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Abstract 
The purpose of this research is to present a non-linear model of mathematical fractional order for 
criminally active and prisoner system. Both genetic algorithm and particle swarm optimization 
algorithm were used to simulate optimal control. Modeling approach of the type of differential 
equation machine with fractional order derivatives was used. In the following, it was shown that 
the presented model has chaos, its order is of fractional order and it needs to be controlled. 
Genetic algorithm and particle swarm optimization algorithm were used for simulation and 
optimal control. It was shown that this model has a chaotic behavior; as a result, optimal control 
for this behavior was presented. The results of the genetic algorithm method are excellent. All 
the results obtained for the particle swarm optimization method show that this method is also 
very successful and the results are very close to the genetic algorithm method. Very low values 
of MSE and RMSE errors indicate that the simulation is effective and efficient. This article is the 
first article that performs nonlinear modeling of system criminally active and prisoner and 
optimally controls the chaos in the model. This type of modeling and optimal control has not 
been done so far. Also, software and algorithms have been used that are very fast, accurate and 
have the lowest possible error.      
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1. Introduction   
Criminal activities and issues related to prisoners are among the most important social, economic 
and security challenges of today's societies, which have profound effects on sustainable 
development, social stability and public welfare. The theoretical foundations in this field are 
based on criminological theories, social psychology and dynamic models of crime [1,2]. Crime is 
defined as behavior that violates social norms and formal laws of society and causes harm to 
individuals, property and public order. Criminal activities are influenced by several factors such 
as poverty, unemployment, social inequality, family structure, education and culture, and these 
factors interact in a complex way to cause the emergence and spread of crime [5,6,7]. Prisoners, 
as individuals who are held in detention centers for committing crimes, form part of this cycle of 
crime and punishment, and the management of this population also has its own challenges, 
including issues related to rehabilitation, prevention of further crimes and numerous social and 
economic costs.[3,4] In recent years, with the advancement of data science, mathematical 
modeling, and computational technologies, new approaches have been developed to analyze, 
predict, and control criminal activities and manage prison populations. One of the key topics in 
this area is the use of dynamic models and complex systems to simulate crime trends and prison 
population behavior [10,11]. These models often include various variables such as crime rates, 
levels of preventive activities, prison capacity, and the impact of social and economic policies. 
Using these models allows for the analysis of the interaction of different factors and helps 
policymakers make optimal decisions [8,9]. Along with modeling, optimization and optimal 
control are among the most important tools for reducing criminal activities and improving prison 
conditions [20,21]. Optimization means finding the best combination of policies and 
interventions that can reduce crime and minimize social, economic, and human costs. Classical 
optimization methods often have limitations in this field due to the complexity and 
multidimensionality of the problem. For this reason, metaheuristic algorithms such as genetic 
algorithms and particle swarm optimization have been introduced as new and powerful methods 
[24]. These algorithms, due to their global search capability and high flexibility, have been able 
to provide optimal and robust solutions for crime control and prisoner management. The use of 
genetic algorithms in this field has made it possible to design policies that, in addition to 
reducing crime rates, have positive effects on prisoner rehabilitation and reducing recidivism. By 
simulating the processes of natural selection, mating, and mutation, this algorithm allows 
discovering the best combination of interventions among thousands of options [26]. Also, the 
particle swarm optimization algorithm, modeled on the collective behavior of birds or fish, has a 
high convergence rate and is very suitable for optimization problems with continuous and 
complex variables. The application of PSO in the control of criminal activities helps to optimize 
intervention policies in a flexible and dynamic manner and to adjust them quickly in response to 
environmental or social changes.[23] The main advantages of using these algorithms in this area 
include the ability to search extensively and avoid getting stuck in local optima, the ability to 
deal with unstable and incomplete data, and the ability to solve multi-objective problems. For 
example, it is possible to simultaneously optimize crime rates, law enforcement costs, and social 
impacts of correctional programs [22]. In addition to reducing financial costs, these methods can 
help improve the quality of life of prisoners, reduce social disorders, and increase public safety. 
From a research perspective, several studies have shown that the use of dynamic models together 
with genetic algorithms and PSO in macro-social and judicial planning has improved the 
efficiency and effectiveness of crime and prisoner control policies [25]. Recent studies have 
examined different scenarios based on real crime and prison data, and their results demonstrate 



  
 

 

the ability of these algorithms to create an optimal balance between economic, social, and 
security goals. Also, combining these algorithms with machine learning models can improve the 
decision-making and forecasting process and accelerate the response to environmental changes . 
[13]. Finally, it can be said that the use of advanced optimization methods such as genetic 
algorithms and particle swarm optimization in the field of criminal activity control and prisoner 
management is an effective step towards reducing the social, economic, and human costs of 
crime. These approaches allow policymakers to design policies that are both financially cost-
effective and promote social justice and public safety, and as a result, create a more sustainable 
and secure society [14,15]. Models of criminal activity and prison populations often exhibit 
nonlinear and chaotic behavior due to the inherent complexities of the influencing factors and the 
multifaceted interactions between social, economic, psychological, and legal variables. The 
chaotic nature of these models means that the system is highly sensitive to initial conditions and 
parameters; such that small changes in the inputs can lead to completely different and 
unpredictable results [18,19]. This feature causes the trend of criminal activity and changes in the 
number of prisoners to move in an unstable and complex manner over short or long time periods. 
Also, numerous positive and negative feedbacks, such as the impact of economic conditions on 
crime, and the impact of judicial policies on prison populations, increase the dynamic and 
chaotic dimensions of the model [16,17,18]. For this reason, accurate prediction and the design 
of efficient control policies in this area are difficult and require tools that can optimize in a 
nonlinear and chaotic space. In this regard, metaheuristic algorithms such as the genetic 
algorithm (GA) and particle swarm optimization (PSO) play an important role. The genetic 
algorithm, which is based on the natural processes of evolution and natural selection, is able to 
search the complex and multidimensional problem space extensively and move towards global 
optima by creating a population of possible solutions and updating them through operators such 
as selection, mating, and mutation [25,26,27]. This feature is especially important for chaotic 
crime and prisoner models that include multi-peak and nonlinear objective functions. With its 
deep exploration ability and high population diversity, the genetic algorithm reduces the 
probability of getting stuck in local optima and provides robust and balanced solutions for crime 
reduction and prison population control. The application of genetic algorithms (GA) and particle 
swarm optimization (PSO) in modeling criminal activity systems and prison populations has 
significant advantages due to the special characteristics of these algorithms and the inherent 
complexity of these systems [31,32,33]. First, both algorithms have the ability to search globally 
in complex and nonlinear problem spaces, which is crucial for modeling crime systems with 
chaotic and multidimensional behaviors. The genetic algorithm, with natural evolution 
simulation processes, is able to examine complex and multi-objective system structures in a 
multi-generational manner and discover the best combination of parameters and policies. This 
helps to form dynamic crime and prison models with higher accuracy and to consider various 
changes in social and economic conditions [28,29,30]. On the other hand, PSO, due to its high 
convergence speed and algorithm simplicity, has the ability to quickly find optimal points and is 
very suitable for models that require rapid updating and dynamic response.  Second, both 
algorithms have the ability to deal with multi-objective problems; that is, they can 
simultaneously optimize for reducing crime rates, improving prisoner rehabilitation, and 
reducing economic and social costs. This capability is important in modeling crime systems, 
because these problems often have conflicting or multiple objectives that require careful 
balancing [37,38,39]. In the field of optimal control, the advantage of these algorithms is their 
high flexibility to find efficient intervention policies. Optimal control of criminal activities and 



