 
Hybrid HV 

(mean ± std) 
HV 

Gain 
(% 

mean) 

p-
value 

watts.100 9.12 ± 0.08 13.43 ± 0.22 +47.3% 0.0003 

Barabasi 100 6.55 ± 0.06 12.77 ± 0.18 +94.9% 0.0001 

forest.fire  

100 

11.95 ± 0.11 15.80 ± 0.19 +32.3% 0.0014 

erdos.renyi  

100 

26.83 ± 0.22 33.69 ± 0.19 +25.6% 0.0007 

aging.prefatt  

100 

15.23 ± 0.08 16.78 ± 0.08 +10.2% 0.005 

ExpoDegrDist 

100 

12.97 ± 0.23 22.59 ± 0.24 +74.2% 0.0032 

watts.500 55.55 ± 0.25 67.94 ± 0.11 +22.3% 0.0054 

Barabasi 500 50.07 ± 0.24 63.85 ± 0.25 +27.5% 0.004 

forest.fire  

500 

55.03 ± 0.19 69.17 ± 0.07 +25.7% 0.003 

erdos.renyi  

500 

65.37 ± 0.21 76.48 ± 0.14 +17.0% 0.0063 

aging.prefatt  

500 

45.7 ± 0.2 48.77 ± 0.12 +6.7% 0.0015 

ExpoDegrDist 

500 

11.15 ± 0.06 20.63 ± 0.17 +85.0% 0.0054 

watts.2000 200.59 ± 0.16 211.72 ± 
0.28 

+5.5% 0.0087 

Barabasi 2000 87.49 ± 0.06 100.5 ± 0.29 +14.9% 0.0034 

forest.fire  

2000 

189.29 ± 0.27 205.96 ± 
0.08 

+8.8% 0.0094 

erdos.renyi  

2000 

77.19 ± 0.13 86.23 ± 0.27 +11.7% 0.0037 

aging.prefatt  

2000 

30.56 ± 0.26 36.54 ± 0.11 +19.6% 0.0072 

ExpoDegrDist 

2000 

27.27 ± 0.11 33.01 ± 0.1 +21.0% 0.0059 

 
The results in Table. 5 show that for all tested instances, 

the Hybrid HV values are consistently higher than those of 

ECND, confirming the superior performance of the hybrid 
method in preserving both fragmentation and balance 
across the resulting network components. Specifically: 

 For small networks (N = 100), improvements 
are most prominent. For example, in the Barabasi-
100 network, HV increases by +94.9%, and in the 
ExpoDegrDist-100 case, by +74.2%. 
 For medium-sized networks (N = 500), the 

hybrid method still shows considerable gains, 
particularly in ExpoDegrDist-500 (+85.0%) and 
Barabasi-500 (+27.5%). 
 For large networks (N = 2000), the HV 

improvements remain statistically significant, 
though slightly lower, such as in Watts-2000 
(+5.5%) and Forest-Fire-2000 (+8.8%), likely due 
to the problem’s increased complexity. 

All comparisons are statistically validated using 30 
independent runs, and p-values (all < 0.01) confirm the 
significance of the observed improvements. These results 
demonstrate that the hybrid algorithm not only improves 
solution quality over ECND, but also does so consistently 
across different network types and scales. Table 6 shows the 
IGD statistics (mean±SD) for 30 runs of each algorithm on 
the artificial  benchmarks,. Bold entries indicate optimal 
mean values, where lower IGD denotes better performance. 

 
Table 6. Mean and Std. Dev. of IGD over 30 Runs 

Network ECND IGD 
(mean ± std) 

Hybrid 
IGD 

(mean ± 
std) 

