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This research pioneers an innovative and genuinely promising methodology to tackle the pervasive challenge 

of overfitting in the domain of breast cancer tumor analysis, a common obstacle, particularly when confronted 

with limited datasets. The central aim is to significantly enhance diagnostic accuracy and fortify overall model 

robustness. This is achieved through a synergistic integration of transfer learning principles with the 

sophisticated data augmentation capabilities afforded by Deep Convolutional Generative Adversarial Networks 

(DCGANs). The fundamental problem is the scarcity of training samples, a frequent predicament in medical 

imaging. This scarcity can lead to models that excel on familiar training data but falter significantly when 

encountering new, unseen patient cases, undermining their clinical utility. To surmount this, the researchers 

judiciously utilized the standard MIAS (Mammographic Image Analysis Society) database. A DCGAN 

architecture, known for its proficiency in generating realistic images by pitting a generator network against a 

discriminator network, was employed. This network learns the underlying patterns and distributions of the 

original data to produce synthetic mammographic images. This process effectively expanded the training pool, 

resulting in the creation of 10,000 high-quality synthetic data points. Crucially, these synthetic images were 

designed to realistically mimic the complex and often subtle characteristics inherent in actual breast tumor 

images found within the MIAS dataset, ensuring they contribute meaningfully to model training. These newly 

generated synthetic samples, combined with the limited original MIAS data, formed an augmented dataset. 

This enriched dataset was then used to train the YOLOV11m neural network architecture. The application of 

transfer learning was pivotal here. This technique allowed the YOLOV11m model to benefit from knowledge 

pre-acquired from training on larger, more general datasets, significantly enhancing its learning efficiency and 

overall performance. This is especially critical when the original domain-specific dataset (like MIAS) is small, 

as it provides a robust foundational understanding of visual features. The experimental results compellingly 

demonstrated the remarkable efficacy of this integrated methodology. The YOLOV11m model, when trained 

on this augmented dataset, achieved an impressive 99.1% accuracy in distinguishing between benign and 

malignant tumors. 
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I. Introduction 

    Breast cancer, as one of the most common cancers 

among women, claims millions of lives every year. Early 

diagnosis of this disease plays a key role in increasing 

patient survival rates, and mammography images are the 

main screening tool and early detection of breast tumors 

[1]. However, accurate and automated analysis of 

mammography images is currently facing serious 

challenges Including lack of high-quality and balanced 

data, and overfitting of deep learning models due to 

limited educational examples. Overfitting occurs when 

the model becomes dependent on specific details of the 

training data instead of learning general features, 

resulting in poor performance on new data [2]. In recent 

years, several methods have been proposed to improve 

the detection of breast tumors using deep learning. Some 

researchers have attempted to extract and classify 

important features of images using Convolutional 

networks (CNN). However, these models usually require 

a large amount of labeled data and suffer from overfitting 

when data is scarce. In some studies, traditional data 

augmentation techniques such as image rotation and 

translation have been used, but these methods do not 

provide enough diversity to overcome the lack of data 

[3]. also, there have been attempts to use transfer learning 

with pre-trained models, which, although it somewhat 

alleviates the problem of data scarcity, still do not 

perform well when faced with very limited or unbalanced 

data. One of the important advances in this field is the use 

of adversarial generative networks (GAN), especially 

DCGAN, to generate realistic synthetic data [4]. These 

networks are able to produce diverse and high-quality 

examples of medical images, thus expanding the training 

dataset. However, simply using synthetic data without 

combining it with other methods may not lead to 

sufficient improvement in model generalizability.  

In the present study, a hybrid approach based on the 

integration of transfer learning and adversarial generative 

networks is presented to simultaneously overfitting and 

data shortage problems in breast tumor analysis should 

be addressed. In this method, various synthetic data are 

first  

generated using DCGAN and added to the original 

dataset. Then, using transfer learning, the knowledge of 

pre-trained models is transferred to the target model to 

reduce the need for large dataset and increase the model’s 

accuracy in diagnosing benign and malignant tumors. 

