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Abstract  

This study investigates centralized resource allocation (CRA) within the framework of Data 

Envelopment Analysis (DEA), applying a previously proposed model from [1] to real-world 

data from 17 East Asian and Pacific countries based on 2015 statistics. The countries were 

selected according to the completeness of data from the World Development Indicators 

(WDI), involving five input and three output indicators related to sustainable development, 

agricultural infrastructure, and energy infrastructure. To better capture regional differences, 

heterogeneity in output growth coefficients was considered using the coefficient of variation 

and inter-indicator relationships. While the core DEA model is adopted from previous 

literature, the main contribution of this study lies in its empirical application to a new regional 

context, offering policy-relevant insights and practical implications. Results show that 

applying the proposed model enables significant resource savings without compromising key 

outputs. Furthermore, the allocated resources moved countries closer to the efficient frontier, 

supporting balanced and sustainable development. These findings provide valuable guidance 

for policymakers in resource planning and sustainable growth across the energy and 

agricultural sectors. 
Keywords: Data Envelopment Analysis, Centralized Resource Allocation, Sustainable 

Development, Energy Infrastructure, East Asia and the Pacific. 
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1. Introduction 

Data Envelopment Analysis (DEA) is a 

non-parametric, precise, and widely used 

method in operations research and 

economics, applied to assess the relative 

efficiency of decision-making units 

(DMUs). By systematically distinguishing 

efficient units from inefficient ones, DEA 

provides a robust framework for 

identifying performance bottlenecks and 

enhancing productivity. One of the major 

advancements in this field is the 

development of centralized resource 

allocation models, which, through an 

integrated framework, aim to optimize the 

distribution of resources across multiple 

DMUs while targeting the overall 

efficiency of the system. In centralized 

DEA, a central decision-making unit 

evaluates the total inputs and outputs of all 

DMUs and optimally allocates input 

resources based on the needs and scale of 

each unit. The objective of this model is to 

reduce the overall input consumption 

while maintaining or increasing the total 

output, thereby improving the overall 

system performance. These models are 

typically implemented by solving a single 

linear programming problem, resulting in 

all units being projected onto the 

efficiency frontier. The DEA method was 

introduced in [2] as a linear programming 

approach for evaluating the efficiency of 

DMUs through the estimation of 

production frontiers. This method, which 

introduced the constant returns to scale 

(CCR) model, has been widely applied for 

performance measurement in public 

programs. Subsequently, the variable 

returns to scale (VRS) model was 

developed in [3], allowing for a more 

refined assessment of DMU performance 

under non-constant returns to scale and 

addressing both technical and scale 

efficiency. The concept of centralized 

resource allocation within DEA, in which 

optimal targets are set for each decision-

making unit, was first proposed in [4]. This 

model focuses on two key features: the 

position of units relative to the efficiency 

frontier and the optimization of total inputs 

and outputs by finding weights that 

maximize relative efficiency. The model is 

based on a multiplier approach that 

optimally adjusts the aggregation of inputs 

and outputs. Sustainable development is 

defined as meeting the needs of the present 

generation without compromising the 

ability of future generations to meet their 

own needs. This concept is critically 

important across all sectors, particularly in 

energy and agriculture, which constitute 

the backbone of food and energy security 

in any nation. Energy infrastructure plays 

a pivotal role in ensuring the sustainable 

and efficient supply of energy resources. 

The advancement of clean and modern 

infrastructure—such as smart grids and the 

deployment of renewable energy 

sources—contributes significantly to 

reducing environmental pollutants, 

improving energy efficiency, and 

promoting long-term sustainability of the 

energy system. In parallel, agricultural 

infrastructure encompasses elements such 

as advanced irrigation techniques, 

effective soil management, and the 

responsible use of fertilizers and 

pesticides. These practices help increase 

agricultural productivity while preserving 

ecosystems and natural resources. At the 

international level, the optimal allocation 

of resources among nations, especially in 

critical sectors like energy and agriculture, 

is essential for realizing global sustainable 

development goals. Such allocation must 

be conducted in a manner that allows 

countries with limited capacities to 

enhance their infrastructure and 

operational efficiency, while more 

developed nations assume leading roles in 

technology transfer and financial support.  

Integrating the concepts of optimal 

resource allocation with sustainable 

development indicators—especially 

within DEA models—can help identify the 
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most efficient strategies for infrastructure 

investment and development. This 

integration supports policymakers in 

making optimal decisions to enhance both 

the economic and environmental 

performance of countries. Here are several 

key references related to sustainable 

development in the fields of energy, 

agriculture, and resource allocation. In the 

literature review section, several studies 

on sustainable development, energy 

consumption optimization, increasing 

agricultural productivity, and the 

advancement of environmental policies 

have been mentioned. 

In many real-world systems, input and 

output indicators do not exhibit uniform 

development rates, and their rates of 

change vary throughout the development 

process. In other words, the assumption of 

uniform returns to scale for all indicators, 

as used in classical DEA models, is not 

always applicable in practical settings. 