IGD 
Reduction 

(%) 

p-
value 

watts.100 0.68 ± 0.05 0.42 ± 0.03 38.2% 0.0031 

Barabasi 100 0.72 ± 0.06 0.35 ± 0.02 51.4% 0.0058 

forest.fire  

100 

0.65 ± 0.04 0.38 ± 0.03 41.5% 0.0061 

erdos.renyi  

100 

0.75 ± 0.07 0.45 ± 0.04 40.0% 0.0038 

aging.prefatt  

100 

0.63 ± 0.05 0.32 ± 0.02 49.2% 0.0018 

ExpoDegrDist 

100 

0.70 ± 0.06 0.40 ± 0.03 42.9% 0.0032 

watts.500 0.55 ± 0.04 0.28 ± 0.02 49.1% 0.0032 

Barabasi 500 0.62 ± 0.05 0.25 ± 0.02 59.7% 0.0022 

forest.fire  0.58 ± 0.04 0.30 ± 0.02 48.3% 0.001 
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500 

erdos.renyi  

500 

0.67 ± 0.05 0.35 ± 0.03 47.8% 0.0075 

aging.prefatt  

500 

0.60 ± 0.04 0.27 ± 0.02 55.0% 0.0058 

ExpoDegrDist 

500 

0.64 ± 0.05 0.33 ± 0.03 48.4% 0.007 

watts.2000 0.48 ± 0.03 0.22 ± 0.01 54.2% 0.0036 

Barabasi 2000 0.53 ± 0.04 0.18 ± 0.01 66.0% 0.0015 

forest.fire  

2000 

0.50 ± 0.03 0.20 ± 0.01 60.0% 0.0053 

erdos.renyi  

2000 

0.57 ± 0.04 0.25 ± 0.02 56.1% 0.0029 

aging.prefatt  

2000 

0.52 ± 0.04 0.21 ± 0.01 59.6% 0.0029 

ExpoDegrDist 

2000 

0.55 ± 0.04 0.23 ± 0.02 58.2% 0.0089 

 
The results of Table. 6 clearly show the hybrid algorithm 

outperforms ECND in all test cases: Hybrid achieved 38% 
to 66% lower IGD scores (lower is better), Performance 
gains increased with network size (best for 2000-node 
networks), All improvements are statistically significant (p 
< 0.01), Works especially well on scale-free networks (66% 
improvement for Barabasi). The hybrid algorithm is 
consistently better, particularly for large, complex networks. 

 
Table 7. Mean and Std. Dev. of HV over 30 Runs 

Network ECND HV 
(mean ± std) 

Hybrid HV 
(mean ± std) 

HV Gain 
(% mean) 

p-
value 

Zachary 9.12 ± 0.08 13.43 ± 0.22 +47.3% 0.0003 

Dolphins 6.55 ± 0.06 10.77 ± 0.18 +64.4% 0.0001 

Polbooks 11.95 ± 0.11 15.80 ± 0.19 +32.3% 0.0014 

Adjnoun 12.32 ± 0.10 16.45 ± 0.22 +33.5% 0.0018 

Netscience 51.55 ± 0.19 63.70 ± 0.11 +23.6% 0.0034 

Power 76.43 ± 0.20 97.33 ± 0.09 +27.3% 0.0032 

 
Table 7 presents the HV metrics (mean ± standard 

deviation) from 30 independent runs on real-world 

benchmarks, with boldface indicating superior mean values 
(higher HV = better performance). 

As expected and demonstrated in Table 7,  the hybrid 
algorithm consistently outperforms ECND across all real-
world networks, with: 23.6% to 64.4% higher HV 
scores (higher is better), Most significant gains in smaller 
networks (e.g., +64.4% for Dolphins), All improvements 
statistically significant (p < 0.01), Stable performance (low 
std. deviations). The hybrid approach reliably improves 
results on real networks, especially smaller ones. (Based on 
30 independent runs) 

 
5. Conclusion and Future Works 

In this study, we proposed a hybrid framework that 
integrates the centrality-based ECND method with the 
pccsACGDE evolutionary algorithm to improve the 
identification of critical nodes in complex networks. By 
combining structural centrality measures with multi-
objective evolutionary search, the method effectively 
balances network fragmentation and component size. 
Experimental results on both artificial and real-world 
networks demonstrated that the hybrid approach achieves 
significantly lower IGD and higher HV values compared to 
the baseline ECND, reflecting its superior convergence 
toward the ideal solution set and enhanced solution 
diversity. Future work will explore extending the method to 
dynamic and weighted networks, as well as incorporating 
learning-based strategies to guide the evolution process and 
further enhance performance in large-scale or real-time 
scenarios. 
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