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Abstract 

With the rapid advancement of digital imaging technologies, histology image analysis has become increasingly 
important in medical research and clinical diagnosis. Histology images are widely used for both educational 
purposes and disease detection, particularly in oncology. Computer-aided diagnosis systems offer valuable 
support to pathologists by automating image analysis and retrieving visually similar cases for comparison. In this 
study, a content-based image retrieval and classification framework is proposed using handcrafted texture features 
extracted from histopathological images. The method incorporates rotation-invariant uniform Local Binary 
Pattern (LBP), first and second statistical moments, and Local Variation Code (LVC) features computed over 
circular neighborhoods with multiple radii. These features are designed to capture local micro-patterns while 
being invariant to rotation and grayscale variations. The performance of the proposed approach was evaluated 
using two publicly available histopathology datasets: Kimia Path24 and BreakHis. Experimental results showed 
that even individual feature types can achieve high classification accuracy on one of the datasets. Moreover, 
combining different feature sets further improved performance, especially in modeling fine-grained structural 
differences. To enhance discriminative power and reduce redundancy, several optimal feature selection techniques 
were applied. The resulting low-dimensional feature representation not only improves computational efficiency 
but also outperforms previously reported methods in terms of retrieval and classification accuracy on the tested 
datasets. 
Keywords: Whole Slide Image (WSI), Content-Based Image Retrieval (CBIR), Local Features, Feature 
Selection. 
 

1. Introduction 

Histopathological images, which capture 
the microscopic structure of tissues, play a 
critical role in modern medical science. 
These images are essential for 
understanding tissue morphology and 
identifying abnormal cellular changes, 
making them indispensable tools in disease 
diagnosis particularly in oncology, 
immunology, and infectious diseases. 
Histopathology enables pathologists to 
detect malignancies, assess tumor grades 
and stages, evaluate treatment responses, 
and provide prognostic information, all of 
which significantly support clinical 
decision-making [1]. A major advancement 
in this field is the development of Whole 

Slide Imaging (WSI)  technology, which 
allows the digitization of entire 
histopathological slides at high resolution 
[2]. WSI systems convert glass slides into 
digital images that can be viewed, analyzed, 
and shared electronically. This innovation 
has transformed traditional microscopy into 
a more efficient, scalable, and collaborative 
process, enabling remote diagnosis, 
telepathology, and integration with 
computational analysis tools [3]. In recent 
years, Artificial Intelligence (AI)  
especially machine learning and deep 
learning techniques has emerged as a 
powerful tool for analyzing these large-
scale digital histopathological images. AI-
based models can automate the detection, 
classification, and segmentation of tissue 
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regions, offering consistent and accurate 
interpretations [4]. These systems help 
identify subtle patterns that may be missed 
by human observers, reduce inter-observer 
variability, and ultimately improve 
diagnostic reliability [5]. Moreover, 
computer-aided frameworks enable 
efficient content-based image retrieval, 
early disease detection, prognosis 
prediction, and discovery of novel 
biomarkers by analyzing vast repositories 
of digitized histopathological data [6]. As 
these technologies continue to evolve, their 
integration into histopathology promises to 
enhance both research and clinical practice 
by increasing efficiency, accuracy, and 
accessibility in healthcare. 

 Computer-aided systems widely utilize 
two core techniques: image classification 
and content-based image retrieval. In 
classification tasks, whole slide images 
(WSIs) are analyzed to determine their 
association with specific pathological 
conditions or lesion subtypes [7]. 
Alternatively, retrieval methods focus on 
identifying and organizing images from 
extensive databases that exhibit comparable 
visual traits—such as chromatic properties, 
textural patterns, and morphological 
structures to a given query image [8]. By 
retrieving previously diagnosed cases with 
similar characteristics, these systems can 
provide valuable context and support for 
pathologists in the diagnostic process. 

Among various handcrafted feature 
extraction techniques, the Local Binary 
Pattern (LBP)  has demonstrated significant 
advantages in histopathological image 
analysis compared to other widely used 
descriptors such as Scale-Invariant Feature 

Transform (SIFT) , Speeded-Up Robust 
Features (SURF) , and Histogram of 
Oriented Gradients (HOG)  [9-11]. 

Unlike SIFT and SURF, which are 
primarily designed for keypoint detection 
and matching in natural images, LBP 
focuses on capturing local texture patterns, 
which are highly relevant in 
histopathological images where tissue 
structures and cellular arrangements often 
exhibit subtle variations in texture rather 
than shape or gradient orientation [4]. 
Moreover, SIFT and SURF are 
computationally more expensive and may 
not perform consistently well under the 
high-resolution and complex staining 
conditions typical of histopathology slides 
[12].  

On the other hand, HOG, which captures 
edge and gradient orientation distributions, 
is effective for object detection in natural 
scenes but may overlook fine-grained 
textural differences that are crucial in 
distinguishing between benign and 
malignant tissues [6]. In contrast, LBP 
offers a compact and efficient 
representation of local textures, while being 
robust to illumination variations a common 
issue in digitized histopathology images 
due to inconsistent staining and scanning 
conditions [4]. Additionally, LBP-based 
features can be extended to multi-scale and 
rotation-invariant variants, making them 
highly adaptable for analyzing histological 
patterns regardless of tissue orientation. 
This property is particularly valuable in 
whole slide images (WSIs), where 
structural orientation may vary across 
different regions of interest [13].  

In summary, while SIFT, SURF, and 
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HOG have their strengths in general image 
analysis tasks, LBP provides a more 
suitable and effective feature representation 
for histopathological image classification 
and retrieval, especially when the 
diagnostic clues lie in the micro-texture 
properties of tissue samples [14]. 

In this study, a set of rotation-invariant 
and grayscale-stable texture descriptors 
were employed to capture fine local 
structures in histopathological images. 
These descriptors include uniform Local 
Binary Patterns (LBP), as well as statistical 
features such as first- and second-order 
moments and local variation codes, all 
computed over multiple circular 
neighborhoods with varying radii. Different 
combinations of these features were 
evaluated to identify the most effective 
configuration for image characterization.  

Furthermore, feature selection techniques 
were applied to the best-performing 
combined representation in order to 
eliminate redundant information and retain 
only the most informative features. This not 
only reduces the overall dimensionality of 
the feature space but also enhances retrieval 
performance by focusing on discriminative 
patterns. 

The core idea behind the proposed 
approach lies in its ability to model subtle 
micro-structural arrangements within tissue 
samples. This is achieved by encoding 
spatial distributions of local textures using 
histogram-based representations.  

The method was tested on two publicly 
accessible histopathological image datasets 
including Kimia Path24 and BreakHis 
where it demonstrated promising results in 

both classification and content-based 
retrieval tasks. 

2. Research Method 

This work focuses on utilizing local 
texture descriptors to effectively 
characterize the visual content of 
histopathological images. A set of 
grayscale-invariant and rotationally robust 
features was employed to capture fine-scale 
structural patterns within tissue samples. 
These descriptors were extracted from 
localized regions and subsequently 
combined into a comprehensive feature 
representation.  

