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INTRODUCTION

The effective operation of pumping stations is
crucial for ensuring the efficient and reliable
functioning of water distribution networks.
These stations are vital for maintaining the
continuous movement of water across extensive
distances, yet they face various operational
challenges, including failures and variations in
energy usage. Successfully predicting and
managing these challenges is key to enhancing
system efficiency, reducing downtime, and
lowering operational expenses (Dadar et al.,
2021)

Pumping stations are often equipped with
complex machinery and control systems that,
when exposed to wear and tear, may lead to
unexpected failures. Additionally, fluctuations
in energy consumption due to changes in
demand and operational conditions can further
increase operational costs and reduce efficiency
in water transmission systems (Luna et al.,
2019).

These challenges not only impact the
performance and reliability of the infrastructure
but also result in higher operational costs and
diminished service quality (lkramov et al.,
2020). Effective management of pumping
stations requires continuous monitoring and
predictive maintenance strategies to avoid
costly breakdowns and extend the lifespan of
equipment. To address these challenges, there
is an increasing demand for data-driven
approaches that can monitor, predict, and
optimize the performance of these stations in
real time (Yates et al., 2001). Spatial statistics
and  spatio-temporal modeling  provide
powerful tools for analyzing the complex
relationships between various operational
factors, such as equipment failure rates, energy
consumption patterns, and environmental
influences. These techniques have been widely
applied in infrastructure management to
enhance decision-making processes and
improve system reliability (Blokus-Dziula et
al.,, 2023). By integrating these advanced
techniques, predictive models can be developed
to identify potential issues before they arise,
optimize energy usage, and ultimately improve
the overall operational efficiency of pumping
stations.

There is a notable correlation between the
frequency of mechanical failures in pumping
stations and their energy usage. Failures such as
impeller wear, bearing degradation, and shaft
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misalignment tend to reduce hydraulic
efficiency by increasing internal resistance. As
a result, more electrical energy is required to
maintain the same level of output, which leads
to higher operational expenses and accelerated
equipment aging.
A case study conducted at the Gigiri Pumping
Station in Kenya highlighted how different
operational configurations impact overall
efficiency. The study showed that operating a
single pump (Pump No. 4) vyielded a
significantly  higher efficiency of 74%,
compared to just 34% when Pumps 1 and 2
were run together. These differences were
attributed to variations in maintenance status
and mechanical condition (Tiony, 2013).
These findings underscore the importance of
preventive maintenance, precise equipment
selection, and real-time monitoring in
minimizing breakdowns and optimizing energy
consumption. Utilizing smart diagnostics and
predictive tools allows for early detection of
faults, which helps ensure reliable performance
while minimizing unnecessary power usage.
Recent advancements in data analytics and
spatio-temporal modeling have opened up new
possibilities for improving the management of
infrastructure  systems. However, many
conventional approaches still fail to account for
the intricate spatial and temporal relationships
that influence the performance of these
systems. To bridge this gap, combining spatial
clustering, spatial regression, and spatio-
temporal modeling offers a promising strategy
to improve the management and forecasting of
pumping station operations (Kofinas et al,
2020) .
This research aims to develop and implement a
data-driven  analytical ~ framework  that
integrates these techniques to analyze and
predict the performance of pumping stations
within a water transmission infrastructure. The
study particularly focuses on exploring the
connection between energy consumption and
failure frequency at these stations, employing
spatial  regression to  forecast future
performance trends.
The key contributions of this paper include:
1. Presenting a new method that integrates
spatial ~ clustering,  regression,  and
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generalized additive modeling to enhance
the management of pumping stations.

2. Demonstrating how data-driven methods
can be leveraged to gain a deeper
understanding of the spatial and temporal
behavior of system performance.

3. Offering a case study based on the water
transmission pipeline, providing insights
into the practical application of the proposed
framework .

Through the integration of these advanced

analytical techniques, this study aims to deliver

a more precise and holistic understanding of the

operational dynamics of pumping stations,

ultimately aiding in more informed decision-
making and  improving infrastructure
management.