This highlights the need to revise the 

traditional concept of returns to scale. In 

this study, output indicators are divided 

into two categories: those assumed to have 

development rates similar to inputs, and 

those with distinctively higher 

development coefficients. Since DEA 

models are built upon fundamental 

principles and assumptions, this situation 

called for an extension of the returns to 

scale concept and the introduction of a new 

principle, as proposed in [5], to enhance 

the dynamism and realism in the 

performance analysis of systems. 

This study seeks to address the following 

key questions: 

How can the performance of countries on 

the path toward sustainable development 

be evaluated using the DEA approach, 

while accounting for unequal development 

coefficients among input and output 

indicators? When certain output indicators 

exhibit significantly higher development 

coefficients, how should resources be 

optimally allocated among countries in a 

way that conserves overall inputs while 

maintaining or enhancing total output 

growth? What is the impact of employing 

a centralized resource allocation model—

alongside a revised returns to scale 

principle—on identifying countries with 

the greatest potential for improvement and 

on designing effective development 

policies?  

The primary objective of this study is to 

develop a robust DEA-based framework 

for evaluating national performance in the 

context of sustainable development. This 

framework incorporates asymmetric 

development coefficients for inputs and 

outputs, with a particular focus on output 

indicators that exhibit higher development 

influence. Furthermore, the study aims to 

investigate how centralized resource 

allocation models—enhanced by a revised 

returns to scale principle—can support 

efficient resource distribution, identify 

countries with the greatest improvement 

potential, and inform effective 

development strategies. The key insights 

gained from this research as follows: 

 The application of the enhanced 

centralized resource allocation model 

has been shown in [1] to result in more 

accurate resource distribution among 

countries pursuing sustainable 

development goals. 

 Output indicators with higher 

development impact coefficients 

significantly influence the optimal 

allocation of resources in centralized 

DEA models. 

 Optimized resource allocation under 

this enhanced DEA framework can 

result in overall input savings while 

maintaining or increasing total 

outputs. 
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Achieving sustainable development—

especially in critical areas such as energy, 

water, and agriculture—is one of the major 

global challenges, as natural resources are 

limited while population and national 

demands are continuously increasing. 

Under such conditions, the optimal and 

equitable allocation of resources plays a 

key role in realizing sustainable 

development goals. Building upon the 

principle of Pseudo-Returns to Scale (P-

RTS) [5], which was introduced to model 

development processes with 

heterogeneous growth rates across 

indicators, this study’s novelty lies in 

applying the P-RTS framework—

developed from centralized resource 

allocation models incorporating the 

pseudo-returns to scale principle as 

proposed in [1]—to a practical regional 

case involving resource allocation among 

East Asia and Pacific countries.  

2. literature Review 

1.2 Energy, Environment, and 

Agricultural Efficiency: A Review of 

DEA Applications 

A systematic review of the performance of 

renewable energies from the perspectives 

of efficiency and productivity was 

conducted in [6], where Data Envelopment 

Analysis (DEA) was employed and 

directions for future research were 

proposed. Similarly, national-level energy 

management performance was evaluated 

in [7], in which DEA was applied to 

compare indicators such as energy 

intensity and productivity across various 

countries. In the domain of agriculture and 

environmental assessment, DEA models 

were utilized in [8] to measure both energy 

and environmental efficiency in the 

agricultural sector of the European Union, 

adopting a multi-indicator approach to 

compare countries’ resource utilization 

efficiency. Case studies in Peru were 

carried out in [9,10], where ecological data 

were used to evaluate the environmental 

efficiency of potato production systems by 

incorporating climatic and managerial 

variables. In [11], a hybrid model was 

developed to assess energy productivity in 

Pakistan’s agricultural sector, examining 

both economic and technical dimensions 

of system efficiency. From a broader 

sustainability perspective, an integrated 

DEA–ecological footprint approach was 

adopted in [12] to evaluate sustainable 

development in Jiangsu Province, China, 

by analyzing environmental, economic, 

and social indicators within a unified 

analytical framework. More recently, a 

2023 study evaluated the performance of 

G8 and SAARC countries across the three 

dimensions of sustainability—

environmental, economic, and social—

using DEA models, offering a comparative 

perspective between developed and 

developing regions. With the expanding 

applications of DEA, resource allocation 

under limited availability—aimed at 

optimizing overall system performance—

has gained significant importance. 

2.2 Centralized Resource Allocation in 

DEA: Models and Developments 

The CRA model within the DEA 

framework was introduced in [4], where 

input resources are centrally distributed 

among DMUs to achieve predefined 

performance targets. In these models, the 

position of each unit relative to the 

efficiency frontier, as well as the optimal 

combination of input consumption and 

output production at the system level, is 

analyzed using multiplier-based models 

[13]. These approaches are commonly 

applied in evaluating and improving public 

programs and ensuring fair resource 

distribution. 