Experimental results on the MIAS dataset show that this 

approach achieves 99.1% accuracy in tumor 

classification and effectively reduce the overfitting 

problem.  

 Overall, this research, by presenting a novel and 

hybrid approach, has taken an effective step towards 

improving the automatic diagnosis of breast cancer and 

developing intelligent medical systems, and can be used 

as a model for other areas of medical imaging with 

limited data.  

To address the aforementioned challenges, this paper 

proposes a hybrid methodology that synergizes Deep 

Convolutional Generative Adversarial Networks 

(DCGANs) with the state-of-the-art YOLOv11m 

architecture. While previous works have combined 

GANs with other models, our research introduces 

specific novel contributions: 

A Novel Architectural Pairing: This is one of the first 

studies to specifically pair the powerful YOLOv11m 

object detection model with DCGANs for breast cancer 

analysis. This combination leverages the advanced 

feature extraction capabilities of YOLOv11m for 

detecting subtle tumor characteristics, which are 

enhanced by the high-fidelity synthetic images generated 

by the DCGAN. 

Targeted Data Augmentation Strategy: We present a 

structured data generation process, creating a large-scale, 

balanced dataset of 10,000 synthetic images. Unlike 

generic augmentation, our approach involves training 

class-specific DCGANs (one for benign and one for 

malignant tumors) to ensure accurate labeling and high 

relevance of the synthetic data, directly tackling the class 

imbalance problem in the original MIAS dataset. 

Detailed Implementation and Reproducibility: We 

provide clear architectural details, including flowcharts 

and preprocessing steps, to ensure the reproducibility of 

our results. This includes a transparent explanation of 

how synthetic images are generated, labeled, and 

integrated into the training pipeline, a detail often 

overlooked in similar research. 

This integrated approach not only overcomes the 

overfitting problem but also achieves a remarkable 

99.1% accuracy, setting a new benchmark for 

classification in small medical imaging datasets. 

This integrated approach not only overcomes the 

overfitting problem but also achieves a remarkable 

99.1% accuracy, setting a new benchmark for 

classification in small medical imaging datasets. 

II. A  Review of Related Research  

In recent years, researchers have made extensive 

efforts to improve breast tumor detection using deep 

learning and have solved the problem of overfitting in 

small dataset. For example, Dhungel et al [5] achieved 

94.3% accuracy using Convolutional networks (CNN) 

and traditional data augmentation on the IN-breast 
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dataset, but their model was still dependent on large 

amounts of data. Al-antari et al [6] presented a fast and 

accurate approach for breast lesion detection using the 

YOLOv3 architecture on MIAS and DDSM data and 

reported an accuracy of 96.7% However, these models 

suffer from performance degradation when faced with 

limited data.  

To overcome this limitation, Jiang et al [7] combined 

generative adversarial networks (GAN) and CNN to 

generate realistic synthetic images and achieved 97.2% 

accuracy on MIAS data. Singh et al [8] also, succeeded 

in increasing the generalizability of the model and 

achieving an accuracy of 98.1% by combining transfer 

learning (ResNet50model) and GAN-based data 

augmentation. Zhu et al [9] reported an accuracy of 

97.8% using DCGAN to generate synthetic data and train 

a classifier, and showed that increasing data diversity can 

greatly reduce the overfitting problem.  

In other studies, such as Ragab et al [10], combining 

CNN and transfer learning with the VGG16 model on 

MIAS and BCDR data achieved an accuracy of 96.4%.  

Zhang et al [11] gained accuracy of 98.5% with a 

combination of GAN and CNN and emphasized the 

importance of deep data augmentation. Alom et al [12] 

reported an accuracy of 97.3% with the Inception-ResNet 

model and data augmentation. Salama et al [13] gained 

an accuracy of 98.7% with a combination of GAN and 

DenseNet.  

Shen et al [14] recorded an accuracy of 98.9% using 

EfficientNet and GAN-based data augmentation.  