Literature Review

The efficient management of pumping stations,
which are vital components of water
transmission infrastructure, has been a subject
of significant research in the field of
infrastructure management. Various studies
have focused on understanding and improving
the operational performance of pumping
stations by employing advanced analytical and
statistical techniques. This literature review
explores the key methodologies used in
analyzing infrastructure performance, with a
specific focus on spatial regression, nonlinear
modeling, and data-driven methods.

Spatial  modelling in  Infrastructure
Management

Spatial regression techniques have been widely
applied to model and analyze spatial
dependencies in infrastructure systems. Anselin
(1988) introduced the concept of spatial
econometrics, emphasizing the importance of
spatial autocorrelation in model specification.
Later, researchers such as Getis and Ord (1992)
extended these concepts by applying spatial
regression models to infrastructure systems to
account for spatial dependencies in variables
like system failures, maintenance costs, and
energy consumption. These models are
particularly useful in identifying spatial
patterns and correlations that may not be
evident using traditional regression methods.
For instance, Bao & Chen (2017) used spatial
econometrics to model water distribution
systems and found significant spatial
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dependencies in the failure rates of different
components .

As infrastructure systems are influenced by
both spatial and temporal factors, spatio-
temporal modelling has become an essential
tool for analyzing dynamic performance over
time. Cressie (2015) laid the foundation for
spatio-temporal statistics by developing models
that simultaneously account for both spatial and
temporal correlations in environmental data.
Du et al. (2023) further advanced these models
by applying Gaussian Processes (GP) to
infrastructure  performance, showing that
spatio-temporal models can significantly
improve the prediction accuracy of system
failures and energy consumption.

In the context of pumping stations, Qiu et al.
(2024) demonstrated the application of
Gaussian Process Regression (GPR) for
predicting the energy consumption of pumping
stations by integrating both spatial and temporal

variables. This approach has shown
considerable promise in enhancing the
predictive  capabilities of infrastructure

management systems by accounting for the
intricate relationships between time, location,
and system performance.

Clustering Techniques in Infrastructure
Analysis

Clustering methods, particularly K-means
clustering, have been widely used to group
infrastructure units based on their operational
characteristics. Jain (2010) discussed the
importance of clustering in identifying patterns
in large datasets, which can aid in segmenting
infrastructure systems into more manageable
units for optimization purposes. In the context
of pumping stations, clustering has been used to
group stations with similar failure rates or
energy  consumption  patterns,  thereby
facilitating targeted management strategies.
For example, Alyu et al. (2023) used clustering
algorithms to identify groups of pumping
stations with similar failure characteristics,
enabling better resource allocation and
maintenance scheduling. Similarly, Huo et al.
(2020) applied clustering to water distribution
networks to optimize energy usage and reduce
operational costs.

Applications in  Water Transmission
Systems
The application of spatial and spatio-temporal

analysis methods in water transmission systems
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has gained traction in recent years.
Christodoulou et al. (2012) applied spatial
analysis to optimize the maintenance schedules
of water pumps in a large distribution system,
showing that spatially aware models can lead to
more efficient operations. Mutambik (2024)
employed spatio-temporal models to predict
pipe failure rates in a water supply system,
providing a framework for proactive
maintenance and resource management.
Baerton et al. (2020) investigated the
environmental factors influencing pipe failure
in clean water networks using Generalized
Additive Models (GAMSs). GAMs were applied
to model and analyze the effects of variables
such as temperature, pressure, humidity, and
soil quality on pipe failures. The study
emphasized the importance of considering
environmental impacts in the design and
maintenance of water distribution systems,
offering valuable insights for predicting future
failures and improving the management of
water systems.

Gaps and Contribution of This Study

While previous research has explored
individual aspects of infrastructure
performance  using  spatial  regression,

clustering, and nonlinear modelling (GAMS),
few studies have integrated these methods into
a unified framework for managing multiple
performance indicators, such as failure count
and energy consumption, across the same
infrastructure system. This study aims to fill
this gap by providing a data-driven analytical
framework that integrates spatial clustering,
spatial regression, and generalized additive
model to predict and manage the performance
of pumping stations in a water transmission
system. By doing so, this study seeks to
enhance the predictive accuracy and
operational efficiency of pumping stations,
contributing to more effective infrastructure
management practices.