Meanwhile, in recent decades, DEA has 

increasingly been used as a tool to assess 

the performance of countries along the 

path toward sustainable development. 
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Studies such as [14], which focus on 

environmental efficiency, and [15], which 

evaluate energy productivity in Asian 

countries, demonstrate DEA’s significant 

role in analyzing both environmental and 

economic efficiency. These studies 

emphasize the necessity of multi-indicator 

evaluations—including natural resources, 

energy, and access to sustainable 

infrastructure—for assessing national 

development. Various researchers have 

proposed frameworks and models for 

centralized resource allocation and 

technical efficiency analysis. For example, 

an integrated framework was presented in 

[16] to analyze the relationship between 

centralized cost resource allocation and 

output distribution in firms, along with an 

algorithm to solve related nonlinear 

programming problems. This framework 

allows decision-makers to evaluate and 

compare the optimal mix of inputs and 

outputs across multiple units. A 

quantitative analysis was conducted in 

[17] using DEA and centralized resource 

allocation in flow networks, examining the 

relationship between production profit 

from resource allocation and its associated 

costs. Similarly, DEA-based approaches 

with a focus on common weights in 

centralized management were reviewed in 

[18], aiming to determine the optimal flow 

of resources. In the field of environmental 

applications, a multi-objective model was 

proposed in [19] for centralized resource 

allocation aimed at energy conservation 

and pollution reduction. The findings 

revealed that pollution reduction was more 

significant than the reduction in desirable 

energy outputs. In [20], group 

performance under centralized 

management was evaluated, and a novel 

method was introduced for decomposing 

centralized performance indicators, 

enabling the identification of meta 

frontiers. 

3.2 Beyond Classical Returns to Scale: 

The Emergence of Pseudo-RTS (P-RTS) 

However, classical models of Returns to 

Scale (RTS) face limitations when the 

development rates of indicators (inputs or 

outputs) are not uniform. To address this 

issue, the concept of P-RTS in CRA was 

introduced in [1]. This novel principle 

enables greater flexibility in modeling 

systems in which indicators evolve at 

different rates. When the development 

coefficients of indicators are uniform, the 

P-RTS framework coincides with the 

classical RTS; however, when the growth 

rates of indicators differ, P-RTS offers a 

more appropriate structure for analyzing 

development dynamics [5]. 

 

3. Methodology and Data Analysis 

DEA models are typically designed based 

on fundamental principles, and in this 

study, the principle of “pseudo-returns to 

scale” is incorporated. This principle 

indicates that changes in inputs have 

different effects on various groups of 

outputs. To implement this, the indicators 

are categorized into two groups of outputs 

and one group of inputs, such that the 

returns to scale of the inputs are considered 

equal to those of the first group of outputs, 

while the returns to scale of the second 

group of outputs are assumed to be larger. 

This approach enables system managers to 

allocate resources in the most optimal way, 

taking into account the differing 

importance of outputs. The required 

models and frameworks are presented 

below based on the assumptions 

introduced in [1]. Model 1 has been 

employed to evaluate the performance of 

decision-making units under the principle 

of pseudo-returns to scale for indicators 

with the assumed categorizations. 
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In the application section, Model 1 is first 

applied to the data to evaluate the 

efficiency of the decision-making units 

under all three pseudo-returns to scale 

conditions. Then, Model 2 is applied to the 

data related to the 17 countries for 

centralized resource allocation, and 

subsequently, the efficiency of the targets 

for each decision-making unit is 

examined. 

 

4. Practical Application 

The study is conducted on 17 selected 

countries from the East Asia and Pacific 

region. The reason for selecting these 17 

countries is the availability of more 

complete data for the chosen indicators 

related to sustainable development in the 

year 2015. The data were obtained from 

the World Bank2 database. The indicators 

examined for these countries include five 

input indicators and three output 

indicators.  The categorization of the 

indicators is performed based on the 

variation coefficients of the data and their 

interaction with policymakers. the World 

Bank database. The indicators examined 
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for these countries include five input 

indicators and three output indicators.  The 

categorization of the indicators is 

performed based on the variation 

coefficients of the data and their 

interaction with policymakers.  

Based on the analysis of the developed 

returns to scale (coefficient of variation) of 

the input and output indicators in the DEA 

model, it was observed that certain inputs 

exhibit high variability among the 

countries studied. However, for the 

purpose of targeting in efficiency analysis, 

the outputs were categorized based on a 

comparison with inputs that have lower 

returns to scale, particularly the indicator 

of “per capita energy consumption,” which 

demonstrates more stable behavior 

compared to other inputs. Accordingly, 

outputs that are more homogeneous in 

terms of returns to scale and closer to 

controllable inputs were grouped together 

(such as the indicators of “access to 

electricity” and “food production index”), 

while outputs that exhibit higher 

fluctuations and follow a different 

development trajectory (such as “share of 

renewable electricity”) were placed in a 

second category. This approach not only 

aligns with the economic and 

environmental logic of East Asian 

countries but also makes the DEA model 

analysis more realistic and grounded in the 

structural differences among countries. 

