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Abstract:

Fog is a natural phenomenon that occurs when water droplets or ice crystals become suspended in the
air near the ground, reducing visibility. It can be thought of as a cloud at ground level. Fog is essentially
a cloud that forms at the ground level. It forms when the air near the surface cools to its dew point, the
temperature at which the air becomes saturated with moisture, leading to condensation. Fog formation
usually requires three main ingredients: moisture, cooling air, and condensation nuclei.

Considering that adverse weather conditions such as fog, rain and snow expose outdoor images to a
wide range of disturbances (such as noise, quality degradation, etc.), which will cause many problems
in CCTV cameras, tracking, navigation and applications where reliability is important (such as outdoor
surveillance, object recognition), dehazing is essential and is widely used in the fields of machine vision
and computer graphics. This article reviews the techniques of dehazing in digital images and aims to
analyze the different methods available in the scientific literature. Considering the importance of
improving image quality in various fields such as photography, medicine and surveillance, this study
analyzes and collects information from previous articles and research. The results show that deep
learning-based methods are significantly more successful in improving the quality of foggy images than
traditional methods. Finally, it is suggested that future research focus on optimizing algorithms and
investigating real-world applications of these techniques.
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