The selected texture features are based on 
analyzing pixel intensity variations within 
circular neighborhoods defined by different 
radius (R) and number of surrounding 
pixels (P), referred to as the (P, R) 
configuration. To account for multi-scale 
characteristics, multiple configurations 
were considered, and their corresponding 
features were integrated to enhance 
descriptive power. Below is an overview of 
the key texture descriptors used in this 
study: 

(1) Rotation invariant local binary 
patterns feature:  

This descriptor provides a compact 
representation of local texture by 
comparing the intensity of a central pixel 
with its neighboring pixels arranged in a 
circular pattern [13]. The resulting binary 
values are converted into a decimal code 
that remains consistent under image 
rotation. The general form of the LBP 
operator for a neighborhood defined by (P, 
R) is calculated using the following 
expression: 



H. Erfankhah : Histology Image Classification, Retrieval Using Extracted Local … 
 

25 
 







1

0

, 2)(
P

p

p
cpRP ggsLBP  (1) 

where 









00

01
)(

x

x
xs  (2) 

 
The intensity of the central pixel (gc) 

within a local region is compared with the 
gray-level values of its neighboring pixels 
(gp), which are positioned uniformly around 
it on a circular path defined by radius R 
(where R>0) and indexed by p=0,…,P−1. 
These P surrounding pixels together form a 
rotationally symmetric neighborhood 
configuration. An extended variant of the 
LBP operator, known as rotation-invariant 
uniform pattern encoding, was employed in 
this study. This approach reduces the 
dimensionality of the feature space by 
focusing on texture patterns that exhibit a 
limited number of binary transitions either 
from 0 to 1 or from 1 to 0 along the circular 
arrangement of neighboring pixels. The 
concept of "uniformity" refers to the 
consistency in the binary structure of the 
LBP code, where only a small number of 
intensity changes occur around the local 
neighborhood.  

According to the findings reported by 
Ojala et al. [15], such uniform patterns 
account for the majority of observed 
textures, with more than 90% occurrence in 
the commonly used (8,1) configuration. 
These rotationally robust and uniform 
features can be effectively extracted within 
any (P, R) neighborhood to enhance both 
efficiency and descriptive capability.  
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Once the LBP codes are generated for the 

input image, a histogram is constructed 
based on the frequency of uniform patterns 
across the image. This histogram captures 
the statistical distribution of these texture 
features and serves as a compact 
representation of the image’s local 
structural properties. 

(2) First and Second-Order Statistical 
Features:  

To capture local statistical characteristics, 
such as average intensity and contrast 
variations, the first-order moment (mean, 
M) and second-order moment (variance, V) 
were computed over the pixel values within 
each (P, R) neighborhood. These measures 
provide quantitative insights into the 
distribution of grayscale levels across local 
image regions, and are defined as follows: 
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The features derived from mean intensity 
and variance demonstrate invariance to both 
image rotation and grayscale shifts. To 
incorporate these properties into the feature 
representation, spatial histograms were 
generated based on the distribution of M 
and V values across the image. However, 
since these statistical measures are 
inherently continuous, they were first 
quantized into L discrete levels using the 
following approach:  
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where  F(=M,V) is the feature that we 
want to quantize it and  is the obtained 
quantized feature that is distributed in the 
range [0 L-1]. 
(3) Local variation code:  

For neighborhood pixels in (P,R), the local 
variation bit  (LVB) is computed as follows: 
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Where T is threshold, g1and g2 are local 

neighbors that have been located in the 
same direction with respect to the central 
pixel or on a same diagonal running through 
the center of the circle. 

Putting together all the binary bits of each 
pairwise local neighborhoods, created a 
binary code which we called it local 
variation code (LVC). 

The threshold value in the LVC can 
reduce the noise effect and extract features 
from non-homogeneous regions. For 
example, Fig.1 shows how the LVC feature 
is calculated in a (8, 1) neighborhood pixels: 

For P members on a circle of radius R , the 
LVC has P/2 bits, and its decimal value can 

vary from 0 to 2^(P/2) – 1 . To reduce the 
length of the feature vector for greater 
values of P , only uniform and invariant 
LVC codes were extracted, and a histogram 
was used to count the number of 
occurrences of these uniform patterns in an 
image. 

 

 
Fig.1. Extracting local variation code feature 

in a (8,1) neighborhood pixels. 

LVC is invariant to grayscale image shifts. 
In order to make it rotation-invariant, one 
way is to calculate the LVBs according to 
the direction that has the greatest pixel 
intensity value (reference direction) and in 
the counter-clockwise direction. 
 

 

 
Fig.2. Rotation invariant LVC, (a)  an example of neighborhood pixels in (8,1) (above) and its   

counter-clockwise rotation,(b) LVBs are calculated with respect to reference direction (blue circles 
in (a)) ,(c)  Putting together all the LVBs in counter-clockwise and converting to decimal value. 
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In Fig. 2(a), the top image shows an 

example of neighborhood pixels in (8,1), 
and the bottom image shows neighborhood 
pixels that have been rotated counter-
clockwise by a certain angle. For this 
example, we set T = 10 . The LVBs are 
calculated according to the reference 
direction (blue circle) and in the counter-
clockwise direction, as shown in Figure 
2(b). In Fig. 2(c), LVC is obtained by 
putting together all the LVBs and 
converting them into a decimal value. As 
we can see, the LVCs for the unrotated and 
rotated neighborhood pixels are the same. 
Another way is to rotate each pattern P 
times, and the minimum code over P 
rotations is preserved. 

Fig.3 shows the feature extraction process 
for a thumbnail of histology image from 
Kimia path24 dataset. The image is divided 
into square blocks, and local features are 
extracted from each block. 

 
Fig.3. Feature extraction process for a 

thumbnail of histology image from Kimia 

path24 dataset. 

3. Experiments 

3. 1. Dataset 

Kimia Path24 dataset- This dataset 
consists of 24 whole slide images, which 
have been manually selected from more 

 
1 http://www.hurondigitalpathology.com/ 
 

than 350 scans, depicting the diverse body 
parts with distinct texture patterns [16]. The 
images were captured by Tissue Scope LE 
1.01 in bright field using a  0.75 NA lens. 
For each image, one can determine the 
resolution by checking the description tag 
in the header of the file. For instance, if the 
resolution is 0.5µm, then the magnification 
is 20x, and if the resolution is 0.25µm, then 
the magnification is 40x. The number of test 
dataset has been fixed to facilitate 
benchmarking, the dataset contains 1325 
test patches of size 1000 x 1000 (0.5mm X 
0.5mm) from all 24 WSIs, but the number 
of the training dataset can vary according to 
preferences of the algorithm designer. Fig. 
4(a) shows magnified portion of some 
samples in WSIs. The scans are available 
online and can be downloaded2.  