  
 

 

prisoner management requires fine-tuning of multiple variables and rapid response to 
environmental changes. Genetic algorithms, due to their ability to diversify the solution 
population, avoid getting stuck in local optima and provide more creative solutions. PSO also 
provides dynamic and adaptive control due to its continuous updating of particle positions and 
ability to quickly adapt to new conditions [34 ,44,45]. The combination of these two algorithms 
(hybrid algorithms) allows us to benefit from both the extensive search capabilities of GA and 
the speed and accuracy of PSO, which is very valuable for complex and chaotic crime and prison 
systems. Ultimately, these methods allow managers and policymakers to optimize policies and 
interventions, in addition to reducing crime rates and improving prisoner conditions, minimizing 
direct and indirect social, economic, and human costs and achieving a safer and more sustainable 
society [35,36,37]. On the other hand, the particle swarm optimization algorithm is designed 
based on the collective behavior of living organisms such as birds or fish, and each particle in the 
search space seeks the best optimal position by moving and interacting with other particles 
[38,39,41] . Due to its simple structure, high convergence speed, and ability to handle continuous 
variables, this algorithm is very suitable for dynamic problems with a large number of 
parameters. In controlling crime and prison models, PSO can quickly reach practical optima and 
facilitate policy updates in variable and uncertain conditions. Combining the application of GA 
and PSO in criminal activity and prisoner population control models allows us to benefit from 
both the exploration power of GA and the convergence speed of PSO [42 ,45]. This hybrid 
combination can create a suitable balance between exploring the search space and exploiting the 
best regions found, which is very crucial for chaotic and nonlinear models. Finally, the 
application of these algorithms allows the design of optimal control policies that not only reduce 
the crime rate, but also minimize the economic, social, and human costs of crime and punishment 
[41,42,43]. These methods also have the ability to adapt and learn dynamically in the face of 
environmental and social changes, which is very important for complex and chaotic systems. 
Thus, the use of GA and PSO as optimization and control tools in models of criminal activities 
and prisoner populations provides an efficient and innovative solution for better management of 
these complex social phenomena [40,44]. 
1.2. Chaotic Fractional-Order Systems  
This article investigates the parameters and conditions for which the fractional-order system 
could have chaotic behavior. In this section, two relevant theorem for fractional-order systems 
are stated [26,28]. The theorem is about proportional fractional-order systems.  
Theorem 1.2.1. In an autonomously system we have: 

 
ௗഀ௫

ௗ௧ഀ
= 𝐴𝑥, 𝑥(0) = 𝑥଴. (1) 

 
i) By considering 0 < 𝛼 < 1 and  𝑥 ∈ ℝ௡×௡ , matrix 𝐴 ∈ ℝ௡×௡ is asymptotically stable 

if and only if  |𝑎𝑟𝑔(𝜆)| >
ఈగ

ଶ
 is valid. In this equation, 𝜆 is the eigenvalue of matrix𝐴 

In addition, this matrix is stable if and only If |𝑎𝑟𝑔(𝜆)| ≥
ఈగ

ଶ
.  

ii) The equilibrium point in fractional-order systems is calculated as in ordinary 
differential equations as below: 

 
ௗഀ௫

ௗ௧ഀ
= 𝑓(𝑥), (2) 

 𝑓(𝑥) = 0.    (3) 



  
 

 

In the equation above, we have 0 < 𝛼 < 1 and 𝑥 ∈ ℝ௡×௡. The equilibrium point achieved by 
solving the equation is asymptotically stable if the calculated eigenvalue 𝜆 related to the 

Jacobian matrix 𝐽 =
ௗ௙

ௗ௧
 satisfies the following equation in equilibrium point [26,27]: 

|𝑎𝑟𝑔(𝜆)| >
ఈగ

ଶ
 .                                                             (4) 

Proof: See [26,28] for the proof. 
Theorem.1.2.2. The n-dimensional dynamic fractional-order system could be specified as 
follows[34]:  

 

ௗഀభ௫భ

ௗ௧ഀభ
= 𝑎ଵଵ𝑥ଵ + 𝑎ଵଶ𝑥ଶ + ⋯ + 𝑎ଵ௡𝑥௡,

ௗഀమ௫మ

ௗ௧ഀమ
= 𝑎ଶଵ𝑥ଵ + 𝑎ଶଶ𝑥ଶ + ⋯ + 𝑎ଶ௡𝑥௡

⋮
,

ௗഀ೙௫೙

ௗ௧ഀ೙
= 𝑎௡ଵ𝑥ଵ + 𝑎௡ଶ𝑥ଶ + ⋯ + 𝑎௡௡𝑥௡.