Research Methodology

This section describes the analytical methods
used to investigate the relationship between
electricity consumption and system failures in
pumping stations. A combination of spatial
analysis, time-series  visualization, and
nonlinear modeling techniques was employed
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to capture the complex interdependencies
across both space and time.

Moran’s I Test for Spatial Autocorrelation
To confirm the existence of spatial
autocorrelation in the data, Moran’s 1 statistic
was calculated. This global spatial
autocorrelation measure was applied separately
to the variables of electricity consumption and
failure count, using the same spatial weight
matrix W as in the regression models.

Moran’s I values closer to +1 indicate positive
spatial autocorrelation (similar values cluster
together), while values closer to —1 suggest
negative spatial autocorrelation (dissimilar
values are adjacent). The test helped determine
whether the observed data exhibit significant
spatial patterns, justifying the application of
spatial regression (Moran, 1950; Cliff & Ord,
1981).

Cumulative Time-Series Analysis

For temporal trend analysis, cumulative plots of
both electricity consumption and failure counts
were generated for each pumping station over
the course of March 2024 to March 2025. These
visualizations enabled identification of long-
term patterns, seasonal effects, and sudden
surges in failures or electricity use.
Additionally, peak analysis was conducted to
isolate time intervals with unusually high
values, which may correspond to periods of
stress or inefficiency in system operations
(Chatfield, 2004).

Clustering of Pumping Stations

To identify groups of stations with similar
operational  characteristics,  unsupervised
clustering techniques were applied. In
particular, K-means clustering was used to
partition the pumping stations into distinct
groups based on their electricity consumption
and failure counts.

This step aimed to: Discover hidden patterns in
station behavior, Facilitate  targeted
interventions, Improve maintenance strategies
and resource allocation.

Spatial mapping of the resulting clusters also
revealed potential regional performance trends
or infrastructure disparities (Jain, 2010;
MacQueen, 1967).

Spatial Regression Analysis
To analyze the spatial dependency between
electricity consumption and failure count in



Pazhuheian et al: A Data-Driven Framework for Operational Management of Pumping Stations ...

pumping stations, spatial regression models
were utilized. The primary objective was to
assess whether electricity consumption at a
station is associated with failure occurrences in
the same station or its neighboring stations.
Specifically, the Spatial Lag Model (SLM) was
implemented. The SLM incorporates the
influence of neighboring units through a
spatially lagged dependent variable and is
expressed as follows:

Y=pWY+ X[ +¢
Where:

Y is the dependent variable (failure
count)

X is the matrix of explanatory variables
(e.g., electricity consumption)

W is the spatial weight matrix
representing spatial relationships among
stations

p is the spatial autoregressive
coefficient

€ is the error term.

The inclusion of the term WY allows the model
to account for spatial spillover effects, where
failures in one station may be influenced by
conditions in nearby stations (Anselin, 1988;
Elhorst, 2014).

To complement the analysis and correct for
potential spatial autocorrelation in the
residuals, the Spatial Error Model (SEM) was
also applied. The SEM is suitable when
unobserved spatial effects influence the
dependent variable indirectly through the error
term (Elhorst, 2014).

Generalized Additive Model

In the final stage of the analysis, a Generalized
Additive Model (GAM) was employed to
capture potential non-linear relationships
between the number of failures and electricity
consumption. The model was fitted using a
Poisson distribution with a log link function,
suitable for count data. A smooth term was
applied to the electricity consumption variable
to allow for flexible, data-driven estimation of
its effect, while the categorical effects of month
and station id were included as parametric
terms. This approach allowed the potential
nonlinear influence of energy use on failure
counts to be identified without imposing a strict

functional form. General form of the GAM is
expressed as follow :

p
EYD = o+ ) f;0)
=1

Where:

Y is the response variable

E[Y] is the expected value of the
response

g(.) is the link function

Bois the intercept

fj(.) is Smooth functions estimated
from the data (e.g., splines), allowing for
nonlinear relationships

P is the number of predictors
One of the advantages of GAM is its ability to
model complex, non-linear effects of
predictors, such as electricity consumption,
while also accounting for other factors like
month and station id (Wood, 2017).