The indicators are presented in Table 1. 

Additionally, references to studies that 

have utilized these indicators are provided 

in Table 1. 

Table 1. Indicators and References 

Indexes Authors Type of index Series Code 

Energy use (kg of oil equivalent 

per capita) 
[21, 22] Input EG.USE.PCAP.KG.OE 

Agricultural land  

(sq. km) 

[23, 24, 25] 

 
Input AG.LND. AGRI. K2 

Fertilizer consumption 

(kilograms per hectare of arable 

land) 

[21, 23, 24, 26, 27] 

 
Input AG.CON.FERT. ZS 

Rural land area  

(sq. km) 
[24] Input AG.LND.TOTL.RU.K2 

Annual freshwater withdrawals, 

total (billion cubic meters) 

[22, 24,28] 

 
Input ER.H2O.FWTL. K3 

Food production index (2014-

2016 = 100) 
[25] Output AG.PRD.FOOD. XD 

Access to electricity 

 (% of population) 
[29] Output EG.ELC.ACCS. ZS 

Renewable electricity output (% 

of total electricity output) 
[30] Output EG.ELC.RNEW. ZS 

 

The indicators are defined in Table 2. 
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Table 2. Description of Indicators 

Access to electricity (% of population) 
Access to electricity is the percentage of population with access to 

electricity. Electrification data are collected from industry, national 

surveys and international sources. 

Agricultural land (sq. km) 

Agricultural land includes temporarily arable land, orchards, and 

permanent crops such as fruit trees and flowering shrubs. It also 

encompasses permanent pastures used for grazing or forage 

production for five or more years. 

Energy use (kg of oil equivalent per capita) 

Energy use refers to use of primary energy before transformation to 

other end-use fuels, which is equal to indigenous production plus 

imports and stock changes, minus exports and fuels supplied to 

ships and aircraft engaged in international transport. 

Food production index (2014-2016 = 100) 
Food production index covers food crops that are considered edible 

and that contain nutrients. Coffee and tea are excluded because, 

although edible, they have no nutritive value. 

Renewable electricity output (% of total 

electricity output) 

Renewable electricity is the share of electrity generated by 

renewable power plants in total electricity generated by all types of 

plants. 

Rural land area (sq. km) 

Rural land area is measured in square kilometers using urban extent 

grids that differentiate urban and rural areas based on population, 

settlement points, and Nighttime Lights. Urban areas are identified 

by contiguous lighted cells or settlement buffers with populations 

over 5,000. 

Fertilizer consumption (kilograms per 

hectare of arable land) 

Fertilizer consumption refers to the amount of nitrogen, potash, and 

phosphate fertilizers used per unit of arable land, excluding 

traditional manures. Arable land includes temporary crops, 

meadows, gardens, and fallow land but excludes land abandoned 

due to shifting cultivation. 

Annual freshwater withdrawals, total 

(billion cubic meters) 

Annual freshwater withdrawals include total water taken for 

agriculture, industry, and domestic use, excluding evaporation 

losses, and may involve desalination and nonrenewable sources. 

Withdrawals can exceed renewable resources due to reuse or 

extraction from nonrenewable aquifers. 

 

 

Table 3 and Table 4 presents the data 

related to the five input indicators and 

three output indicators corresponding to 17 

countries in East Asia and the Pacific, 

respectively. 

Table 5 presents the efficiency scores of 

the 17 evaluated countries under different 

P-RTS conditions using Model 1. 
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Table 3. Study Data: Input Indicators 

DMUs 

East Asia & 

Pacific 

Countries 

I1 I2 I3 I4 I5 

Energy use (kg 

of oil 

equivalent per 

capita) 

Agricultural 

land (sq. km) 

Fertilizer 

consumption 

(kilograms per 

hectare of arable 

land) 

Rural land 

area (sq. km) 

Annual 

freshwater 

withdrawals, 

total (billion 

cubic meters) 

D1 Australia 5318.666793 3481190 79.4678592 7650418.083 9.22 

D2 
Brunei 

Darussalam 
6437.002474 134 177.25 5571.881756 0.092 

D3 Cambodia 379.745574 56476.28 29.66733796 176180.6789 2.184 

D4 China 2172.63044 5237038 480.2420628 8723723.06 591.8 

D5 Indonesia 692.3595852 578000 339.5853057 1820838.066 339.5853057 

D6 Japan 3400.592711 48460 225.3269917 316736.2049 79.91742857 

D7 
Korea, Dem. 