 (5) 

In the equation above, all 𝛼௜ coefficients have values between 0 and 1. It is assumed that M is the 
least common multiple of 𝑢௜ that is expressed as 𝛼 =

௩೔

௨೔
. Here (𝑢௜ , 𝑣௜) = 1 and 𝑢௜ , 𝑣௜ ∈ ℤାfor 𝑖 =

1,2,3, … , 𝑛. ∆(𝜆) Is described as below [35]: 

 ∆(𝜆) =

⎝

⎛

𝜆ெഀభ − 𝑎ଵଵ −𝑎ଵଶ … −𝑎ଵ௡

−𝑎ଶଵ 𝜆ெഀమ − 𝑎ଶଶ … −𝑎ଶ௡

⋮ ⋮ ⋱ ⋮
−𝑎௡ଵ −𝑎௡ଶ … 𝜆ெഀ೙ − 𝑎௡௡⎠

⎞. (6) 

The system response described in (5) is asymptotically stable if all roots (𝜆) of equation 
det(∆(𝜆) = 0) satisfy the condition: 

|𝑎𝑟𝑔(𝜆)| >
ఈగ

ଶ
. 

Denoting The matrix ∆(𝑠) is the characteristic matrix, and det൫∆(𝑠)൯ is the polynomial 
characteristic of the system (5).  
Proof: See [26,28] for the proof. 
 
Definition. 1.2.3. The fractional-order system is considered as follows: 

 ௗഀ೔௫೔

ௗ௧ഀ೔
= 𝑓௜(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥ଵ), 𝑖 = 1,2,3, … , 𝑛. (7) 

In the equation above, all 𝛼௜ coefficients have values between 0 and 1. The equilibrium point of 
the system (7) is acquired by solving the following Eq.[8]: 
 𝑓௜(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥ଵ) = 0, 𝑖 = 1,2,3, … , 𝑛. (8) 
It is assumed that 𝑥ଵ

∗ = (𝑥ଵ
∗, 𝑥ଶ

∗, 𝑥ଷ
∗, … , 𝑥௡

∗ ) is the equilibrium point of the system (7) meaning 
𝑓௜(𝑥ଵ

∗, 𝑥ଶ
∗, 𝑥ଷ

∗, … , 𝑥௡
∗ ) = 0. Considering the values for i, the equation below is defined to evaluate 

the stability of equilibrium point: 
 𝜀௜ = 𝑥௜ − 𝑥௜

∗, 𝑖 = 1,2,3, … , 𝑛. (9) 
As the Caputo differentiation by a constant value is zero, we would conclude: 

 ௗഀ೔ఌ೔

ௗ௧ഀ೔
= 𝑓௜(𝑥ଵ

∗ + 𝜀ଵ, 𝑥ଶ
∗ + 𝜀ଶ, … , 𝑥௡

∗ + 𝜀௜), 𝑖 = 1,2,3, … , 𝑛. (10) 

If the second partial differentiation of function 𝑓௜ around the equilibrium point 𝑥∗ exists in the n-
dimensional space of ℝ௡, the right-hand side of equation (10) could be rewritten as: 

 𝑓௜(𝑥ଵ
∗ + 𝜀ଵ, 𝑥ଶ

∗ + 𝜀ଶ, … , 𝑥௡
∗ + 𝜀௜) = 𝑓௜(𝑥ଵ

∗, 𝑥ଶ
∗, … , 𝑥௡

∗ ) + ൤
డ௙೔

డ௫భ
ቚ

௫∗

డ௙೔

డ௫మ
ቚ

௫∗
…

డ௙೔

డ௫೙
ቚ

௫∗
൨ 𝜀 + 𝑓ప

ഥ(𝜀). (11) 



  
 

 

In the equation above, 𝜀 = [𝜀ଵ, 𝜀ଶ, … , 𝜀௡]் ,  and 𝑓ప
ഥ(𝜀) consist of the higher-order terms of Taylor 

expansion that is neglected. In addition, it is assumed that we have 𝑓௜(𝑥ଵ
∗, 𝑥ଶ

∗, … , 𝑥௡
∗ ) = 0,  for 𝑖 =

1,2,3, … , 𝑛. As a result, we could conclude: 

 𝑓௜(𝑥ଵ
∗ + 𝜀ଵ, 𝑥ଶ

∗ + 𝜀ଶ, … , 𝑥௡
∗ + 𝜀௜) ≈ ൤

డ௙೔

డ௫భ
ቚ

௫∗

డ௙೔

డ௫మ
ቚ

௫∗
…

డ௙೔

డ௫೙
ቚ

௫∗
൨ 𝜀 + 𝑓ప

ഥ(𝜀). (12) 

Furthermore, we could assume the following equation: 

 

⎣
⎢
⎢
⎢
⎢
⎡

ௗഀభ௫భ

ௗ௧ഀభ

ௗഀమ௫మ

ௗ௧ഀమ

⋮
ௗഀ೙௫೙

ௗ௧ഀ೙ ⎦
⎥
⎥
⎥
⎥
⎤

= 𝐽𝜀, (13) 

where we have 𝑓 = [𝑓ଵ, 𝑓ଶ, … , 𝑓௡]்and𝐽 =
డ௙

డ௫
ቚ

௫∗
. 

It is assumed that M is the least common multiple of 𝛼௜ that is defined as𝛼௜ =
௩೔

௨೔
,(𝑢௜ , 𝑣௜) = 1, 

and 𝑢௜ , 𝑣௜ ∈ ℤାfor 𝑖 = 1,2,3, … , 𝑛. According to Theorem (1.2.1), if |𝑎𝑟𝑔(𝜆)| >
ఈగ

ଶ
 for all 𝜆 

calculated by the equation below, the equilibrium point 𝑥 = 𝑥∗ of the system (7) is 
asymptotically stable [28]: 
 𝑑𝑒𝑡(𝑑𝑖𝑎𝑔([𝜆ெഀభ 𝜆ெഀమ … 𝜆ெഀ೙ ]) − 𝐽) = 0, (14) 
It should be noted that 𝑑𝑖𝑎𝑔([𝑚ଵ 𝑚ଶ … 𝑚௡]) is represented by a square 𝑛 × 𝑛 matrix as 
below: 

 𝑑𝑖𝑎𝑔([𝑚ଵ 𝑚ଶ … 𝑚௡]) = ൦

𝑚ଵ 0 ⋯ 0
0 𝑚ଶ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑚௡

൪. (15) 