A real word case study

This section presents the case study used in the
present research, focusing on a water
transmission line located in Kerman Province,
Iran. The transmission line includes four
pumping stations situated in the southeastern
region of the province, responsible for the
transportation and pumping of water.

A real-world dataset was collected, including
the number of failures at each pumping station
and the corresponding electricity consumption
over a 12-month period. The geographic
coordinates (longitude and latitude) of each
station were wused as spatial axes for
geostatistical analysis.

"The data collection period spans from March
2024 to March 2025. All spatial and statistical
analyses in this study were conducted using
specialized R packages, including sf, ggplot2,
sp, spdep, spatialreg and mgcv.

Research findings

Moran’s | statistic was initially employed to
detect potential spatial autocorrelation in the
distribution of failure counts and electricity
usage across stations. The results of the Moran's
I test for the failure count and electricity
consumption have been presented in Table 1
and Table 2, respectively.

Table 1: Moran's | statistic for failure count

Moran | statistic standard deviate = 5.3308

p-value = 0.7161

Moran | statistic Expectation

Variance

-0.064384141 -0.021276596 0.005692039
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The result of the Moran’s I test suggests that 0.05, we fail to reject the null hypothesis,
there is no significant spatial pattern or indicating that there is no significant spatial
clustering in the failure count data, meaning autocorrelation in the failure count data. In
that failures are randomly distributed across the other words, the number of failures does not
stations and do not exhibit a clear spatial show any significant spatial clustering or
correlation. Since the p-value is greater than pattern.
Table 2: Moran's | statistic for electricity consumption
Moran | statistic standard deviate = -0.57137 p-value = 4.889e-08

Moran | statistic Expectation Variance

0.0005835877 -0.021276596 0.005835877
Since the p-value is very small (much smaller A cumulative plot for failure count and
than 0.05), we reject the null hypothesis and electricity consumption over time was
conclude that there is significant spatial generated to investigate the temporal trends of
autocorrelation in the electricity consumption these variables. The plot, shown in Fig 1,
data. This means that electricity consumption displays the cumulative sum of failures and
values exhibit a spatial pattern, suggesting that electricity consumption for each station,
stations located closer to each other tend to have revealing underlying patterns and trends across
similar levels of electricity consumption. the period.

Cumulative Failures and Electricity Consumption over Time

cumultie falres
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0
J
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+
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Fig 1: Cumulative failure count and electricity consumption over time

The cumulative plot in Fig 1 shows the months. The stepped nature of the line indicates
temporal trends of failure count and electricity that electricity consumption increases in
consumption over the period of one year. The increments, reflecting usage over time.
horizontal axis represents the months of the K-means clustering was applied to partition the
year, while the vertical axis shows the pumping stations into distinct groups based on
cumulative failures. The horizontal line, located their electricity consumption and failure counts.
at the bottom of the plot, represents the failure This technique helps to categorize stations that
count. This line remains relatively constant, exhibit similar characteristics in terms of
showing that failures occur at specific times energy usage and failure frequency, enabling a
throughout the year but do not exhibit a rapid better understanding of operational patterns and
increase or decrease over time. The blue performance. The result has been shown in Fig
stepped line represents electricity consumption. 2.

This line increases progressively, showing the
cumulative electricity consumption over the
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Clustering of Stations Based on Electricity Consumption and Failures
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Fig 2: Clustering of stations based on electricity consumption and failure count

The clustering clearly shows that the stations
with similar characteristics, in terms of failure
count and electricity consumption, are grouped
together. The points within each cluster are
close to one another, indicating that these
stations have similar patterns of performance
and energy usage.
e The blue cluster might represent stations
with high failure counts and relatively
higher electricity consumption.

e The green cluster could indicate stations
with moderate failure counts and moderate
energy consumption

e The red cluster may correspond to stations
with low failure counts and lower
electricity consumption

To investigate the relationship between

electricity consumption and failure count at the

four pumping stations, a simple linear
regression model was applied, and the results

are presented in Table 3.