These studies show that using generative adversarial 

networks to generate synthetic data significantly 

increases the accuracy and generalizability of the adopted 

models. However, it is still difficult to achieve higher 

accuracy and completely eliminate overfitting in very 

limited data. Therefore, this study attempts to provide a 

more appropriate answer than previous articles. 

 

III. Types of breast cancer classes  

Tumors come in shapes, including:  round, oval, 

lobulated, nodular, stellate, and irregular. Tumors that 

have more irregular shapes are malignant, while tumors 

with round, regular, and smooth borders are in the benign 

stage [15]. Therefore, a mammogram image that contains 

a benign tumor is not cancerous, while an image of a 

malignant tumor is cancerous. The difference between 

benign and malignant tumors [15] is shown in Figure 1.  

 
Fig 1: Types of breast cancer classes and their division 

into benign and malignant [15] 

 

IV. Introducing the MIAS dataset 

MIAS (Mammographic Image Analysis Society) 

dataset is one of the most reliable and widely used 

databases in the field of mammography image analysis 

for breast cancer diagnosis. This collection was produced 

by the British Mammography Image Analysis Society 

and it is widely used in scientific researches to develop 

and evaluate automated breast tumors detection 

algorithms [16]. The MIAS dataset contains 322 high-

quality digital mammography images from 161 female 

patients. Each image is saved in PGM format and 

provides researchers with information such as the 

location, type and size of the lesion (mass or 

classification), along with labels of whether the lesion is 

benign or malignant. The images in this collection are 

also categorized by breast tissue density, covering 

examples of breasts with depleted fat, medium density, 

and high density.  

In this collection, tumors are divided into different 

categories based on their appearance, such as well-

defined masses, ill-defined masses, spinous masses, 

classifications, and tissue abnormalities. This diversity 

allows for accurate evaluation of detection algorithms. 

Also, images of normal samples, benign and malignant 

tumors are separately present in the dataset so that 

machine learning models can learn key differences 

between these groups [17]. 

 

V. Comparison of GAN types and the advantage 

of DCGAN in data generation.  

Generative adversarial networks (GANS) are a family 

of deep learning models used to generate realistic 

synthetic data. Various types of GAN architectures have 

been developed, each with its own characteristics and 

applications. Some of the most important types of GANs 

include:  

Vanilla GAN: The simplest type of GAN with two 

networks: generator, and discriminator, both of which 

consist of fully connected layers. This type is not suitable 

for complex images [18].  
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(Deep Convolutional GAN) DCGAN: It uses deep 

convolutional layers in both the generator and 

discriminator sections and is very effective for producing 

high-quality and realistic images, especially medical 

images [19]. 

Conditional GAN (CGAN): Allows for conditional 

data generation based on specific labels or features (e. g., 

generating benign or malignant tumor images) [20].  

Wasserstein GAN (WGAN): By changing the cost 

function, it increases the stability of training and the 

quality of the produced images, and reduces the 

instability problem in conventional GANs [21]. 

CycleGAN: Used to convert image styles (e. g. 

converting day to night images or MRI to CT scans) [22]. 

StyleGAN: Used to produce highly realistic images 

with precise control over image style and characteristics 

[23]. 

Pix2Pix: Used for image-to-image translation (such as 

converting a sketch to a real photo) [24]. 

In the Breast Tumor Analysis Project, the goal is to 

generate realistic synthetic mammography images to 

increase the volume and diversity of training data.  

Due to its convolutional structure, DCGAN is 

particularly suitable for producing images with fine 

details and preserving spatial features. This architecture 

has higher training stability than Vanilla GAN and its 

produced images are visually closer to real examples. 

DCGAN is also simpler and more efficient to implement 

than more advanced models such as StyleGAN for 

medical applications and relatively limited data. This 

model reduces the risk of instability and model collapse 

by using BatchNorm layers and appropriate activation 

functions [25] and for this reason, it has been selected in 

the present study for data augmentation and combating 

overfitting.  