People's Rep. 
372.7980879 26300 51.37650862 119025.2203 8.6578 

D8 Korea, Rep. 5239.003454 17360 337.8127893 86793.3716 29.197 

D9 Lao PDR 602.3395488 23350 33.7452844 228354.3777 7.85 

D10 Malaysia 2706.926963 85699.7 1896.164108 318197.5661 6.226 

D11 Mongolia 1516.3411 1136644.1 17.46264297 1549425.131 0.4296 

D12 Myanmar 353.4068269 127489.999 13.32071996 660979.5454 33.231 

D13 Philippines 499.0707763 125270 139.4234258 282119.5821 86.4 

D14 Singapore 5832.187484 6.6 143.1607143 210.1625761 0.5075 

D15 Thailand 1932.67391 228460 135.2745172 491891.911 57.307 

D16 Viet Nam 679.445924 121478 432.2736034 297626.6621 81.862 

D17 New Zealand 4417.094574 107120 1786.005439 270548.6286 9.875 

Sum - 42552.29 11400477 6317.559 22998640 1344.342 

 
Table 4. Study data: Output Indicators 

DMUs 
East Asia & 

Pacific Countries 

O1 O2 O3 

Food 

production 

index (2014-

2016 = 100) 

Access to 

electricity (% 

of population) 

Renewable 

electricity output 

(% of total 

electricity output) 

D1 Australia 101.22 100 13.34208 

D2 Brunei Darussalam 97.31 100 0.031190 

D3 Cambodia 98.76 62.7 48.58707 

D4 China 101.33 100 23.86494 

D5 Indonesia 101.74 97.5 14.39443 

D6 Japan 99.72 100 14.17878 

D7 
Korea, Dem. 

People's Rep. 
98.49 40 52.70770 
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D8 Korea, Rep. 99.54 100 2.598460 

D9 Lao PDR 104.55 89.7 98.18733 

D10 Malaysia 100.75 99.9 11.14019 

D11 Mongolia 110.54 88 4.047524 

D12 Myanmar 100.99 60.5 68.08996 

D13 Philippines 100.77 89.1 25.52859 

D14 Singapore 99.27 100 4.179670 

D15 Thailand 96.59 99.6 12.98142 

D16 Viet Nam 100.72 99.3 35.39641 

D17 New Zealand 101.16 100 80.46499 

Sum - 1713.45 1526.3 509.7208 

 
Table 5. Efficiency Scores of 17 Countries Before Allocation (Model 1) 

DMUs 

East Asia & 

Pacific 

Countries 

Efficiency 

under 

P-CRs 

Efficiency 

under 

CRS 

Efficiency 

under 

P-DRS 

Efficiency 

under 

DRS 

Efficiency 

under 

P-IRS 

Efficiency 

under 

IRS 

D1 Australia 0.30166 0.3057 0.3361 0.3415 0.30167 0.3057 

D2 
Brunei 

Darussalam 
1 1 1 1 1 1 

D3 Cambodia 1 1 1 1 1 1 

D4 China 0.1308 0.2143 0.1813 0.2524 0.1308 0.2143 

D5 Indonesia 0.2799 0.5413 0.3117 0.5413 0.2799 1 

D6 Japan 0.3969 0.7038 0.4286 0.7038 0.3969 1 

D7 

Korea, Dem. 

People's 

Rep. 

1 1 1 1 1 1 

D8 Korea, Rep. 0.3934 0.7618 0.3979 0.7618 0.3934 1 

D9 Lao PDR 1 1 1 1 1 1 

D10 Malaysia 0.5319 0.7799 0.5491 0.7796 0.53195 1 

D11 Mongolia 1 1 1 1 1 1 

D12 Myanmar 1 1 1 1 1 1 

D13 Philippines 1 1 1 1 1 1 

D14 Singapore 1 1 1 1 1 1 

D15 Thailand 0.3262 0.7672 0.3523 0.7672 0.3267 1 

D16 Viet Nam 0.4734 0.6823 0.5007 0.6823 0.4734 0.7089 

D17 New Zealand 0.3401 0.4253 0.3542 0.4765 0.3401 0.4253 

 

Table 5 presents the performance of 

countries under Model 1 and the 

conventional DEA model assuming 

classical returns to scale. The results 

clearly indicate that, due to the higher 

significance of the third output indicator 

relative to others, Model 1 offers a more 

precise differentiation in the performance 

of countries. 
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Tables 6, 8, and 10 respectively show the 

patterns obtained corresponding to the 

input indicators, while Tables 7, 9, and 11 

present the output values corresponding to 

resource consumption after allocation, 

obtained by solving Model 2 on the data of 

17 sustainable developing countries. 

Tables 6 and 7 correspond to the constant 

pseudo-returns to scale condition, Tables 8 

and 9 correspond to the pseudo-decreasing 

returns to scale condition, and Tables 10 

and 11 correspond to the pseudo-

increasing returns to scale condition. 

The last row of each table shows the total 

values of each indicator. 