 
(a) 

 
(b) 

Fig.4. Some samples from (a) Kimia Path24, 
(b) BreakHis datasets. 

2 http://kimia.uwaterloo.ca 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 14, No. 54, Sep2025 
 
 

28 
 

Table 1 presents the dimension and the 
number of testing patches of each WSI.  To 
create training dataset, we considered two 
cases: 

Table 1: Kimia path24 dataset: dimension and 
number of test patches of each WSI. 

Scan 
Index 

Dimension Number of test 
patches 

0 40300 × 58300 65 
1 37800 × 50400 65 
2 44600 × 77800 65 
3 50100 × 77200 75 
4 26500 × 13600 15 
5 27800 × 32500 40 
6 38300 × 51800 70 
7 29600 × 34300 50 
8 40100 × 41500 60 
9 40000 × 50700 60 

10 47500 × 84700 70 
11 44100 × 52700 70 
12 45400 × 60100 70 
13 79900 × 56600 60 
14 42800 × 58200 60 
15 20200 × 57100 30 
16 35300 × 46300 45 
17 48700 × 61500 45 
18 26000 × 49600 25 
19 30700 × 70400 25 
20 48200 × 81400 65 
21 38500 × 40500 65 
22 40500 × 45700 65 
23 36900 × 4900 65 

Case I. The WSIs are tiled into the patches 
of the same size as the test patches without 
any overlap. WSIs are large- scale images 
and some of these created patches do not 
have significant information and contain 
background pixels, therefore we used 
homogeneity criteria to preserve only 
patches that contain information and we 
calculated the homogeneity of each patch 
according to [17] as follows: 

 
i j

ij mW
L

H 2)(
1

1

 
(9) 

where W is the patch window, m is the 
median or the mean value of the pixels in 
the patch and L is the size of the patch. 
Patches with homogeneity greater than 99% 
were removed, and a total of 25,979 non-
overlapping patches of size 1000×1000 
were extracted. Fig.5 shows the distribution 
of training samples in each WSI using green 
bars. 
Case II. As presented in Table 1, the testing 
samples are relatively balanced, whereas 
the training samples are imbalanced, as 
evident from Fig.5. Certain WSIs contain 
significantly fewer training samples 
compared to others. To address this 
imbalance, the number of training samples 
for WSIs with limited data was increased 
through oversampling using overlapping 
tile patches. This process resulted in a total 
of 30,946 training sample patches. The 
distribution of training samples for this case 
is illustrated in Fig.4, represented by red 
bars. 

Fig.5. Distribution of training samples in 
Kimia Path24 dataset for case I and case II. 

BreakHis dataset- The BreaKHis database 
contains microscopic biopsy images of 
benign and malignant breast tumors. 
Images were collected through a clinical 
study from January 2014 to December 2014 
[18]. Samples are generated from breast 
tissue biopsy slides, stained with 
hematoxylin and eosin (HE). This database 
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contains microscopic images from the 
surgical biopsy (SOB) of breast tumors, 
otalizing 7,909 images divided into benign 
and malignant tumors, which have been 
collected at four different magnification 
factors (or zoom level, which is a term that 
we make use of interchangeably): 40×, 
100×, 200× and 400×. Table 2 summarizes 
the image distribution of the dataset and 
Fig. 4(c). shows some samples of this 
dataset. This dataset is also available and 
can be downloaded from the web3. 

Table 2: Image distribution by magnification 
factor and class. 

magnification Benign Malignant Total 

40  625 1,370 1,995 
100  644` 1,437 2,081 
200  623 1,390 2,013 
400  588 1,232 1,820 

Total 2,480 5,429 7,909 

# Patients 24 58 82 

3. 2. Accuracy Calculation 

To enable comparison of the numerical 
results with other published methods on 
these datasets, different accuracy measures 
were used depending on the dataset. For the 
Kimia Path24 dataset, the evaluation 
metrics proposed in [16] were adopted. 

There are 1325ntot   testing patches jPs  

that belongs to 24 sets 

{ , 1,2,...}jP s S js s    with 

0,1, ,23s   . Looking at the set of retrieved 

images for an experiment, R, the patch-to-
scan accuracy, p , can be defined as: 





Ss

s
tot

p R
n

1


 
(10) 

 
3 https://web.inf.ufpr.br/vri/databases/breast-cancer-
histopathological-database-breakhis/ 

The whole-scan accuracy, w , can be 

defined as: 


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
Ss

sw R
24
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With the total accuracy is defined as 
.wptotal  
  

For the BreakHis dataset, the patient score 
and global recognition rate were used, as 
described in [18]:
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Where PN is the number of cancer 

images of patient P and recN  is the number 

images that are classified correctly for 
patient P. 

3. 3. Numerical Results 

Results for Kimia Path24 dataset- As a 
preprocessing step, all testing and training 
patches were normalized to the range [0, 1]. 
Variance (V), mean (M), and LVC features 
were extracted for circularly symmetric 
neighborhoods with (P, R) values of (8,1), 
(16,2), and (24,3) in the simulations. The V 
and M features were quantized into 16 
levels (L = 16).  

To determine the optimal threshold value 
for computing the LVC features, an 
additional experiment was conducted. 
Accuracy was evaluated on the Kimia 
Path960 dataset — a subset of the Kimia 
Path24 dataset containing 960 images — by 
varying the threshold value within the range 
[0, 1] in small increments.  

Fig.6 illustrates how accuracy changes 
with respect to variations in the threshold. 
As shown, the highest accuracy (83.5%) 
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was achieved using a threshold value of 0.1; 
therefore, T = 0.1 was selected for further 
experiments. The Path960 dataset is 
publicly available for download4. 

Both retrieval and classification 
approaches were considered. For the 
retrieval task, different distance measures 

such as L1 and L2 norms, 2X  (Chi-squared) 
were used to retrieve the most similar patch 
respect to the given test sample patch (query 
image) and for classification, an SVM was 
employed to  

Fig.6. Accuracy changes for the Kimia 
path960 dataset with respect to threshold 
changes to find the optimal value for T in 

calculating LVC feature. For T=0.1 
accuracy is 83.5%. 

Determine the label of the patch most 
similar to the test sample. Table 3 shows the 
evaluation performances { , , }p w total    

for different extracted local features and 
various combinations of these features in 
supervised and unsupervised approaches 
for cases I and II.  In this table |h| is the 
dimension of the feature vector, and 

2h riuLBP
  , hV  , hM and hLV C  refer to 

the concatenated 2riuL B P  ,V P R  , 

,M P R and ,L V C P R features with (P,R) 

values of (8,1), (16,2) and (24,3), for 

 
4 http://kimia.uwaterloo.ca/ 

example

[ , , ]2 2 2 2
8,1 16,2 24,3

h h h hriu riu riu riuLBP LBP LBP LBP
 .  