 
1.2.4. The Required Conditions for the Presence of Chaos in Fractional-Order System  
The saddle point is an equilibrium point in a three-dimensional integer-order system with at least 
one eigenvalue at the stable region (the left-hand part of the imaginary axis) and at least one 
eigenvalue in the unstable area (the right-hand part the imaginary axis). This saddle point is 
called saddle point of kind one if one of the eigenvalues is unstable and the others are stable, and 
if one eigenvalue is stable while two others are unstable, the saddle point is of kind two. The 
chaotic behavior in a chaotic system is demonstrated around a saddle point of kind two. The 
chaotic behavior could also be observed around a saddle point of the second kind  in a three 
dimensional fractional-order system, just as the three-dimensional integer order one [38,39]. It is 
considered that the chaotic three-dimensional system of the form 𝑥̇ = 𝑓(𝑥) have chaotic 
attractors. It is also assumed that Ω is a set of equilibrium points of the system surrounded by a 

twisting. On the other hand, the 𝐷ఈ𝑥 = 𝑓(𝑥) system with defined 𝐷ఈ ≡ ቀ
ௗഀభ

ௗ௧ഀభ
,

ௗഀమ

ௗ௧ഀమ
,

ௗഀయ

ௗ௧ഀయ
ቁ and 

the system 𝑥̇ = 𝑓(𝑥) have equal equilibrium points. Therefore, the required condition for a 
fractional-order system of  𝐷ఈ𝑥 = 𝑓(𝑥) to have chaotic attractor is stated as the following 
equation [40]: 

 ቀ
గ

ଶெ
ቁ − 𝑚𝑖𝑛|𝑎𝑟𝑔(𝜆௜)| ≥ 0, (16) 

where 𝜆௜ are the roots of the equation below: 

 𝑑𝑒𝑡([𝜆ெഀభ 𝜆ெഀమ … 𝜆ெഀ೙ ]) −
డ௙

డ௫
ቚ

௫ି௫∗
= 0, ∀𝑥∗ ∈ Ω. (17) 



  
 

 

The system's behavior around this point cannot tend to a chaotic attractor if the system has a 
stable equilibrium point, and the initial conditions related to the system do not lie inside the 
attracting region. In other words, the system cannot have a chaotic behavior for any initial 
condition, and some of the initial conditions do not actually represent chaotic behavior. In 
general, there is not a specific mathematical relation to the present attracting region. The 
condition of being chaotic for the fractional-order system of (7) could be stated as follows (by 
assuming𝛼ଵ = 𝛼ଶ = 𝛼ଷ = 𝛼, for more details see [8,51] ): 

 𝛼 ≥
ଶ

గ
𝑚𝑖𝑛|𝑎𝑟𝑔(𝜆௜)|, (18) 

where 𝜆௜ are the eigenvalues of the Jacobin matrix that is defined as 
డ௙

డ௫
ቚ

௫ି௫∗
= 0 for every 𝑥∗ ∈

Ω. The relation (18) states the necessary condition for chaos to occur in a fractional-order system 
[26,28]. Further detail could be found in. This relation could be used to acquire the minimum 
order of the system for which the chaotic behavior could occur. 
1.3. Optimal control 
 By assuming a function called objective function, this technique aims to determine the control 
signal to optimizes an objective function. This method is applied in [7,8]. In the following 
section, further descriptions will be provided about this controlling scheme. 

 
Fig 1. The diagram of controlling system by adaptive method [32,33] 

 
 

2. Research method 
In this chapter, we studied the optimal control problem of the fractional-order system of the 
criminally active and prisoner. We were ready to solve the specified fractional-order model by 
the particle swarm optimization and genetic algorithms.   
2.1. Characteristics of the model understudy 
We build and analyze a model of a dynamic system of criminally active, prisoner and recidivism 
using some parameters. In the models, they tried to find equations of the criminally active , 
prisoner and the factors affecting them. Accordingly, in this article, using the model related to 
crime in the coupled Eqs. (19), we examine the issue of optimal control of the criminally active 
and prisoner. So we will have [26]: 

𝑥̇ = 𝑎ଵ𝑦 − 𝑎ଶ𝑥𝑦 + 𝑎ଷ𝑧,  
𝑦̇ = −𝑎ଵ𝑦 + 𝑎ଶ𝑥𝑦 − 𝑎ସ𝑦 + 𝑎ହ𝑧,                                          (19) 

𝑧̇ =  𝑎ସ𝑦−(𝑎ହ+𝑎ଷ)𝑧,  
Where The fundamental components of our model is: x: those who are not criminally active at a 
given time; y: those who are criminally active but have never been incarcerated; z:those who are 
incarcerated at a given time; 𝑎ଵ: Rate at which criminals discontinue criminal habits (desistance), 
𝑎ଶ: Contagion parameter of criminal behavior, 𝑎ଷ: Rate at which incarcerated individuals are 
released and assimilate back into society, 𝑎ସ: Rate at which criminals are incarcerated, 𝑎ହ: Rate 



  
 

 

at which incarcerated are released and return to criminal life. It is clear that the system behavior 
is chaotic with parameters 𝑎ଵ = 0.4, 𝑎ଶ = 0.9, 𝑎ଷ = 0.1, 𝑎ସ = 0.5, 𝑎ହ = 0.6. and initial 
condition 𝑥଴ = [0.3,1.5,0.5]. 
2.2. Fractional-Order system of the criminally active and prisoner 
In this dissertation, we aim to control the fractional-order system of the criminally active and 
prisoner. Therefore, we consider a chaotic model with fractional-order derivatives based on the 
stability theorem related to fractional-order systems. Because modeling a system with fractional 
derivatives can show the system behavior better than ordinary derivatives. To find the lowest 
fractional-order for the system to be in the chaotic region, we put: 

𝛼 ≥
ଶ

గ
𝑚𝑖𝑛|arg(𝜆௜)|,                                                                 (20)  

where for parameters [0.4,0.9,0.1,0.5,0.6] the system order is considered as [1, 0.99, 0.99]. 
Because for these parameters and specified order, the relation (20) is in work. Based on specified 
order, we show the chaotic system related to the growth of criminally active and prisoner with 
the differential equation of fractional-order as follows. 