Table 6 and 7 report almost ten distinct 

target points obtained from the extended 

CRS version of Model 2, which 

incorporates a differentiated coefficient on 

the third output indicator. 

Table 8 and 9 two distinct target points 

obtained from the extended DRS version 

of Model 2, which incorporates a 

differentiated coefficient on the third 

output indicator. 

 
Table 6. Input Targets under P-CRS (Model 2) 

DMUs 

East Asia & 

Pacific 

Countries 

I1 I2 I3 I4 I5 

Energy use 

(kg of oil 

equivalent 

per capita) 

Agricultural 

land (sq. km) 

Fertilizer 

consumption 

(kilograms per 

hectare of 

arable land) 

Rural land area 

(sq. km) 

Annual 

freshwater 

withdrawals, 

total (billion 

cubic meters) 

D1 Australia 6.72E+02 2.60E+04 37.620161 2.55E+05 8.7513935 

D2 
Brunei 

Darussalam 
6.72E+02 2.60E+04 37.620161 2.55E+05 8.7513935 

D3 Cambodia 3.80E+02 5.65E+04 29.667338 1.76E+05 2.184 

D4 China 6.72E+02 2.60E+04 37.620161 2.55E+05 8.7513935 

D5 Indonesia 6.55E+02 2.54E+04 36.679657 2.48E+05 8.5326087 

D6 Japan 6.72E+02 2.60E+04 37.620161 2.55E+05 8.7513935 

D7 
Korea, Dem. 

People's Rep. 
3.97E+02 5.30E+04 29.798999 1.80E+05 2.6818713 

D8 Korea, Rep. 6.72E+02 2.60E+04 37.620161 2.55E+05 8.7513935 

D9 Lao PDR 6.02E+02 2.34E+04 33.745284 2.28E+05 7.85 

D10 Malaysia 6.71E+02 2.60E+04 37.582541 2.54E+05 8.7426421 

D11 Mongolia 5.78E+02 3.54E+04 34.992912 2.29E+05 6.6758856 

D12 Myanmar 4.67E+02 4.34E+04 31.25793 1.97E+05 4.4135655 

D13 Philippines 5.98E+02 2.32E+04 33.519563 2.27E+05 7.7974916 

D14 Singapore 6.72E+02 2.60E+04 37.620161 2.55E+05 8.7513935 

D15 Thailand 6.69E+02 2.59E+04 37.46968 2.54E+05 8.716388 

D16 Viet Nam 6.67E+02 2.58E+04 37.35682 2.53E+05 8.6901338 

D17 New Zealand 6.72E+02 2.60E+04 37.620161 2.55E+05 8.7513935 

Sum - 1.04E+04 5.20E+05 6.05E+02 4.03E+06 1.28E+02 
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Table 7. Output Targets under P-CRS (Model 2) 

DMUs 
East Asia & Pacific 

Countries 

O1 O2 O3 

Food production index  

(2014-2016 = 100) 

Access to 

electricity (% of 

population) 

Renewable electricity 

output (% of total 

electricity output) 

D1 Australia 1.17E+02 102 14.87412 

D2 Brunei Darussalam 1.17E+02 102 14.87412 

D3 Cambodia 98.76 62.7 48.58708 

D4 China 1.17E+02 102 23.86495 

D5 Indonesia 1.14E+02 97.5 14.39444 

D6 Japan 1.17E+02 102 14.87412 

D7 
Korea, Dem. 

People's Rep. 
98.49 64.6506 52.70771 

D8 Korea, Rep. 1.17E+02 102 14.87412 

D9 Lao PDR 1.05E+02 89.7 98.18734 

D10 Malaysia 1.16E+02 99.9 11.14019 

D11 Mongolia 1.11E+02 88 4.349 

D12 Myanmar 1.01E+02 73.29828 68.08997 

D13 Philippines 1.04E+02 89.1 25.52859 

D14 Singapore 1.17E+02 102 14.87412 

D15 Thailand 1.16E+02 99.6 14.81462 

D16 Viet Nam 1.16E+02 99.3 35.39642 

D17 New Zealand 1.17E+02 102 80.46499 

Sum - 1.89E+03 1.56E+03 5.52E+02 

 
Table 8. Input Targets under P-DRS (Model 2) 

DMUs 
East Asia & 

Pacific Countries 

I1 I2 I3 I4 I5 

Energy use 

(kg of oil 

equivalent 

per capita) 

Agricultural 

land (sq. km) 

Fertilizer 

consumption 

(kilograms per 

hectare of 

arable land) 

Rural 

land area 

(sq. km) 

Annual 

freshwater 

withdrawals, 

total (billion 

cubic meters) 

D1 Australia 7.90E+02 5.24E+04 48.10295 2.66E+05 14.84392 

D2 Brunei Darussalam 6.02E+02 2.34E+04 3.37E+01 2.28E+05 7.85 

D3 Cambodia 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D4 China 6.02E+02 2.34E+04 3.37E+01 2.28E+05 7.85E+00 

D5 Indonesia 6.02E+02 2.34E+04 3.37E+01 2.28E+05 7.85E+00 

D6 Japan 6.02E+02 2.34E+04 3.37E+01 2.28E+05 7.85 

D7 
Korea, Dem. 