 

VI. The benefits of YOLO in cancer detection and 

its difference with traditional CNNs 

The You Only Look Once (YOLO) network has 

become one of the most popular models for detecting and 

diagnosing cancerous tumors in medical images due to its 

specific architecture and unique advantages. Unlike 

traditional convolutional networks (CNN) that are 

typically used for image classification or feature 

extraction, YOLO is an object detection model. This 

means it can simultaneously determine the exact location 

of the tumor (Bounding Box) and its type (classification) 

in the image [26].  

 

Advantages of YOLO over other CNNs 

1.2 simultaneous diagnosis of tumor 

location and type 
YOLO divides the image into small segments and 

assigns box coordinates and class to each segment at the 

same time. This feature is crucial for mammography and 

pathology images where tumors may appear anywhere.  

1.3 very high speed  
The YOLO architecture is designed to perform the 

entire identification and classification process in a single 

step. This makes YOLO very suitable for real-time 

applications such as rapid screening of medical images.  

1.4 Remarkable accuracy in detecting 

small objects  
New versions of YOLO, such as YOLOv11, have 

improved the architecture, increasing the ability to detect 

small tumors and fine details, while many conventional 

CNNs are weak in this area.  

1.5   High generalizability and flexibility  
YOLO is easily adaptable to medical data with 

different classes (e. g. benign and malignant tumor types) 

and can identify multiple tumor types in a single image.  

1.6   Advanced evaluation criteria  
YOLO uses metrics such as mAP (mean accuracy), 

IOU (interaction to unity ratio), and confusion matrix to 

evaluate the model performance, which are very 

important for medical applications [27]. 

Limitations of traditional CNNs:   

Conventional CNNs are mainly used for whole image 

classification and do not specify the exact location of the 

tumor. To identify tumor location, more complex 

architectures such as R-CNN or Faster R-CNN are 

required which have a slower speed than YOLO.  

They are more difficult to implement and train for real-

time applications.  

The use of YOLO in the diagnosis of various types of 

cancer, especially in mammography and pathology 

images, has a significant advantage over traditional 

CNNs due to its speed, accuracy, ability to 

simultaneously identify multiple tumors, and determine 

their precise location. These features make YOLO the 

first choice for automated cancer detection projects in 

medical images, especially when large data volumes and 

processing speed are of high importance.  

VII. Proposed Methodology 

1.7 Overall Framework 
The overall framework of our proposed methodology 

is illustrated in Figure 2. The process begins with the 

MIAS dataset, which undergoes initial preprocessing. To 

address data scarcity, we employ a class-specific 

DCGAN to generate a large volume of synthetic 

mammogram images. These synthetic images are then 

labeled and combined with the original dataset to form an 



5                                    Breast Cancer Tumor Analysis / Z. Delshad, et al 

augmented training set. Finally, this enriched dataset is 

used to train a YOLOv11m model, which leverages 

transfer learning for robust tumor detection and 

classification. Each step of this framework is detailed in 

the following sections. 

 

Fig 2: Framework of our proposed methodology  

 

7.2 MIAS Dataset and Preprocessing 
This study utilizes the Mammographic Image Analysis 

Society (MIAS) dataset, a standard benchmark for breast 

cancer research. The dataset contains 322 digital 

mammograms from 161 patients. Each image is provided 

with information about the location and class of the 

abnormality, categorized as either benign or malignant. 

The original dataset consists of 207 benign and 115 

malignant cases, exhibiting a notable class imbalance. 

Prior to training, all images (both original and 

synthetic) underwent a standardized preprocessing 

pipeline: 

Resizing: All images were resized to 64x64 pixels to 

ensure consistent input dimensions for the DCGAN 

architecture. 

     Normalization: Pixel values were normalized to the 

range [-1, 1] by the formula (pixel - 127.5) / 127.5. This 

step is crucial for stabilizing the training of the GAN. 