As shown in Table 3 adding LVC feature 

to the 2riuL B P , V and M features has the 
greatest influence on the improving the 
evaluation performances. The best 
evaluation performance for all supervised 
and unsupervised approaches, was achieved 
for case II which has been highlighted in the 
table. 

Feature selection for Kimia Path24 
dataset- It was observed that although the 
addition of the mean intensity feature to the 
variance (V) and LVC features improved 
classification performance, in some WSIs, 
the number of correctly retrieved patches 
decreased based on the confusion matrix 
analysis. To address this issue and retain 
only the most discriminative features, 
several well-known feature selection 
methods were applied to the concatenated 
feature vectors formed from all local 
features (h= /2riuLBP

h Vh / LVCh / Mh ). The 

selected methods included Laplacian score 
[19], multi-cluster feature selection 
(MCFS) [20], unsupervised discriminative 
feature selection (UDFS) [21], and 
correlation-based feature selection (CSF) 
[22]. The resulting reduced feature sets 
were then fed into an SVM classifier for 
evaluation on case II dataset. Fig. 7 
illustrates the impact of feature vector 
dimensionality on retrieval accuracy at 
patch-level, whole-scan level, and scan-
level using these feature selection 
approaches. The best performance was 
achieved using the MCFS method with 
k=140 selected features, yielding accuracies 
of {96.53%, 95.73%, 92.40%} across 
different evaluation levels. 
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Table 3: Evaluation performances { ,p ,w total } for different extracted local features and various 

combinations of these features in supervised and unsupervised approaches for cases I and II. 
h |h| L1 

