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Abstract: Location-based social networks are very important in the field of targeted commerce and advertising due to
their valuable location data and user relationships. A key issue in these networks is determining the social influence of
users to identify influential users. Research has proven the role of node similarity in finding the social influence of users.
Among the methods for calculating node similarity, many existing methods ignore multiple aspects of similarity between
users. In this paper, by combining two criteria of homophily and embedded and basic similarities, the social influence of
users in location-based networks is investigated. The results show that combined similarity increases the accuracy in
identifying more influential users, especially when users have similar characteristics. This means that the personal and
social characteristics of users, in addition to their structural relationships in the network, play a decisive role in analyzing
social behaviors. The use of node embedding models improved the accuracy of structural similarities and the detection
of complex relationships between nodes. By applying the proposed method on real datasets, it was shown that the use of
node embedding models, due to their simplicity and lack of time spent on data training, is computationally and cost-
competitive in processing more complex and larger data compared to advanced methods.

Keywords: Social influence, influential users, embedded similarity, homophily, location-based social networks.

JCDSA, Vol. 3, No. 3, Autumn 2025  Online ISSN: 2981-1295 Journal Homepage: https://sanad.iau.ir/en/Journal/jcdsa
Received: 2025-06-10 Accepted: 2025-09-12 Published: 2025-12-21

Akhavan-Hejazi,ZS. ,et. al., "A method for identifying social influence using embedded
CITATION similarity and homophily in location-based social networks”, Journal of Circuits, Data and

Systems Analysis (JCDSA), Vol. 3, No. 3, pp. 12-27, 2025.

DOI: 10.82526/jcdsa.2026.1209488

COPYRIGHTS ©2025 by the authors. Published by the Islamic Azad University Shiraz Branch. This article
is an open-access article distributed under the terms and conditions of the Creative

Commons Attribution 4.0 International (CC BY 4.0)
BY 2 https://creativecommons.org/licenses/by/4.0

* Corresponding author



mailto:mesmaeili@iau.ac.ir
mailto:mo.ghobaei@iau.ac.ir
https://creativecommons.org/licenses/by/4.0

A method for identifying social influence .../Akhavan-Hejazi et. al.

Extended Abstract

1- Introduction

Location-Based Social Networks (LBSNs), by integrating
spatial data and social relationships, provide a crucial
platform for analyzing human interactions, targeted
marketing, and effective information dissemination.
Identifying influential users in such networks is a
fundamental challenge aimed at enhancing the spread of
information and improving communication efficiency. In
this context, structural similarity between nodes and the
phenomenon of homophily—people’s tendency to interact
with others who are similar—play key roles in determining
social influence. Existing methods often focus on only one
of these aspects, neglecting the potential benefits of
combining both. The proposed framework uses a hybrid
algorithm to calculate structural similarity and homophily,
including embedded and classical methods. The
innovation of this approach is the emphasis on the
important role of node characteristics on social influence
over their topological structure in the network, which uses
a combination of two embedded methods (for the
friendship graph) and two classical methods due to the
existence of a two-layer network including a friendship
graph and a user login graph.

2- Methodology

This study proposes a multi-step approach to identify
influential users in location-based social networks by
integrating  structural similarity, homophily, and
spatiotemporal influence patterns. Initially, social
interaction data and users’ location visits are collected and
preprocessed, forming two interconnected graphs: a user
friendship graph and a bipartite user-location visit graph.
To capture the complex relationships between users, both
classical similarity measures such as Jaccard and
Adamic/Adar indices, and advanced graph embedding
techniques like Node2Vec and DeepWalk are employed to
compute node similarities. These embedding methods
leverage random walk simulations to generate vector
representations of nodes, enabling more nuanced
similarity assessments through cosine similarity.

In parallel, homophily—reflecting users’ tendency to
connect with others sharing similar attributes—is
quantified using spatial similarity matrices derived from
user features. A weighted combination of structural
similarity and homophily, controlled by a parameter o,
balances the contribution of each factor in calculating
overall user similarity. The social influence is then
estimated based on temporal patterns of location visits,
where a user’s influence is defined by the number of
friends who subsequently visit the same locations within a
specified time window. This spatiotemporal influence
captures both the social and geographic proximity effects
on information diffusion. Finally, the proposed NSH
algorithm integrates these components by applying the
combined similarity measures to candidate users extracted
from the social and location graphs, and quantifies their
influence through the defined temporal-spatial metrics. By

varying a, the model evaluates the relative importance of
structural connections and homophilic traits in
determining social influence within location-based
networks. This comprehensive methodology provides a
robust framework to analyze and predict influential actors
in complex social and spatial environments.

3- Results and discussion

The proposed algorithm was evaluated using real-world
location-based social network datasets including Gowalla,
Foursquare, and Brightkite. These datasets contain user
interactions, locations, and social ties collected via public
APIs. After preprocessing and filtering data for key
regions such as Texas, California, and New York, the
algorithm’s performance was analyzed using Pearson
correlation and linear regression to measure the
relationship between estimated similarity and actual social
influence. The NSH approach combines node embeddings
(from methods like Node2Vec and DeepWalk) with
homophily measures, effectively capturing both structural
and geographic user similarities. Experiments on filtered
regional data showed a positive correlation between
NSH’s similarity scores and users’ social influence, with
stronger correlations observed when homophily is given
higher weight. The results consistently demonstrated that
similarity based on shared traits significantly affects social
influence in these networks.