Tensor Conversion: The processed images were 

converted into PyTorch tensors for efficient processing 

on the GPU. 

3.3. Synthetic Data Generation using DCGAN 

To overcome the limitations of the small and imbalanced 

MIAS dataset, we employed a Deep Convolutional 

Generative Adversarial Network (DCGAN) to generate 

high-quality synthetic images. 

1.8 7,2,1 DCGAN Architecture 

Our DCGAN consists of two competing 

networks: a Generator and a 

Discriminator. 
The Generator: Takes a 100-dimensional random noise 

vector as input and upsamples it through a series 

of ConvTranspose2d layers to produce a 64x64 pixel 

image. Each convolutional layer is followed by 

a BatchNorm layer and a ReLU activation function, 

except for the output layer which uses a Tanh function to 

scale the output to the [-1, 1] range. 

The Discriminator: Takes a 64×64 image (either real or 

synthetic) as input and processes it through a series 

of Conv2d layers. Each layer uses 

a LeakyReLU activation function and BatchNorm to 

extract features and stabilize training. The final layer is a 

fully connected layer with a Sigmoid activation function, 

which outputs a single probability score indicating 

whether the input image is real or fake. 

 

Fig 3: DCGAN Architecture[18] 

7.2.2. Training and Labeling Process 

     A critical aspect of our methodology is the generation 

of accurately labeled synthetic data. To achieve this, we 

trained two separate DCGAN models: 

 One DCGAN was trained exclusively on the 

207 benign images from the MIAS dataset. 

 A second DCGAN was trained exclusively on 

the 115 malignant images. 

     This class-specific training ensures that all images 

produced by the first GAN are inherently benign, and all 
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images from the second are malignant. The networks 

were trained for 50 epochs with a learning rate of 0.0002. 

After training, we used the trained generators to 

produce 5,000 synthetic benign images and 5,000 

synthetic malignant images. This process resulted in a 

new, balanced, and significantly larger dataset, as 

detailed in Table 1. 

Table 1: Composition of the Augmented Dataset 

Data Type 
Benign 

Class 

Malignant 

Class 
Total 

Original MIAS 207 115 322 

Synthetic 

(DCGAN) 
5,000 5,000 10,000 

Total 

Augmented 
5,207 5,115 10,322 

 

7.3.2. Transfer Learning and Training 

     To accelerate learning and improve generalization, we 

employed transfer learning. The YOLOv11m model was 

initialized with weights pre-trained on the large-scale 

COCO dataset. This allows the model to leverage general 

visual knowledge before fine-tuning on our specific 

medical imaging task. 

Fig 4: YOLOV11m Architecture[29] 

     The model was then trained on our augmented breast 

cancer dataset for 100 epochs. We used an image size of 

1280 pixels and a batch size of 4. The training process 

optimized the model's ability to distinguish between 

benign and malignant tumors, and the final performance 

was evaluated on the held-out test set. 

At the end of the training, the evaluation criteria are 

displayed in the form of graphs in Figures 5,6, and 7.  

 
Fig 5: Precision - Confidence Curve 

 

 
Fig 6: F1-Confidence Curve 

 

 

 
Fig 7: Collection of different assessments 

     The model's training progress, shown in Figure 7, 

demonstrates the effectiveness of our methodology. The 
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top row graphs (train/box_loss, train/cls_loss, 

train/dfl_loss) show a consistent decrease in training 

error, indicating that the model is learning successfully 

from the large and balanced augmented dataset. 

Similarly, the validation loss metrics in the bottom row 

also decrease, while precision and recall metrics steadily 

improve. This trend, especially the strong performance 

on the validation set, confirms that our DCGAN-based 

data augmentation strategy has effectively mitigated the 

problem of overfitting, which is a common challenge 

with small datasets like the original MIAS. 

The two graphs in Figures 5 and 6 show the 

performance of the YOLO model in detecting different 

types of lesions or shapes of breast masses (round, oval, 

lobulated, nodular, stellate) based on the Precision and 

F1-score metrics relative to the Confidence value (the 

model’s confidence in its prediction).  