Table 3: Simple linear regression analysis

Estimate Std. Error t value Pr(>Jt)

(Intercept) 1.674e+01 6.380e+00 2.624 0.0118

electricity _consumption -2.637e-06 1.978e-06 -1.333 0.1892

station_id -4.609e-03 8.549¢e-01 -0.005 0.9957
Multiple R-squared 0.04702 Adjusted R-squared 0.004668

As observed from the results of the model, the
p-value for electricity consumption is greater
than 0.05, indicating that the model is not
statistically significant. Therefore, changes in
electricity consumption does not have a
significant impact on the number of failures.
Although the model does not show a significant
impact of energy consumption on failure count,
it is important to consider other factors or use
more advanced models to capture potential
effects.

Also, for the stations, the p-value is greater than
0.05, indicating that the number of failures is
not significantly different between the stations
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according to the model. In other words, the
model does not distinguish significant
variations in failure counts based on the station
id.

The values of Multiple R-squared and Adjusted
R-squared indicate that the model does not
effectively captures the wvariations in the
number of failures. These values suggest that
the model does not explains a significant
portion of the variability in failure counts,
reflecting its adequacy in modeling the
underlying patterns. The intuitive interpretation
of the linear regression model is presented in
Fig 3.
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Relationship between Electricity Consumption and Failures
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Fig3: Spatial relationship between electricity consumption and failure count

Although the values Multiple R-squared and
Adjusted R-squared do not confirm the
goodness of fit of the model, the Figurel
suggests that there is an inverse relationship
between electricity consumption and the
number of failures. Generally, with an increase
in electricity consumption, the number of
failures decreases. This downward trend is
more pronounced at stations 1, 2, and 3, while
it is less evident at station 4. In other words, the
reduction in failure count with increasing
electricity consumption is stronger at stations 1

to 3, while this relationship is less clear at
station 4. This could indicate differences in
performance or specific characteristics of the
stations that should be considered in further
analysis.

Due to the inadequacy of the linear regression
model in explaining the variations in failure
count with respect to electricity consumption,
spatial regression has been applied to further
investigate the relationship, and the results are
presented in Table 4:

Table 4: Spatial Lag model analysis

Estimate Std. Error z value Pr(>Jz|)
(Intercept) 2.1540e+01 4.6631e+00 4.6192 3.852e-06
electricity consumption -3.7555e-07 1.6707e-06 -0.2248 0.8221431
factor(month)2 -1.0480e+01 3.0181e+00 -3.4723 0.0005161
factor(month)3 -1.2836e+01 3.0121e+00 -4.2616 2.030e-05
factor(month)4 -1.5619e+01 3.0559e+00 -5.1109 3.206e-07
factor(month)5 -1.0977e+01 3.0296e+00 -3.6232 0.0002910
factor(month)6 -6.4960e+00 3.0163e+00 -2.1536 0.0312713
factor(month)7 -8.4140e+00 3.0885e+00 -2.7243 0.0064437
factor(month)8 -1.4270e+01 3.3094e+00 -4.3121 1.617e-05
factor(month)9 -1.1240e+01 3.3698e+00 -3.3355 0.0008515
factor(month)10 -1.3003e+01 3.3445e+00 -3.8878 0.0001012
factor(month)11 -1.3836e+01 3.1951e+00 -4.3303 1.489e-05
factor(month)12 -1.4158e+01 3.0951e+00 -4.5744 4.776e-06
Rho 0.0308 LR test value 0.03283
z-value 0.13011 p-value 0.89648

The results of fitting the Spatial Lag Model
(SAR) to the data indicate that the spatial lag
parameter (p = 0.0308, p = 0.896) is not
statistically significant. This suggests that
incorporating spatial dependence does not
substantially improve the model's explanatory
power. Furthermore, electricity consumption
(p-value= 0.822) does not have a statistically
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significant effect on failure counts, confirming
that changes in energy consumption are not a
significant driver of failure events in this
context.