{ ,p ,w total } 
L2 

{ ,p ,w total } 
X2 

{ ,p ,w total } 
SVM classifier 

{ ,p ,w total } 

2
)1,8(

riuLBPh
 

10 I,{62.26%,58.19%,36.23%} 
II,{62.04%,59.23%,36.74%} 

I,{62.04%,58.21%,36.11%} 
II,{61.96%,59.28%,36.73%} 

I,{60.91%,57.11%,34.78%} 
II,{60.53%,57.59%,34.86%} 

I,{72.83%,66.61%,48.51%} 
II,{72.98%,68.62%,50.08%} 

2
)2,16(

riuLBPh
 

18 I,{67.77%,63.67%,43.15%} 
II,{67.85%,65.18%,44.22%} 

I,{65.58%,61.47%,40.31%} 
II,{65.81%,63.30%,41.66%} 

I,{61.89%,57.3%,35.46%} 
II,{62.19%,59.42%,36.95%} 

I,{77.28%,72.15%,55.76%} 
II,{77.66%,74.89%,58.16%} 

2
)3,24(

riuLBPh
 

26 I,{71.25%,67.22%,47.89%} 
II,{69.28%,66.90%,46.35%} 

I,{71.55%,67.91%,48.59%} 
II,{70.57%,68.54%,48.36%} 

I,{66.64%,62.45%,41.61%} 
II,{67.25%,64.57%,43.42%} 

I,{77.66%,73.12%,56.79%} 
II,{77.96%,75.72%,59.03%} 

2
)2,16(

2
)1,8(

/ riuriu LBPLBP hh
 

28 I,{70.94%,67.06%,47.57%} 
II,{70.42%,67.63%,47.62%} 

I,{69.43%,65.32%,45.35%} 
II,{69.21%,66.47%,46.00%} 

I,{64.30%,60.66%,39.00%} 
II,{64.45%,61.71%,39.77%} 

I,{86.49%,82.19%,71.09%} 
II,{87.32%,85.32%,74.50%} 

2
)3,24(

2
)1,8(

/ riuriu LBPLBP hh
 

36 I,{73.36%,69.52%,51.00%} 
II,{73.58%,71.43%,52.56%} 

I,{71.02%,67.27%,47.78%} 
II,{71.40%,69.46%,49.59%} 

I,{64.83%,61.29%,39.73%} 
II,{66.26%,63.99%,42.41%} 

I,{88.00%,84.49%,74.35%} 
II,{88.22%,86.43%,76.25%} 

2
)3,24(

2
)2,16(

/ riuriu LBPLBP hh
 

44 I,{71.85%,67.73%,48.66%} 
II,{72.53%,70.55%,51.17%} 

I,{71.47%,67.54%,48.27%} 
II,{71.54%,69.04%,49.40%} 

I,{64.38%,60.18%,38.74%} 
II,{64.91%,62.50%,40.57%} 

I,{86.57%,83.92%,72.65%} 
II,{86.19%,84.79%,73.08%} 

2riuLBPh  54 
I,{75.62%,71.30%,53.91%} 

II,{74.94%,72.48%,54.32%} 
I,{ 71.85%,67.48%,48.48%} 
II,{71.92%,69.85%,50.24%} 

I ,{65.13%,61.52%,40.07%} 
II,{65.74%,63.45%,41.71%} 

I,{90.64%,87.80%,79.58%} 
II,{90.94%,89.62%,81.50%} 

)1,8(Vh
 

16 
I,{30.79%,28.10%,8.65%} 

II,{30.64%,29.12%,8.92%} 
I,{ 29.21%,26.68%,7.79%} 

II,{29.36%,28.15%,8.26%} 
I ,{26.26%,23.71%,6.22%} 

II,{27.25%,26.22%,7.14%} 
I,{34.94%,30.38%,10.62%} 
II,{33.21%,29.10%,9.26%} 

)2,16(Vh
 

16 
I,{29.43%,25.30%,7.45%} 

II,{32.68%,30.68%,10.02%} 
I,{ 28.00%,24.22%,6.78%} 

II,{31.17%,29.42%,9.17%} 
I ,{26.19%,22.52%,5.90%} 

II,{28.68%,27.18%,7.80%} 
I,{34.34%,29.74%,10.21%} 
II,{36.38%,32.85%,11.95%} 

)3,24(Vh
 

16 I,{31.92%,29.39%,9.38%} 
II,{31.70%,30.27%,9.60%} 

I,{ 31.77%,29.08%,9.24%} 
II,{29.89%,28.48%,8.51%} 

I ,{29.43%,26.65%,7.85%} 
II,{28.91%,27.05%,7.82%} 

I,{36.22%,32.75%,11.86%} 
II,{36.38%,33.10%,12.04%} 

)2,16()1,8(
/ VV hh

 
32 I,{38.57%,32.97%,12.72%} 

II,{43.92%,41.94%,18.42%} 
I,{ 35.62%,30.49%,10.86%} 
II,{40.68%,39.08%,15.90%} 

I ,{32.22%,27.64%,8.91%} 
II,{36.15%,34.32%,12.41%} 

I,{40.98%,35.08%,14.38%} 
II,{49.06%,45.22%,22.18%} 

)3,24()1,8(
/ VV hh

 
32 I,{44.98%,41.17%,18.52%} 

II,{44.00%,43.08%,18.95%} 
I,{42.34%,38.71%,16.39%} 
II,{42.34%,41.15%,17.42%} 

I ,{38.42%,34.93%,13.42%} 
II,{38.19%,36.20%,13.82%} 

I,{53.06%,48.21%,25.58%} 
II,{52.45%,49.10%,25.75%} 

)3,24()2,16(
/ VV hh

 
32 I,{34.87%,29.80%,10.39%} 

II,{38.11%,36.77%,14.01%} 
I,{33.66%,28.73%,9.67%} 

II,{36.38%,34.90%,12.70%} 
I ,{30.79%,26.26%,8.59%} 

II,{33.13%,31.28%,10.37%} 
I,{40.23%,34.46%,13.86%} 
II,{46.49%,44.04%,20.48%} 

Vh
 

48 I,{39.92%,34.24%,13.67%} 
II,{45.43%,44.23%,20.09%} 

I,{37.58%,32.17%,12.09%} 
II,{42.34%,41.15%,17.42%} 

I,{33.58%,28.68%,9.63%} 
II,{38.04%,36.10%,13.73%} 

I,{44.30%,37.78%,16.74%} 
II,{54.41%,51.30%,27.92%} 

)1,8(Mh
 

16 I,{59.47%,57.13%,33.97%} 
II,{60.16%,59.44%,35.75%} 

I,{ 58.19%,56.20%,32.70%} 
II,{58.42%,58.48%,34.16%} 

I ,{55.47%,53.31%,29.57%} 
II,{56.68%,57.17%,34.40%} 

I,{72.53%,69.92%,50.72%} 
II,{72.38%,71.37%,51.66%} 

)2,16(Mh
 

16 I,{59.47%,57.13%,33.97%} 
II,{58.57%,58.26%,34.12%} 

I,{ 58.19%,56.20%,32.70%} 
II,{56.98%,56.45%,8.26%} 

I ,{55.47%,53.31%,29.57%} 
II,{54.26%,53.41%,28.98%} 

I,{72.53%,69.92%,50.72%} 
II,{71.32%,70.45%,50.24%} 

)3,24(Mh
 

16 I,{59.47%,57.13%,33.97%} 
II,{55.85%,56.05%,31.31%} 

I,{ 58.19%,56.20%,32.70%} 
II,{54.26%,54.37%,29.51%} 

I ,{55.47%,53.31%,29.57%} 
II,{52.98%,52.23%,27.67%} 

I,{72.53%,69.92%,50.72%} 
II,{67.92%,66.54%,45.20%} 

)2,16()1,8(
/ MM hh

 
32 I,{61.58%,59.43%,36.60%} 

II,{60.83%,59.60%,36.50%} 
I,{60.23%,58.04%,34.95%} 
II,{58.94%,58.47%,34.47%} 

I ,{59.17%,56.24%,33.28%} 
II,{59.55%,59.19%,35.24%} 

I,{78.94%,75.86%,59.89%} 
II,{78.94%,78.54%,62.00%} 

)3,24()1,8(
/ MM hh

 
32 I,{63.17%,61.03%,38.55%} 

II,{63.54%,63.30%,40.22%} 
I,{61.81%,59.77%,36.94%} 
II,{61.96%,61.75%,38.26%} 

I ,{59.02%,56.60%,33.41%} 
II,{59.85%,59.63%,35.69%} 

I,{80.38%,77.95%,62.66%} 
II,{80.83%,80.45%,62.03%} 

)3,24()2,16(
/ MM hh

 
32 I,{60.00%,57.61%,34.56%} 

II,{59.70%,59.69%,35.63%} 
I,{60.15%,57.63%,34.67%} 
II,{59.09%,59.08%,34.90%} 

I ,{56.68%,54.11%,30.67%} 
II,{57.13%,56.91%,32.52%} 

I,{76.83%,73.99%,56.84%} 
II,{77.74%,76.98%,59.84%} 

Mh  
48 I ,{61.66%,59.49%,36.68%} 

II,{61.74%,61.63%,38.04%} 
I,{61.21%,59.10%,36.17%} 
II,{61.06%,60.73%,37.08%} 

I,{59.02%,56.55%,33.38%} 
II,{59.62%,59.54%,35.50%} 

I,{80.00%,76.97%,61.58%} 
II,{80.60%,80.01%,64.49%} 

)1,8(LVCh
 

6 I ,{40.38%,35.66%,14.40%} 
II,{39.62%,37.02%,14.67%} 

I,{40.45%,35.54%,14.38%} 
II,{39.25%,36.69%,14.40%} 

I,{39.47%,34.62%,13.67%} 
II,{38.04%,35.28%,13.42%} 

I,{49.96%,43.52%,21.74%} 
II,{49.66%,44.42%,22.06%} 

)2,16(LVCh
 

10 I ,{50.72%,46.08%,23.37%} 
II,{51.55%,49.38%,25.45%} 

I,{59.51%,44.91%,22.23%} 
II,{52.08%,49.63%,25.84%} 

I,{48.91%,44.02%,21.53%} 
II,{50.04%,47.53%,23.78%} 

I,{62.49%,56.83%,35.52%} 
II,{63.77%,59.67%,38.05%} 

)3,24(LVCh
 14 

I ,{54.71%,49.85%,27.28%} 
II,{54.72%,51.70%,28.29%} 

I,{52.91%,48.34%,25.58%} 
II,{52.45%,49.00%,26.22%} 

I,{49.06%,44.60%,21.88%} 
II,{49.89%,47.46%,23.68%} 

I,{68.75%,63.26%,43.49%} 
II,{70.49%,67.14%,47.33%} 

)2,16()1,8(
/ LVCLVC hh

 
16 I ,{54.79%,49.49%,27.11%} 

II,{56.91%,54.00%,30.73%} 
I,{55.02%,49.69%,27.34%} 
II,{57.66%,55.00%,31.71%} 

I,{53.58%,48.18%,28.82%} 
II,{55.09%,52.44%,28.89%} 

I,{69.43%,63.76%,44.27%} 
II,{70.57%,67.18%,47.40%} 

)3,24()1,8(
/ LVCLVC hh

 
20 I ,{57.66%,52.73%,30.40%} 

II,{58.19%,55.36%,32.21%} 
I,{57.28%,52.23%,29.92%} 
II,{57.21%,54.35%,31.10%} 

I,{52.98%,48.10%,25.48%} 
II,{54.34%,51.39%,27.93%} 

I,{74.72%,69.89%,52.22%} 
II,{75.09%,72.19%,54.21%} 

)3,24()2,16(
/ LVCLVC hh

 
24 I ,{59.10%,54.28%,32.08%} 

II,{57.96%,54.63%,31.67%} 
I,{56.30%,51.47%,28.98%} 
II,{57.28%,54.28%,31.10%} 

I,{52.45%,47.79%,25.07%} 
II,{54.04%,51.17%,27.65%} 

I,{75.40%,70.92%,53.47%} 
II,{75.92%,73.56%,55.85%} 

LVCh
 

30 I,{59.47%,54.52%,32.43%} 
II,{59.77%,56.76%,33.93%} 

I,{58.49%,53.55%,31.32%} 
II,{59.25%,56.39%,33.41%} 

I,{54.04%,49.19%,26.58%} 
II,{55.77%,52.80%,29.45%} 

I,{77.66%,73.35%,56.97%} 
II,{77.58%,74.64%,57.91%} 
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Table 3(continue): Evaluation performances { ,p ,w total } for different extracted local features and 

various combinations of these features in supervised and unsupervised approaches for cases I and II. 