𝑥̇(𝑡) = 0.4𝑦 − 0.9𝑥𝑦 + 0.1𝑧,  
𝐷௧

଴.ଽଽ𝑦(𝑡) = −0.4𝑦 + 0.9𝑥𝑦 − 0.5𝑦 + 0.6𝑧,                                      (21)  
𝐷௧

଴.ଽଽ𝑦(𝑡) = 0.5𝑦 − (0.5 + 0.1)𝑧,  
2.3. Optimal control of system of the criminally active and prisoner 
It is necessary first to determine the purpose of the control for optimal control of the system of 
the criminally active and prisoner. Here, our desired aim is to reach zero criminally active and 
prisoner. It is necessary to define a standard mathematical function based on the specified goal. It 
is feasible to represent the function by the following relation, 

𝑗 = ∫ (𝑥ଶ + 𝑢ଶ)𝑑𝑡.
௧೑

଴
                                                              (22)  

The physical meaning of the suggested standard function is that by selecting the appropriate 
control input, the criminally active and prisoner reach zero. In other words, the main task of the 
control is to optimally find the control signal so that it minimizes the standard function specified 
in (36). Now, the crime fractional-order model is regarded by considering the control variable as 
the following relation, 

𝑥̇(𝑡) = 0.4𝑦 − 0.9𝑥𝑦 + 0.1𝑧 − 𝑢,  
𝐷௧

଴.ଽଽ𝑦(𝑡) = −0.4𝑦 + 0.9𝑥𝑦 − 0.5𝑦 + 0.6𝑧 − 0.25𝑢,                      (23)  
𝐷௧

଴.ଽଽ𝑦(𝑡) = 0.5𝑦 − (0.5 + 0.1)𝑧 − 0.25, 
The model of the system and the objective function are specified, determining an optimal control 
method solves the problem. In this article, we used the particle swarm optimization algorithm 
and genetic algorithm methods to solve the problem.  We present the results of each method. 
3. Computational Results 
3.1. Without control 
In uncontrolled mode, in Figs. 2 and 3, we obtained the following results for three-mode 
variables that are not desirable: 

 



  
 

 

 
 Fig 2.results for three-mode variables for while System order is considered as [1, 0.99, 0.99]. 

 
 

 
 

Fig 3.results for three-mode variables for while System order is considered as [1, 0.93, 0.93]. 
 

3.2. Results of genetic algorithm method 
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First, we consider the time of implementing the control input and obtain the following results. It 
is clear that the results are excellent as soon as the control input is applied (in Figs. 4 and 5, blue 
lines are for the uncontrolled method and red are for the controlled ones): 
 

 
Fig 4.blue lines are for the uncontrolled method and red are for the controlled ones for while System order is 

considered as [1, 0.99, 0.99] 
 
 

 
Fig 5.blue lines are for the uncontrolled method and red are for the controlled ones for while System order is 

considered as [1, 0.93, 0.93] 
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Again, in Figs. 6 and 7 we examine the results when the controller is in use from the beginning. 
It is easy to see that the answers are excellent from the start. 

 

 
 

Fig 6.the results when the controller is in use from the beginning for while System order is considered as [1, 
0.99, 0.99] 

 
 

 
 

Fig 7.the results when the controller is in use from the beginning for while System order is considered as [1, 
0.93, 0.93] 
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In Figs. 8 and 9, Changes in control input are as follows: 
 

 
 

Fig 8. Changes in control input for while System order is considered as [1, 0.99, 0.99] 
 
 

 
 

Fig 9. Changes in control input for while System order is considered as [1, 0.93, 0.93] 
 

We saved an Excel file that contains the numeric values of the model variables and the control 
input (in full control mode). The following picture is only part of the Table 1. 
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Table 1.the numeric values of the model variables and the control input 

Time X Y Z U Time X Y Z U 

0 0.3000 1.5000 0.5000 0 205.0000 0.0710 3.1731e-04 0.0077 -0.0130 

5.0000 0.0015 4.4019e-04 4.2797e-04 0.0515 210.0000 0.0786 0.0044 0.0037 0.0010 

10.0000 0.0106 0.0027 0.0027 0.0713 215.0000 0.0754 0.0022 0.0056 -0.1038 

15.0000 0.0077 0.0018 0.0018 -0.0362 220.0000 0.0809 0.0052 0.0027 -0.0055 

20.0000 0.0086 0.0023 0.0023 0.1486 225.0000 0.0780 0.0044 0.0037 -0.1177 

25.0000 0.0102 0.0023 0.0023 -0.0070 230.0000 0.0685 0.0011 0.0091 0.0237 

30.0000 0.0128 0.0032 0.0032 0.1127 235.0000 0.0669 0.0018 0.0098 0.0314 

35.0000 0.0023 3.9178e-04 4.2137e-04 0.0579 240.0000 0.0556 0.0084 0.0155 0.0320 

40.0000 0.0197 0.0050 0.0050 -0.1662 245.0000 0.0780 0.0041 0.0040 -0.1007 

45.0000 4.0817e-04 3.2458e-04 2.9033e-04 -0.0042 250.0000 0.0702 2.4219e-04 0.0081 -0.0219 

50.0000 0.0027 8.4078e-04 8.1092e-04 -0.0634 255.0000 0.0582 0.0065 0.0144 0.0909 

55.0000 0.0038 9.5615e-04 9.5721e-04 -0.0095 260.0000 0.0740 0.0019 0.0061 0.0573 

60.0000 0.0048 0.0011 0.0011 -0.0137 265.0000 0.0754 0.0030 0.0051 -0.0018 

65.0000 0.0150 0.0040 0.0039 0.2948 270.0000 0.0797 0.0046 0.0033 -0.1748 

70.0000 0.0018 4.8986e-04 4.8394e-04 -0.0250 275.0000 0.0675 0.0016 0.0096 -0.0161 

75.0000 0.0011 5.4091e-04 4.9221e-04 -0.0671 280.0000 0.0757 0.0030 0.0051 -0.0029 

80.0000 0.0014 3.0841e-04 3.1303e-04 -0.0102 285.0000 0.0657 0.0023 0.0103 0.2321 