To evaluate the adequacy of the model, a scatter
plot of residuals versus fitted values has been
used, and the results are presented in Fig 4.
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Residuals vs Fitted (SAR Model)

Residuals
]

As visually observed in Fig 4, the residuals
appear randomly scattered around the fitted
values without forming an S-shaped pattern
along the diagonal, indicating that the spatial
lag model is appropriately fitted to the data.”

Despite the adequate fit of the spatial regression
model, it failed to reveal a significant

15 20

Fitted Values

Fig 4: Residuals versus Fitted values

relationship between electricity consumption
and the number of failures across pumping
stations. Therefore, to investigate the effect of
electricity consumption on the number of
failures, a generalized additive model (GAM)
has been applied, and the results are presented
in Table 5.

Table 5: Generalized additive model

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.949449 0.153235 19.248 <2e-16
factor(month)2 -0.599345 0.211560 -2.833 0.004612
factor(month)3 -0.876623 0.208450 -4.205 2.61e-05
factor(month)4 -0.440336 0.327143 -1.346 0.178302
factor(month)5 0.000000 0.000000 NaN NaN
factor(month)6 0.164635 0.269455 0.611 0.541204
factor(month)7 0.719540 0.263956 2.726 0.006411
factor(month)8 0.000000 0.000000 NaN NaN
factor(month)9 0.301532 0.264218 1.141 0.253777
factor(month)10 0.000000 0.000000 NaN NaN
factor(month)11 -0.002296 0.298742 -0.008 0.993867
factor(month)12 0.156700 0.292498 0.536 0.592146
factor(station_id)2 -0.627595 0.274741 -2.284 0.022353
factor(station_id)3 -1.143090 0.278886 -4.099 4.15e-05
factor(station_id)4 -1.021784 0.281624 -3.628 0.000285
Electricity consumption edf Ref . df Chi . 5q p-value
6.756 7.694 24.8 0.00148

To better capture the potential nonlinear
relationship between electricity consumption
and the number of failures, a Generalized
Additive Model (GAM) with a Poisson
distribution and a log link function has been
applied. In this model, a smooth term was used
for electricity consumption, while month and
station id were included as categorical
covariates.

According to the results, the smooth term
(electricity consumption) was found to be
statistically significant (p-value = 0.00148),
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indicating that a nonlinear relationship between
electricity consumption and failure count is
present. This suggests that a linear model would
not have been sufficient to capture this pattern
accurately.

Additionally, several levels of the month and
station id variables were shown to have
significant effects, indicating their influence on
failure count. Approximately 67% of the
deviance was explained, and the adjusted R-
squared was reported as 0.469, suggesting that



Journal of Building Information Modeling, Vol 1, Issue 1, Summer 2025

the model was reasonably well-fitted to the
data.

These results imply that nonlinear effects and
spatial-temporal variation should be accounted
for when modeling failure counts in pump
stations.

The non-linear relationship between electricity
consumption and failure count has been
depicted in Fig 5 based on the smooth term of
the GAM:

05

S{electicity_consumption .76)
00

05

/
-

N
N -
~- -
I I | IIIIIIIII,I,II 1l IIIIIIII 1 1

1500000 2000000

2500000

3000000

electricity_consumption

Fig 5: Smooth plot of the GAM

In Fig 5, the smooth term corresponding to
electricity consumption has been plotted. The
x-axis represents electricity consumption
levels, while the y-axis displays the estimated
partial effect on failure count. The figure clearly
reveals a sinusoidal pattern in the relationship
between electricity consumption and failure
count.

Results

In conclusion, this research successfully
integrates spatial modeling techniques and
nonlinear method to analyze the performance of
pumping stations in a water transmission
infrastructure. The study underscores the
importance of considering spatial and temporal
factors in infrastructure management to
enhance operational reliability and optimize
resource allocation. By combining advanced
analytical techniques, the study offers a robust
framework for improving the management of
pumping stations. Further research is needed to
refine predictive models and explore the
underlying causes of station-specific variations
in performance, particularly at stations where
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