      

h
 

|h|
 

L1 
{ ,p ,w total } 

L2 
{ ,p ,w total } 

X2 

{ ,p ,w total } 
SVM classifier 

{ ,p ,w total } 

VLBP hh riu /2
 

102 I,{74.87%,70.01%,52.48%} 
II,{78.19%,76.19%,59.57%} 

I,{69.58%,63.75%,44.36%} 
II,{75.55%,73.65%,55.64%} 

I,{60%,53.90%,32.34%} 
II,{66.87%,64.48%,43.11%} 

I,{73.36%,64.75%,47.50%} 
II,{93.28%,91.72%,85.56%}  

MLBP hh riu /2
 

102 I,{81.74%,79.44%,64.93%} 
II,{78.91%,79.93%,64.67%} 

I,{77.28%,74.83%,57.83%} 
II,{76.15%,75.11%,57.20%} 

I,{72.38%,69.91%,50.60%} 
II,{72.38%,71.72%,51.91%} 

I,{92.38%,89.89%,83.04%} 
II,{92.91%,92.43%,85.87%}  

LVCLBP hh riu /2
 

84 I,{78.94%,75.06%,59.25%} 
II,{77.89%,75.47%,64.67%} 

I,{75.55%,72.0%,54.40%} 
II,{75.47%,73.20%,55.24%} 

I,{69.81%,66.10%,46.15%} 
II,{69.51%,66.61%,46.30%} 

I,{94.26%,92.42%,87.12%} 
II,{94.19%,92.85%,87.46%} 

MV hh /
 

96 I,{65.81%,62.76%,41.30%} 
II,{68.08%,67.56%,45.99%} 

I,{64.38%,61.52%,39.61%} 
II,{65.81%,65.14%,42.87%} 

I,{59.70%,56.25%,33.58%} 
II,{62.72%,62.27%,39.05%} 

I,{71.62%,67.22%,48.14%} 
II,{84.60%,83.18%,70.37%} 

LVCV hh /
 

78 I,{59.92%,53.04%,31.79%} 
II,{65.81%,62.99%,41.46%} 

I,{53.98%,49.90%,28.43%} 
II,{63.17%,60.34%,38.12%} 

  I,{52.30%,45.28%,23.68%} 
II,{59.55%,56.29%,33.52%} 

I,{62.79%,53.52%,33.61%} 
II,{83.47%,81.48%,68.02%} 

MVLBP hhh riu //2
 

150 I,{81.66%,78.80%,64.35%} 
II,{82.19%,81.41%,66.91%} 

I,{77.89%,75.0%,58.41%} 
II,{77.66%,76.57%,59.46%} 

I,{70.42%,67.12%,47.27%} 
II,{73.66%,72.95%,53.73%} 

I,{83.62%,79.47%,66.45%} 
II,{93.13%,92.52%,86.16%} 

LVCMV hhh //
 

126 I,{73.13%,69.55%,50.87%} 
II,{74.64%,73.51%,54.87%} 

I,{69.89%,66.36%,46.37%} 
II,{71.55%,70.39%,50.36%} 

I,{65.89%,62.57%,41.23%} 
II,{68.83%,68.02%,46.82%} 

  I,{79.62%,75.20%,59.88%} 
II,{90.19%,88.95%,80.22%} 

LVCVLBP hhh riu //2
 

132 I,{77.36%,73.02%,56.49%} 
II,{80.15%,78.22%,62.69%} 

I,{73.66%,69.05%,50.87%} 
II,{76.52%,74.60%,57.09%} 

I,{64.53%,58.59%,37.81%} 
II,{70.04%,67.89%,47.55%} 

I,{77.43%,69.65%,53.93%} 
II,{95.25%,94.03%,89.56%} 

/2riuLBPh /Vh LVCh
/

Mh  

180 I,{82.72%,79.65%,65.88%} 
II,{83.70%,82.48%,69.04%} 

I,{79.92%,76.70%,61.30%} 
II,{79.85%,78.50%,62.68%} 

I,{72.60%,69.55%,50.50%} 
II,{74.64%,73.62%,54.95%} 

I,{86.64%,82.86%,71.79%} 
II,{94.64%,93.85%,88.82%} 

 

(a). patch-to-scan accuracy. (b). whole-scan accuracy. 
Fig.7. Effect of chosen number of features to patch-to-scan accuracy (a), whole-scan accuracy (b) 

for different feature selection methods for the Kimia path24 dataset. 
 
Comparative Analysis Using the Kimia 
Path24 Dataset- The proposed method was 
compared with other approaches reported in 
the literature. Table 4 presents the 
evaluation performance of various methods 
applied to this dataset. The number of 
extracted training patches is also included 
to provide a comprehensive comparison. 

Compared to other methods, the proposed 
approach achieves higher image retrieval 
accuracy with a lower-dimensional feature 
vector. All experiments in this study were 
conducted in a MATLAB environment on a 
system with a 2.60 GHz CPU, eight cores, 
and 16 GB of RAM. 
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Table 4: Evaluation performance for various 

methods for Kimia Path24 dataset. 
Method Accuracy 

{ ,p ,w total } 

|h| 
 

# 
training 
patches  

Proposed 
method(case 
II) 

{96.5%, 95.7%, 
92.4%} 

140 30946 

Proposed 
method(caseI) 

{91.4%,88.60%,80.9%} 140 25979 

ELP(10,d)[23] 
{82.7%, 79.9%, 66.1%} 1024 27055 

ELP(10,m)[23] 
{82.3%, 79.3%, 65.3%} 256 27055 

VGCFC7[23] 
{79.5%, 76.9%, 61.1%} 4096 n.a. 

LBP(24,2)[23] 
{77.8%, 73.3%, 57.0%} 555 27055 

VGGpool[23] 
{72.5%, 67.2%, 48.7%} 6272 n.a. 

CNN [24] 
{65.0%, 64.8%, 42.1%} 1024 40,513 

BoVW[24] 
{65.0%, 61.0%, 39.7%} 800 27055 

Results for the BreakHis Dataset – The 
dataset contains four histologically distinct 

types of benign breast tumors: adenosis (A), 
fibroadenoma (F), phyllodes tumor (PT), 
and tubular adenoma (TA), as well as four 
types of malignant breast tumors: ductal 
carcinoma (DC), lobular carcinoma (LC), 
mucinous carcinoma (MC), and papillary 
carcinoma (PC). All images are provided in 
3-channel RGB format with a resolution of 
700×460 pixels. The dataset was randomly 
divided into training (70%) and testing 
(30%) subsets. 
Normalization was applied, and local low-
level features were extracted from each 
color channel using radius {1,2,3} and 
neighborhood points{8,16,24}, with a 
threshold T= 0.1. The global recognition 
rate was used as the performance metric. 
Key results are presented in Table 5, with 
the best outcomes highlighted. 
 