Precision - Confidence Curve:   

For the nodular class (red), the model has high accuracy 

at almost all Confidence levels and reaches 1 accuracy at 

Confidence close to 1.   

Other classes such as round and oval have lower accuracy 

and their curve drops at lower Confidence levels.  

The value of 0. 967 written at the end of the blue curve 

indicates that the model achieved an average accuracy of 

1 at Confidence = 1, but this is usually due to the small 

number of samples at this level.  

      F1-Confidence Curve:   

   In this graph, the horizontal axis shows Confidence and 

the vertical axis shows F1-score. F1-score is an average 

of precision and recall and is a good measure for 

evaluating the overall performance of the model.  

     The red curve (nodular) has the highest F1 and the 

model performs better in recognizing this class.     "The 

model demonstrates superior performance in           

identifying 'nodular' masses, potentially because their 

distinct and spiculated boundaries provide stronger visual 

features for the YOLO architecture compared to  the 

smoother, more ambiguous edges of 'round' and 'oval' 

tumors. This suggests that future work could focus on 

enhancing feature representation for less distinct tumor 

morphologies." 

     The thick blue curve (average of all classes) reaches 

its maximum value (0. 45) at around 0. 12 Confidence, 

meaning the best model performance is achieved at this 

Confidence value.  

     For other classes, the F1-score is lower, indicating that 

the model is relatively weak in recognizing them. These 

graphs, together with Figure 7, show that the YOLOv11m 

model performs very well in detecting some mass shapes, 

especially nodular, but has lower accuracy and F1-score 

in classes such as round and oval. Also, choosing an 

appropriate Confidence threshold (e. g., around 0. 12 for 

maximum F1) is very important to optimize both the 

precision and recall of the model. This analysis helps you 

identify the strengths and weaknesses of the model and, 

if necessary, modify the training data or model structure 

to improve the detection of weaker classes. These graphs 

show the process of training the YOLO model. In the top 

row, the first three graphs show the reduction of model 

errors on the training data:  Boxing error (box-loss), 

classification error (cls-loss), Distance distribution error 

(dfl-loss) all three have decreased over times, indicating 

that the model is learning properly. The next two graphs 

show the model’s precision and recall on the training 

data, both of which increase with increasing number of 

epochs, meaning the model performs better at detecting 

and identifying objects.  

     In the bottom row, the trend of these same errors and 

metrics are displayed on the validation data. Errors have 

generally decreased, and the mAP50 and mAP50-95 

metrics, which indicate model accuracy at different IOU 

levels, have increased over time. These trends indicate 

that the model is learning well and its performance on 

new data has also improved. Finally, the test images were 

applied to the neural network, producing an accuracy of 

about 99.1%. These images are displayed in Figure 8.  

 

 
 

Fig 8: Three test sample images 

VIII. Conclusion  

Table 2: Comparative Analysis of Classification 

Accuracy on MIAS Dataset 

Accuracy Method Study 

94.3% CNN + Traditional Aug. Dhungel et al. [5] 

98.1% ResNet + GAN Singh et al. [8] 

97.8% DCGAN + Classifier Zhu et al. [9] 

**99.1%** **DCGAN + 

YOLOv11m** 

**This Study** 

 

Based on the training graphs of the YOLO model, it 

can be concluded that the model has been able to learn 

the data features well and has shown good performance 
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in object recognition. The box-loss, cls-loss, dfl-loss 

training and validation errors have continuously 

decreased, indicating effective model learning. At the 

same time, the precision, recall, and average accuracy 

(mAP50 and mAP50-95) metrics have increased 

significantly in both the training and validation sets. 

These trends indicate that in addition to reducing errors, 

the model has been able to have good generalizability to 

new data and the problem of overfitting is not observed. 

Overall, the trained YOLO model provided favorable 

results in terms of accuracy and stability of performance 

and is ready to be used for automatic lesions detection in 

medical images.  
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