85.0000 0.0277 0.0065 0.0066 0.0304 290.0000 0.0758 0.0030 0.0051 -0.0983 

90.0000 0.0047 0.0011 0.0011 0.0141 295.0000 0.0758 0.0028 0.0052 -0.0340 

95.0000 0.0050 0.0011 0.0011 -0.0056 300.0000 0.0902 0.0101 0.0022 -0.0866 

100.0000 0.0146 0.0038 0.0038 0.0733 305.0000 0.0775 0.0031 0.0044 -0.0820 

105.0000 0.0066 0.0016 0.0016 0.0629 310.0000 0.0720 4.0637e-04 0.0073 0.0952 

110.0000 0.0030 7.4476e-04 7.5225e-04 -0.0382 315.0000 0.0703 3.7212e-05 0.0080 0.0360 

115.0000 0.0047 0.0011 0.0011 -0.0310 320.0000 0.0918 0.0117 0.0036 -0.0120 

120.0000 0.0162 0.0042 0.0042 0.2840 325.0000 0.0702 4.8280e-04 0.0082 -0.0794 

125.0000 0.0028 6.3692e-04 6.4951e-04 0.0260 330.0000 0.0740 0.0023 0.0059 0.2400 

130.0000 0.0106 0.0025 0.0025 -0.0415 335.0000 0.0798 0.0050 0.0031 -0.0362 

135.0000 0.0049 0.0012 0.0012 0.0094 340.0000 0.0687 0.0011 0.0090 0.0134 

140.0000 0.0082 0.0020 0.0021 -0.0445 345.0000 0.0726 7.8538e-04 0.0070 0.0106 

145.0000 0.0030 6.5503e-04 6.7603e-04 -0.0099 350.0000 0.0560 0.0076 0.0154 0.0377 

150.0000 0.0019 4.5240e-04 4.6098e-04 -0.0074 355.0000 0.0687 8.0499e-04 0.0087 -0.0245 

155.0000 0.0050 0.0012 0.0012 0.1417 360.0000 0.0719 0.0012 0.0069 0.0257 

160.0000 0.0053 0.0011 0.0012 0.1741 365.0000 0.0751 0.0022 0.0057 -0.0518 

165.0000 0.0145 0.0036 0.0037 -0.0931 370.0000 0.0807 0.0048 0.0027 0.0198 

170.0000 0.0076 0.0017 0.0018 -0.0035 375.0000 0.0759 0.0030 0.0051 -0.0729 

175.0000 5.8654e-04 3.4033e-04 3.0018e-04 -0.0959 380.0000 0.0721 9.1614e-04 0.0071 0.0225 

180.0000 0.0028 6.3469e-04 6.4875e-04 -0.0284 385.0000 0.0718 8.8500e-04 0.0072 0.0124 

185.0000 0.0021 5.4203e-04 5.3534e-04 -0.0130 390.0000 0.0727 0.0011 0.0069 -0.0095 

190.0000 0.0064 0.0015 0.0015 0.0010 395.0000 0.0736 8.1218e-04 0.0065 0.0188 



  
 

 

195.0000 0.0011 4.5470e-04 4.3061e-04 -0.1038 400.0000 0.0594 0.0060 0.0139 0.4018 
200.0000 0.0075 0.0019 0.0019 -0.0055 - - - - - 

In this control problem, the goal is to reduce the number of crime with its related costs , the 
variable z, to zero. For this reason, in Figs. 10 and 11 we draw a diagram for the approximation 
and error of the zero reference signals: 

 

 
Fig 10.diagram for the approximation and error of the zero reference signal for while System order is 

considered as [1, 0.99, 0.99] 
 
 

 
Fig 11.diagram for the approximation and error of the zero reference signal for while System order is 

considered as [1, 0.93, 0.93] 
 
The MSE and RMSE specifications for error are on the table 2. We observe that their values are 
small. Consequently, the simulation is effective. 
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Table 2.The MSE and RMSE specifications for error 
System order MSE RMSE 
 [1, 0.99, 0.99] 6.8194e-05 0.008258 

[1, 0.93, 0.93] 6.9062e-05 0.0083104 
 

3.3. Results of particle swarm optimization algorithm 
We also repeated all the above steps for this method and observed that it is very successful. 
Moreover, in Figs 12 to 19, its results are very close to the genetic algorithm method.  

  
Fig 12.blue lines are for the uncontrolled method and red are for the controlled ones For while System order 

is considered as [1, 0.99, 0.99] 
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Fig 13.blue lines are for the uncontrolled method and red are for the controlled ones 

For while System order is considered as [1, 0.93, 0.93] 
 

 

 
Fig14 .the results when the controller is in use from the beginning for while System order is considered as [1, 

0.99, 0.99] 
 
 

 
 

Fig 15.the results when the controller is in use from the beginning for while System order is considered as [1, 
0.93, 0.93] 
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Fig 16. Changes in control input for while System order is considered as [1, 0.99, 0.99] 
 
 

 
 

Fig 17. Changes in control input for while System order is considered as [1, 0.93, 0.93] 
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Fig 18.diagram for the approximation and error of the zero reference signals for while System order is 

considered as [1, 0.99, 0.99] 
 

 
 

Fig 19. diagram for the approximation and error of the zero reference signals for while System order is 
considered as [1, 0.93, 0.93] 

 
We observe that MSE and RMSE error values in table 3 are small. Consequently, the simulation 
is effective. The numeric values of the model variables and the control input (in full control 
mode). The following picture is only part of the Table 4. 