Table 5: Evaluation performance (recognition rate) for BreakHis dataset. 
                                                                                                                     Magnification factor 

  40X   100X  200X  400X 
Method   L1% L2% SVM

% 
 L1% L2% SVM

% 
 L1% L2% SVM

% 
 L1% L2% SVM

% 

2riuLBPh  75.1
6 

74.0
7 

81.91  75.5
0 

74.6
2 

84.23  71.2
5 

73.4
2 

83.43  71.7
9 

68.6
3 

78.46 

Vh  66.3
8 

65.5
3 

73.92  60.9
2 

63.0
4 

67.91  66.2
4 

67.2
6 

71.01  63.7
3 

62.4
9 

70.29 

Mh  63.2
6 

64.9
1 

69.89  69.1
9 

68.3
7 

68.62  73.4
2 

72.0
5 

80.03  69.4
5 

69.5
6 

80.03 

LVCh  71.2
7 

70.1
2 

83.01  71.9
9 

70.8
6 

73.36  71.0
5 

68.2
3 

80.98  69.2
5 

67.3
0 

76.46 

VLBP hh riu /2  76.4
1 

75.5
7 

78.26  67.2
7 

70.1
9 

80.00  74.3
1 

72.9
6 

83.21  73.1
1 

73.3
1 

80.84 

MLBP hh riu /2  66.7
9 

65.3
7 

71.54  71.0
6 

70.2
1 

72.00  75.5
1 

73.6
8 

80.02  73.0
9 

70.7
4 

78.10 

LVCLBP hh riu /2  71.9
3 

72.2
2 

83.13  71.8
6 

68.8
2 

81.29  71.0
1 

69.1
8 

83.19  71.4
2 

72.4
9 

77.29 

MV hh /  61.3
9 

63.4
9 

67.89  66.8
7 

67.3
0 

65.72  70.5
8 

70.9
4 

78.84  69.5
5 

69.0
6 

78.88 

LVCV hh /  74.4
6 

73.5
8 

80.97  71.1
2 

71.1
0 

75.46  74.4
9 

75.2
4 

78.64  71.4
2 

71.1
9 

77.87 

LVCM hh /  67.2
6 

67.3
4 

68.60  68.1
7 

65.8
8 

72.02  71.5
5 

70.5
4 

80.87  68.0
5 

66.6
8 

75.57 

VMLBP hhh riu //2  66.7
0 

62.9
9 

67.99  67.9
8 

68.0
3 

73.07  75.9
2 

73.7
7 

80.27  72.5
3 

71.0
4 

77.91 

LVCMLBP hhh riu //2 66.7
7 

67.7
0 

69.38  68.4
9 

65.7
9 

73.57  73.2
8 

72.2
4 

79.57  72.9
1 

71.9
9 

76.80 

LVCVLBP hhh riu //2  78.0
0 

75.3
4 

84.44  71.7
3 

71.8
2 

78.83  71.7
4 

73.5
6 

83.44  71.4
8 

71.7
6 

78.87 

LVCMV hhh //  70.8
8 

67.9
6 

72.46  69.0
3 

67.4
2 

73.13  71.7
9 

72.8
5 

78.81  72.5
8 

70.4
9 

76.55 

/2riuLBPh /Vh

LVCh
/ Mh  

70.6
2 

69.0
4 

72.57  68.5
2 

68.2
3 

74.39  73.2
3 

73.2
5 

79.38  74.7
2 

72.1
2 

77.83 
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Table 6: Evaluation performance for various 
methods for BreakHis dataset. 

Method  40X 100X 200X 400X 

CLBP[18] 77.4% 76.4% 70.2% 72.8% 

LPQ [18] 73.8% 72.8% 74.3% 73.7% 

GLCM[18] 74.7% 78.6% 83.4% 73.7% 

QRB[18] 74.4% 69.4% 69.6% 67.6% 

PFTAS[18] 83.8% 82.1% 85.1% 82.3% 

CNN [25] 84.0% 83.9% 86.3% 82.1% 

CNN & Fusion 
Rules [26] 
 

90.0% 88.4% 84.6% 86.1% 

Proposed method 88.00% 84.4% 86.5% 83.6% 

Feature selection for BreakHis dataset- 
To further improve classification accuracy 
and reduce the dimensionality of the feature 
vector, several feature selection methods—
Laplacian Score, MCFS, UDFS, and CSF—
were applied to the combination of features 
that yielded the best classification 
performance. The impact of selecting the 

most discriminative features on evaluation 
performance was assessed using an SVM 
classifier. Fig.8 illustrates the effect of 
feature vector dimensionality (i.e., the 
number of selected features) on 
classification performance (recognition 
rate) across different magnification factors 
and feature selection methods. The best 
results are 
{175,87.98%,mcfs},{140,84.41%,cfs} 

,{290,56.50%,mcfs}, {189,83.64%,mcfs} 
over 40X ,100X, 200X and 400X 
magnification factors respectively where 
the first number is the dimension of the 
feature vector, the second number is the 
maximum recognition rate and the feature 
selection method that best result is achieved 
is the third one. 

  
a. b. 

 
 

c. d. 

Fig.8. Effect of chosen number of features to recognition rate accuracy over the magnification factors, (a), 
40X (b) 100X, (c)  200X ,(d) 400X for BreakHis dataset using different feature selection methods. 
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Comparative Analysis Using the 
BreakHis dataset- The best results were 
compared with other reported methods in 
the literature. Table  6 presents this 
comparison. As shown, the proposed 
method achieves higher classification 
accuracy than several existing approaches 
on the same dataset. 

4. Summery and Conclusion 

‘n’ this study, four low-level local features 
— rotation-invariant local binary pattern 
(LBP), mean intensity, variance, and local 
variation code (LVC) — were extracted 
from circular neighborhoods around the 
central pixel using various radii. These 
features were employed to address content-
based medical image retrieval in 
histopathological images. The extracted 
features are invariant to rotation and 
grayscale shifts, enabling robust 
representation of texture patterns.  

The impact of each individual feature and 
their combinations was evaluated using 
both supervised and unsupervised 
classification approaches on three publicly 
available datasets: Kimia Path24 and 
BreakHis. Experimental results 
demonstrated that, for one of the datasets, a 
single feature type was sufficient to achieve 
high classification accuracy. Moreover, 
different concatenation strategies were 
tested, and the results indicated that 
combining multiple feature types improved 
the modeling of micro-pattern structures, 
particularly for two of the datasets.  