Linear regression analysis confirmed the statistical
significance of the relationship, supporting the predictive
validity of NSH-derived similarities. Compared to
baseline methods—including CSH (which combines
structural similarity and homophily), AGCN-IM (a deep
learning influence maximization model), and IGCN-POI
(a GCN-based recommendation model)—NSH offered a
strong balance between accuracy, interpretability, and
efficiency. While AGCN-IM slightly outperformed NSH
in accuracy, it is more complex and less interpretable,
making NSH a more practical choice for unsupervised and
real-time applications. In terms of computational
complexity, NSH efficiently scales to large datasets by
leveraging optimized calculations of spatial similarity and
random walk embeddings.

4- Conclusion

This study showed that combining structural similarity
with users’ attribute-based homophily improves the
accuracy of identifying influential users. Increasing the
weight of homophily enhances social influence detection,
highlighting the importance of user attribute similarity,
especially in LBSNs where geographic and social factors
impact behavior. Node embedding techniques
outperformed traditional similarity measures by better
capturing complex network relationships and handling
larger datasets more efficiently. The results confirmed that
both structural relations and user attributes significantly
affect social influence. Future research should explore
directed graphs, varied edge weights in user-location
bipartite graphs, and include more diverse user features to
further improve influence prediction
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3 Short random walk

Algorithm 1: Pseudocode for Node-Sim-Hom (NSH)

L:Input: G1: friendship network, G2: check-ins network,
At: threshold time

2:Qutput: NSH similarity & Influence for each pair user
3:Begin

4: for (every u; at LBSN) do

5:  Begin

Sifted Region_user (u;)
Find-Similar-Venue-Users (ui)

Embedding learning(u;) : (Node2vec & DeepWalk)
10:  Calculate Combine Similarity (ui, u;)

11:  Calculate Influence (ui, uj)

12: End for

13: End

Y »® 3

Algorithm 2:Pseudocode for Find-Similar-Venue-Users

L:Input: Gl friendship network, G2: check-ins network
2:Output: Candid_List: A set of candid_users
3:Begin
4: while (Chi e Check-ins) do
5: Begin
Candid-list=[, |
Sor (each u; in sifted area at LBSN) do
Begin
If (friend (ui, uy) .AND. (uilocation = uj.location)
Candid_list = Candid list U (ui, uj)
10:  Else
11: Continue
12:  End for
13: End while
14: End

R A

Algorithm 3: Pseudocodes for Node2vec Technique

1: Learn_Features (G1 = (V, E, W), Dimensions d, Walks per
node r, Walk length I, Context size k, Return p, In-out q)
2: 7w = PreprocessModifiedWeights (G, p, q)
:G'=(WV,Enm)
Initialize walks = 0
. for (iter = 1tor)do
for (all nodes u €V) do
Begin

walk = Node2vecWalk(G', u, 1)

Append walk to walks
10: End
11: f'= StochasticGradientDescent(k, d, walks)
12: Return f

VRN bW

1: Node2vecWalk( G1l: friendship network (V, E , ), start
node u, Length l):

2:  Initialize walk to [u]

3:  for (walk_ityer =1to 1 do

4 Begin

5 Curr = walk[-1]

6: Vcurr = GetNeighbors(curr , G1)

7 S = AliasSample(Vcurr , m)

8 Append S to walk
9: End
10: Return walk

! Breadth First Search (BFS)
2 Depth First Search (DFS)
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Algorithm 4: Pseudocode for DeepWalk

1: Input: Gl: friendship network, window size w,
embedding size d walks per vertex y, walk length t
2:Qutput: matrix of vertex representations ® € R V1*?
3:Begin

4: Initialization: Sample ® from U V1<

5: Build a binary Tree T from V

6: fori=0toydo

7: Begin

8 O =Shuffle(V)

9: for each vi €0 do

10: Begin

11: Wvi = RandomWalk(G1, vi,t)
12: SkipGram(®, Wvi , w)

13: end for

14:  end for

15:end

Algorithm 5: Pseudocode for SkipGram

for each vi € Wvido
for each ux EWvi [j—w:j+w]do
J(®) = — log Pr(uk | D(v;)
DP=P—q*0J/0
end for
end for

1:
2
3
4:
5
6:
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Algorithm 6: Pseudocode to Combine-Similarity

L:Input: Candid_list from Algorithm2, G1: Friendship
Network, G2: Check-ins Network

2:Output: NSH: Combine two Node& Attribute
Similarity

3: Begin

4: a: [0,1]

5: for (each ui in Candid_List), do

6: Begin

7:  Calculate Nodes vector similarity (ui ,uj) by Eq.(1)
8: Calculate Structural Similarity (ui ,u;) by Eq.(2-5)
9:  Calculate Homophily (ui, uj) using Eq.(6)

10: Calculate NSH (ui, uj) using Eq.(7)

11: Calculate CSH (ui, uj) using Eq.(8)

12: End for

13:End

Algorithm 7:Pseudocode for Influence Calculation
L:Input:Ge: Candid list , G2: check-ins network , At
2:Output: influence of pair users

3:Begin

4: Initialization parameter: At =30

S: for (each ui in Candid_List at the interval At) do
6: Begin

7:  Compute Count_Chk using (Eq. 4)

8:  If (ui.qloc = uj.qloc) .AND. (ch i.ui:= ch j.uj
AND. (|ui.timecheckin — uj.timecheckin| < At)

9: Calculate the influence (ui,u;) using Eq. (10)
10: End for

11: End
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