People's Rep. 
6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D8 Korea, Rep. 6.02E+02 2.34E+04 3.37E+01 2.28E+05 7.85 

D9 Lao PDR 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 
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D10 Malaysia 6.02E+02 2.34E+04 3.37E+01 2.28E+05 7.85 

D11 Mongolia 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D12 Myanmar 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D13 Philippines 6.02E+02 2.34E+04 3.37E+01 2.28E+05 7.85 

D14 Singapore 6.02E+02 2.34E+04 3.37E+01 2.28E+05 7.85 

D15 Thailand 6.02E+02 2.34E+04 3.37E+01 2.28E+05 7.85 

D16 Viet Nam 6.02E+02 2.34E+04 3.37E+01 2.28E+05 7.85 

D17 New Zealand 6.02E+02 2.34E+04 3.37E+01 2.28E+05 7.85 

Sum - 1.04E+04 4.26E+05 5.88E+02 3.92E+06 1.40E+02 

 
Table 9. Output Targets under P-DRS (Model 2) 

DMUs 
East Asia & 

Pacific Countries 

O1 O2 O3 

Food production index 

(2014-2016 = 100) 

Access to electricity 

(% of population) 

Renewable electricity output 

(% of total electricity output) 

D1 Australia 1.03E+02 91.1 31.18884 

D2 
Brunei 

Darussalam 
1.05E+02 89.7 13.34208 

D3 Cambodia 1.05E+02 89.7 13.34208 

D4 China 1.05E+02 89.7 13.34208 

D5 Indonesia 1.05E+02 89.7 13.34208 

D6 Japan 1.05E+02 89.7 13.34208 

D7 
Korea, Dem. 

People's Rep. 
1.05E+02 89.7 13.34208 

D8 Korea, Rep. 1.05E+02 89.7 13.34208 

D9 Lao PDR 1.05E+02 89.7 98.18734 

D10 Malaysia 1.05E+02 89.7 13.34208 

D11 Mongolia 1.05E+02 89.7 13.34208 

D12 Myanmar 1.05E+02 89.7 98.18734 

D13 Philippines 1.05E+02 89.7 13.34208 

D14 Singapore 1.05E+02 89.7 13.34208 

D15 Thailand 1.05E+02 89.7 23.86495 

D16 Viet Nam 1.05E+02 89.7 98.18734 

D17 New Zealand 1.05E+02 89.7 13.34208 

Sum - 1.78E+03 1.53E+03 5.10E+02 
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Table 10. Input Targets under P-IRS (Model 2) 

DMUs 

East Asia & 

Pacific 

Countries 

I1 I2 I3 I4 I5 

Energy use 

(kg of oil 

equivalent 

per capita) 

Agricultural 

land (sq. km) 

Fertilizer 

consumption 

(kilograms per 

hectare of 

arable land) 

Rural land 

area  

(sq. km) 

Annual freshwater 

withdrawals, total 

(billion cubic 

meters) 

D1 Australia 6.12E+02 2.37E+04 34.27197 2.32E+05 7.97252 

D2 
Brunei 

Darussalam 
6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D3 Cambodia 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D4 China 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D5 Indonesia 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D6 Japan 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D7 
Korea, Dem. 

People's Rep. 
6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D8 Korea, Rep. 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D9 Lao PDR 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D10 Malaysia 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D11 Mongolia 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D12 Myanmar 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D13 Philippines 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D14 Singapore 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D15 Thailand 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D16 Viet Nam 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

D17 New Zealand 6.02E+02 2.34E+04 33.74528 2.28E+05 7.85 

Sum - 1.02E+04 3.97E+05 5.74E+02 3.89E+06 1.34E+02 

 
Table 11. Output Targets under P-IRS (Model 2) 

DMUs 
East Asia & Pacific 

Countries 

O1 O2 O3 

Food production index 

(2014-2016 = 100) 

Access to electricity  

(% of population) 

Renewable electricity 

output (% of total 

electricity output) 

D1 Australia 1.06E+02 91.1 13.55032 

D2 Brunei Darussalam 1.05E+02 89.7 13.34208 

D3 Cambodia 1.05E+02 89.7 13.34208 

D4 China 1.05E+02 89.7 13.34208 

D5 Indonesia 1.05E+02 89.7 13.34208 

D6 Japan 1.05E+02 89.7 13.34208 

D7 
Korea, Dem. 