Feature selection methods were applied to 
the extracted feature vectors, which not 
only enhanced classification performance 
but also reduced the dimensionality of the 
feature space. Compared to previously 

proposed techniques, the presented method 
achieves higher accuracy with a more 
compact feature representation. 

REFERENCES 

[1] M. K. K. Niazi, A. V. Parwani, and M. N. 
Gurcan, “Digital pathology and artificial 
intelligence,” The Lancet Oncology, vol. 20, no. 
5, pp. e253–e261, May 2019. 

[2] S. W. Jahn, M. Plass, and F. Moinfar, “Digital 
pathology: advantages, limitations and emerging 
perspectives,” Journal of Clinical Medicine, vol. 
9, no. 11, p. 3697, 2020. 

[3] M. G. Hanna and M. H. Hanna, “Current 
applications and challenges of artificial 
intelligence in pathology,” Human Pathology 
Reports, vol. 27, p. 300596, 2022. 

[4] M. N. Gurcan, L. E. Boucheron, A. Can, A. 
Madabhushi, N. M. Rajpoot, and B. Yener, 
“Histopathological image analysis: A review,” 
IEEE Reviews in Biomedical Engineering, vol. 
2, pp. 147–171, 2009. 

[5] E. A. Rakha, M. Toss, S. Shiino, P. Gamble, R. 
Jaroensri, C. H. Mermel, and P. H. C. Chen, 
“Current and future applications of artificial 
intelligence in pathology: a clinical perspective,” 
Journal of Clinical Pathology, vol. 74, no. 7, pp. 
409–414, 2021. 

[6] A. Madabhushi and G. Lee, “Image analysis and 
machine learning in digital pathology: 
Challenges and opportunities,” Medical Image 
Analysis, vol. 33, pp. 170–175, 2016. 

[7] S. B. Mukadam and H. Y. Patil, “Machine 
learning and computer vision based methods for 
cancer classification: A systematic review,” 
Archives of Computational Methods in 
Engineering, vol. 31, no. 5, pp. 3015–3050, 
2024. 

[8] A. Latif, A. Rasheed, U. Sajid, J. Ahmed, N. Ali, 
N. I. Ratyal, B. Zafar, S. H. Dar, M. Sajid, and T. 
Khalil, “Content‐based image retrieval and 
feature extraction: A comprehensive review,” 
Mathematical Problems in Engineering, vol. 
2019, no. 1, p. 9658350, 2019. 

[9] M. Heikkilä, M. Pietikäinen, and C. Schmid, 
“Description of interest regions with local 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 14, No. 54, Sep2025 
 
 

36 
 

binary patterns,” Pattern Recognition, vol. 42, 
no. 3, pp. 425–436, 2009. 

[10]  D. G. Lowe, “Distinctive image features from 
scale-invariant keypoints,” International Journal 
of Computer Vision, vol. 60, pp. 91–110, 2004. 

[11] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, 
“Speeded-up robust features (SURF),” 
Computer Vision and Image Understanding, 
vol. 110, no. 3, pp. 346–359, 2008. 

[12] N. Dalal and B. Triggs, “Histograms of oriented 
gradients for human detection,” in Proc. 2005 
IEEE Computer Society Conf. on Computer 
Vision and Pattern Recognition.  

[13] T. Ojala, M. Pietikäinen, and D. Harwood, “A 
comparative study of texture measures with 
classification based on featured distributions,” 
Pattern Recognition, vol. 29, no. 1, pp. 51–59, 
1996. 

[14] Ş. Öztürk and A. Bayram, “Comparison of 
HOG, MSER, SIFT, FAST, LBP and CANNY 
features for cell detection in histopathological 
images,” Helix, vol. 8, no. 3, pp. 3321–3325, 
2018. 

[15] T. Ojala, M. Pietikäinen, and T. Maenpaa, 
“Multiresolution gray-scale and rotation 
invariant texture classification with local binary 
patterns,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 24, no. 
7, pp. 971–987, 2002. 

[16] M. Babaie, S. Kalra, A. Sriram, C. Mitcheltree, 
S. Zhu, S. Khatami, A. Rahnamayan, and H. 
Tizhoosh, “Classification and retrieval of digital 
pathology scans: A new dataset,” in Proc. 
Workshop on Computer Vision for Microscopy 
Image Analysis (CVMI), IEEE Conf. on 
Computer Vision and Pattern Recognition 
(CVPR), pp. 8–16, 2017. 

[17] A. Jurio, H. Bustince, M. Pagola, P. Couto, and 
W. Pedrycz, “New measures of homogeneity for 
image processing: An application to fingerprint 
segmentation,” Soft Computing, vol. 18, no. 6, 
pp. 1055–1066, 2014. 

[18] F. Spanhol, L. S. Oliveira, C. Petitjean, and L. 
Heutte, “A dataset for breast cancer 

histopathological image classification,” IEEE 
Transactions on Biomedical Engineering, vol. 
63, no. 7, pp. 1455–1462, 2015. 

[19] X. He, D. Cai, and P. Niyogi, “Laplacian score 
for feature selection,” in Proc. Int. Conf. on 
Neural Information Processing Systems (NIPS), 
pp. 507–514, 2005. 

[20] D. Cai, C. Zhang, and X. He, “Unsupervised 
feature selection for multi-cluster data,” in Proc. 
ACM Int. Conf. on Knowledge Discovery and 
Data Mining (KDD), pp. 333–342, 2010. 

[21] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. 
Zhou, “Norm regularized discriminative feature 
selection for unsupervised learning,” in Proc. 
22nd Int. Joint Conf. on Artificial Intelligence 
(IJCAI), pp. 1589–1594, 2011. 

[22] M. Hall, “Correlation-based feature selection for 
machine learning,” Ph.D. dissertation, Dept. of 
Computer Science, Univ. of Waikato, Hamilton, 
New Zealand, 1999. 

[23] H. R. Tizhoosh and M. Babaie, “Representing 
medical images with encoded local projections,” 
IEEE Transactions on Biomedical Engineering, 
vol. 65, no. 10, pp. 2267–2277, 2018. 

[24] B. Kieffer, M. Babaie, S. Kalra, and H. R. 
Tizhoosh, “Convolutional neural networks for 
histopathology image classification: Training 
vs. using pre-trained networks,” in Proc. 2017 
Seventh Int. Conf. on Image Processing Theory, 
Tools and Applications (IPTA), pp. 1–6, Nov. 
2017. 

[25] F. A. Spanhol, L. S. Oliveira, P. R. Cavalin, C. 
Petitjean, and L. Heutte, “Deep features for 
breast cancer histopathological image 
classification,” in Proc. 2017 IEEE International 
Conference on Systems, Man, and Cybernetics 
(SMC), pp. 1868–1873, Oct. 2017. 

[26] F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. 
Heutte, “Breast cancer histopathological image 
classification using convolutional neural 
networks,” in Proc. 2016 International Joint 
Conference on Neural Networks (IJCNN), pp. 
2560–2567, July 2016. 

 

 