 
Table 3.The MSE and RMSE specifications for error 

 
System order MSE RMSE 
 [1, 0.99, 0.99] 6.8232e-05 0.0082603 
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[1, 0.93, 0.93] 6.8922e-05 0.0083019 
 

Table 4.the numeric values of the model variables and the control input 
Time X Y Z U Time X Y Z U 

0 0.3000 1.5000 0.5000 0 205.0000 0.2082 0.0026 0.0027 0.0997 

5.0000 0.0045 0.0015 0.0015 -0.1646 210.0000 0.2266 0.0066 0.0068 0.0800 

10.0000 0.0027 5.2272e-04 5.5937e-04 -0.0229 215.0000 0.2151 0.0016 9.8606e-05 -0.0859 

15.0000 0.0028 4.1777e-04 4.6130e-04 0.0049 220.0000 0.2058 0.0039 0.0037 0.0023 

20.0000 0.0106 0.0029 0.0029 -0.0112 225.0000 0.2233 0.0051 0.0051 -0.2572 

25.0000 0.0044 9.2014e-04 9.7699e-04 -0.0336 230.0000 0.2108 0.0014 0.0011 -0.0029 

30.0000 0.0033 7.1360e-04 7.6479e-04 -0.0165 235.0000 0.2232 0.0051 0.0050 -0.0966 

35.0000 0.0013 5.8761e-04 5.6370e-04 -0.0839 240.0000 0.2110 0.0010 0.0015 8.6542e-05 

40.0000 0.0332 0.0086 0.0087 -0.0287 245.0000 0.2202 0.0035 0.0034 0.0144 

45.0000 0.0165 0.0037 0.0039 -0.0542 250.0000 0.2040 0.0045 0.0051 -0.0197 

50.0000 0.0087 0.0027 0.0027 0.1749 255.0000 0.2248 0.0057 0.0059 0.0108 

55.0000 0.0130 0.0038 0.0038 -0.1302 260.0000 0.2163 0.0016 0.0016 -0.2953 

60.0000 0.0016 4.1929e-04 4.4063e-04 -0.0288 265.0000 0.2152 8.5603e-04 9.2926e-04 0.0086 

65.0000 5.8052e-04 2.1394e-04 2.1224e-04 -0.0374 270.0000 0.2099 0.0017 0.0019 0.0017 

70.0000 0.0066 0.0016 0.0016 -0.0353 275.0000 0.2131 1.2295e-05 3.8376e-04 -0.0197 

75.0000 0.0045 0.0014 0.0014 0.0588 280.0000 0.2105 0.0017 9.5673e-04 -0.0253 

80.0000 0.0105 0.0029 0.0029 -0.0073 285.0000 0.2181 0.0023 0.0024 -0.0423 

85.0000 0.0024 7.7742e-04 7.6294e-04 0.0089 290.0000 0.2323 0.0093 0.0103 -0.0778 

90.0000 8.3164e-04 1.8771e-04 2.0879e-04 -0.0935 295.0000 0.2075 0.0027 0.0035 0.1286 

95.0000 0.0100 0.0021 0.0022 -0.0126 300.0000 0.2164 0.0013 0.0020 0.0057 

100.0000 0.0028 7.2050e-04 7.3447e-04 -0.0400 305.0000 0.2157 0.0011 0.0013 -0.0361 

105.0000 0.0091 0.0029 0.0029 0.1520 310.0000 0.2197 0.0032 0.0032 6.8514e-04 

110.0000 0.0030 8.7406e-04 8.7128e-04 -0.0051 315.0000 0.2128 1.4426e-04 4.2155e-04 -0.0849 

115.0000 0.0019 1.8370e-04 2.0725e-04 0.0761 320.0000 0.2313 0.0089 0.0095 0.0066 

120.0000 0.0160 0.0050 0.0049 0.2533 325.0000 0.2132 1.8335e-04 7.4833e-05 -0.0221 

125.0000 0.0077 0.0020 0.0020 0.0286 330.0000 0.2281 0.0075 0.0076 -0.0937 

130.0000 0.0079 0.0022 0.0022 0.0413 335.0000 0.2150 7.7001e-04 8.2825e-04 5.8871e-04 

135.0000 0.0065 0.0019 0.0019 0.0427 340.0000 0.2292 0.0077 0.0088 -0.0817 

140.0000 0.0060 0.0016 0.0016 0.0067 345.0000 0.2156 0.0010 0.0012 0.0341 

145.0000 0.0241 0.0066 0.0067 0.1505 350.0000 0.2072 0.0032 0.0032 0.0249 

150.0000 0.0077 0.0021 0.0022 0.0567 355.0000 0.2108 9.9061e-04 0.0017 -0.0113 

155.0000 0.0143 0.0040 0.0041 -0.1512 360.0000 0.2150 6.0774e-04 0.0010 0.0411 

160.0000 0.0041 0.0013 0.0013 0.0955 365.0000 0.2127 4.0653e-04 2.5685e-04 -0.0253 

165.0000 8.4085e-04 1.9388e-04 2.1074e-04 0.0530 370.0000 0.2109 0.0013 0.0014 0.0096 

170.0000 0.0082 0.0028 0.0028 -0.3939 375.0000 0.2108 0.0014 0.0012 0.0531 

175.0000 0.0039 0.0015 0.0014 -0.1568 380.0000 0.2254 0.0061 0.0062 -0.0086 

180.0000 0.0062 0.0015 0.0016 0.0437 385.0000 0.2173 0.0021 0.0019 -0.0126 

185.0000 3.9299e-04 4.9479e-04 4.6180e-04 0.1183 390.0000 0.2250 0.0064 0.0053 -0.0539 



  
 

 

190.0000 3.0504e-04 1.5835e-05 7.4937e-06 -0.0585 395.0000 0.2208 0.0035 0.0043 0.1216 

195.0000 0.0059 0.0013 0.0014 -0.0156 400.0000 0.2086 0.0023 0.0027 0.0278 

200.0000 0.0073 0.0020 0.0020 0.0013 - - - - - 

 
3.4. Lie symmetry for criminally Active and prisoner model 
In this section, we deal with the general procedure of Lie symmetry analysis for determining the 
symmetries for any system of nonlinear partial differential equation. Let us consider a general 
nonlinear system of n-th order partial differential equations (PDEs) in p independent variables 
[29,36]:  

X = 𝑥ଵ, … , 𝑥௣𝜖ℜ௣,                                                          (23) 
 and q dependent variables viz. 