People's Rep. 
1.05E+02 89.7 13.34208 

D8 Korea, Rep. 1.05E+02 89.7 13.34208 

D9 Lao PDR 1.05E+02 89.7 13.34208 
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D10 Malaysia 1.05E+02 89.7 13.34208 

D11 Mongolia 1.05E+02 89.7 13.34208 

D12 Myanmar 1.05E+02 89.7 13.34208 

D13 Philippines 1.05E+02 89.7 13.34208 

D14 Singapore 1.05E+02 89.7 13.34208 

D15 Thailand 1.05E+02 89.7 2.96E+02 

D16 Viet Nam 1.05E+02 89.7 13.34208 

D17 New Zealand 1.05E+02 89.7 13.34208 

Sum - 1.78E+03 1.53E+03 5.10E+02 

Table 10 and 11 present two distinct target 

points obtained from the extended IRS 

version of Model 2, which incorporates a 

differentiated coefficient on the third 

output indicator. By analyzing the 

Centralized Resource Allocation model 

under the conditions of Model 2 and 

incorporating constraints related to the 

unequal development coefficients of 

output indicators, a revised pattern of 

resource distribution among countries is 

proposed. A comparison with the total 

observed data across all indicators reveals 

that this model enables significant 

resource savings while sustaining or even 

enhancing overall production levels. These 

findings highlight the effectiveness of the 

proposed approach in guiding efficient and 

equitable allocation policies, particularly 

in the context of sustainable development. 

Figure 1 illustrates the percentage of 

resource savings and production increase 

relative to the initial data, under various 

extended returns to scale scenarios. 

Figure 1 shows that there has been an 

increase in production for the first output 

indicators, while the initial production 

levels have been maintained for the other 

output indicators. Therefore, considering 

the proposed target patterns for the 

countries under various extended returns 

to scale conditions, it is observed that they 

approach the estimated efficiency frontier, 

and in some cases, lie directly on the 

frontier. This demonstrates the strength of 

Model 2 and its practical relevance, 

particularly for real-world applications 

such as evaluating and allocating countries 

in the context of sustainable development. 

Table 12 shows the efficiency scores 

corresponding to each target obtained 

under the P-RTS. 

 
Figure 1. Percentage comparison of resource savings and output improvements 
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Table 12 Efficiency Scores After Resource Allocation 

DMUs 
East Asia & Pacific 

Countries 

Efficiency 

under P-CRs 

Efficiency 

under P-DRS 

Efficiency 

under P-IRS 
 

D1 Australia 1 0.6744 1  

D2 Brunei Darussalam 1 1 1  

D3 Cambodia 1 0.99 1  

D4 China 1 1 1  

D5 Indonesia 1 1 1  

D6 Japan 1 1 1  

D7 
Korea, Dem. People's 

Rep. 
1 0.99 1  

D8 Korea, Rep. 1 1 1  

D9 Lao PDR 1 0.99 1  

D10 Malaysia 1 1 1  

D11 Mongolia 1 0.99 1  

D12 Myanmar 1 0.99 1  

D13 Philippines 1 1 1  

D14 Singapore 1 1 1  

D15 Thailand 0.99 1 1  

D16 Viet Nam 1 1 1  

D17 New Zealand 1 1 1  

 

5.  Conclusion and Suggestions 

In this study, the principle of Pseudo-

Returns to Scale, previously 

introduced by [5], was employed as an 

effective tool for analyzing resource 

allocation policies in systems 

characterized by heterogeneous 

indicators—a concept that had also 

been applied in [1]. This approach is 

particularly effective in the context of 

sustainable development and the 

management of scarce resources such 

as energy, water, and agricultural land. 

The principle can guide resource 

allocation in an optimal manner that 

takes into account variations in growth 

rates and the relative importance of 

output indicators, including electricity 

generated from renewable sources. In 

practical application, the proposed model 

not only resulted in resource savings but 

also maintained or, the total production 

across all units experienced a slight 

increase under the P-CRS status 

Moreover, the allocated resources for each 

decision-making unit brought them closer 

to the efficient frontier of the proposed 

feasible production set [5], indicating an 

improvement in system-level efficiency.  

The practical application of the proposed 

model in East Asian and Pacific countries 

demonstrated its capability to enhance 

decision-making processes at the regional 

level and facilitate balanced and 

sustainable development. Based on the 

findings of this research, the following 

recommendations are proposed for future 

studies: First, further in-depth 

investigations into the P-RTS principle 

could enhance understanding of its 

implications and applications across 
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various industries, sectors, and 

geographical regions, thereby increasing 

its generalizability. Second, conducting 

comparative studies among countries and 

regions with varying resource 

endowments and levels of economic 

development would be useful to better 

understand how environmental and 

economic factors affect the effectiveness 

of the P-RTS model in resource allocation. 

Third, integrating environmental 

indicators into DEA models could provide 

a more comprehensive assessment of 

sustainability and the balance between 

economic efficiency and environmental 

protection. Finally, longitudinal studies to 

evaluate the long-term impacts of policies 

based on the P-RTS principle would offer 

valuable insights regarding the 

effectiveness and sustainability of this 

approach. 
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