 U =𝑢(𝑢ଵ, 𝑢ଶ, … , 𝑢௤)𝜖ℜ௤ .                                                     (24) 
in the follo1wing form:  

∆ఙ൫𝑋, 𝑈(௡)൯ = 0,      𝜎 = 1,2, … , 𝑙.                                               (25) 
Where 𝑈(௡) represents all the derivatives of u of all orders from 0 to n. We now consider a one 
parameter Lie group infinitesimal transformations acting on the both the independent and 
dependent variables of the system (25), given as: 

𝑥̅௜ = 𝑥௜ + 𝜀𝜉௜(𝑋, 𝑈) + 𝑂(𝜀ଶ),    𝑖 = 1,2, … , 𝑝,                                    (26) 
𝑢ത௜ = 𝑢௜ + 𝜀𝜂௝(𝑋, 𝑈) + 𝑂(𝜀ଶ),    𝑗 = 1,2, … , 𝑝                                     (27) 

where 𝜀 ≪ 1 is a small parameter of the transformation and 𝜉௜, 𝜂௜ are the infinitesimals of the 
transformations for the independent and dependent variables respectively. The infinitesimal 
generator V associated with the above group of transformations can be written as [30,37]: 

𝑉 = ∑ 𝜉௜(𝑋, 𝑈)௣
௜ୀଵ 𝜕௫೔ + ∑ 𝜂௝(𝑋, 𝑈)௤

௜ୀଵ 𝜕௨ೕ .                                      (28) 
The invariance under the infinitesimal transformations leads to the invariance conditions, which 
is given as: 

𝑃𝑟(௡)𝑉[∆ఙ൫𝑋, 𝑈(௡)൯] = 0, ,      𝜎 = 1,2, … , 𝑙,                                      (29) 
Where 𝑃𝑟(௡) is called the nth order prolongation of the infinitesimal generator, given by: 

𝑃𝑟(௡)𝑉 = 𝑉 + ∑ ∑ 𝜂 ௞

௝
൫𝑋, 𝑈(௡)൯௝

௤
௞ୀଵ 𝜕

௨ೕ
ೖ ,                                           (30) 

Where 𝐽 = 𝑗ଵ, … , 𝑗௦,    1 ≪ 𝑗௦ ≪ 𝑝 ,     1 ≪ 𝑠 ≪ 𝑛 and the sum is over all J’s of order 0 < #J ≤ n. 
If #J = s, the coefficient 𝜂 ௞

௝  of 𝜕
௨ೕ

ೖ will only depend on s-th and lower order derivatives of u, and 

we have[31]: 

𝜂 ௞

௝
൫𝑋, 𝑈(௡)൯ = 𝐷௃൫𝜂௞ − ∑ 𝜉௜𝑢௝

௞௣
௜ୀଵ ൯ + ∑ 𝜉௜

డ

డ
ೠೕ,೔

ೖ
𝑢௝

௞௣
௜ୀଵ  ,                            (31) 

Where:                                             𝑢௝
௞ =

డ௨ೖ

డ௫೔
   and  𝑢௝,௜

௞ =
డ௨ೕ

ೖ

డ௫೔
. 

In this section, techniques of Lie group analysis for the equation with Riemann-Liouville 
derivative have been investigated. Symmetries of this equation are obtained. We take into 
consideration a one-parameter Lie group of infinitesimal transformation: 

𝑥 → 𝑥 + 𝜖𝜉௫(𝑥, 𝑡, 𝑢),                                                      (32) 
𝑡 → 𝑡 + 𝜖𝜉௧(𝑥, 𝑡, 𝑢), 

𝑢 → 𝑥 + 𝜖𝜉௨(𝑥, 𝑡, 𝑢), 
With a small parameter 𝜖 ≤ 1. The vector field associated with the above group of 
transformations can be written as 



  
 

 

𝑋 = 𝜉௫(𝑥, 𝑡, 𝑢)
డ

డ௫
+ 𝜉௧(𝑥, 𝑡, 𝑢)

డ

డ௧
+ 𝜂 (𝑥, 𝑡, 𝑢)

డ

డ௨
,                            (33) 

and the vector field will generate the symmetry group of equation. Thus, the Lie algebra of 
symmetries is spanned by the following vector fields: 

𝑋ଵ =
డ

డ௧
,                                                                    (34) 

𝑋ଶ =
డ

డ௫
,         

𝑋ଷ = −𝑡
డ

డ௧
+ (𝑢 + 1)

డ

డ௨
,  

The one-parameter groups 𝐺௜ generated by the  𝑋௜(𝑖 = 1,2) are as follows: 
𝐺ଵ:    (𝑥, 𝑡, 𝑢) → (𝑥, 𝑡 + 𝜖, 𝑢), 

𝐺ଶ:    (𝑥, 𝑡, 𝑢) → (𝑥 + 𝜖, 𝑡, 𝑢),                                                   (35) 
𝐺ଷ:    (𝑥, 𝑡, 𝑢) → (𝑥, −𝑡𝑒ఢ , (𝑢 + 1)𝑒ఢ),  

We observe that 𝐺ଵ is a time translation, 𝐺ଶis space translation, while the group 𝐺ଷ genuinely 
local group of transformation. 

3.6. Invariant Transformation 
Consider the list of infinitesimals of a symmetry group. 

(36) 
In the input above we can also obtain infinitesimal generator: 

 
(37)                                                                        

he transformation and its inverse, from the original variables {t, x, u(x , t)}  to new coordinates, 
say {r, s, v(r, s)}, that reduces by one the number of independent variables of a Eq.(1) invariant 
under G  above is obtained via: 

(38)                                     

Invariant Transformation(S, u(x, t), v(r, s), and jet notation) is: 
(39) 

4. Discussion and Conclusion 
Chaotic behavior occurs in many engineering and natural systems. Although  traditionally 
regarded as being irregular or unpredictable in nature and caused by  random external 
influences, recent studies have shown that chaotic behavior is actually deterministic and 
is a typical characteristic of nonlinear systems. Chaos is undesirable in many engineering 
applications since it degrades the system performance and restricts the operating range of 
dynamic systems. Therefore, the problem of developing effective chaos control strategies 
has attracted significant interest over the years [40]. In this study, the model of the 
chaotic criminally active and prisoner system of fractional order was presented. Then the 
optimal control of this system was done by genetic algorithm and Particle swarm 
optimization algorithm. Also, Lie symmetry was presented for the proposed model. At 
the end, the optimal control of the proposed model for different states of data parameters 
was presented.  All the results obtained for the particle swarm optimization method and 
genetic algorithm show that this methods has been very successful In addition we observe 
that error values are small. In the end simulation is effective.    
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