Using Evolutionary Algorithms for Optimal Control and Lie Symmetry of
Non-linear Fractional-Order Chaotic System of Criminally Active and
Prisoner

Abstract

The purpose of this research is to present a non-linear model of mathematical fractional order for
criminally active and prisoner system. Both genetic algorithm and particle swarm optimization
algorithm were used to simulate optimal control. Modeling approach of the type of differential
equation machine with fractional order derivatives was used. In the following, it was shown that
the presented model has chaos, its order is of fractional order and it needs to be controlled.
Genetic algorithm and particle swarm optimization algorithm were used for simulation and
optimal control. It was shown that this model has a chaotic behavior; as a result, optimal control
for this behavior was presented. The results of the genetic algorithm method are excellent. All
the results obtained for the particle swarm optimization method show that this method is also
very successful and the results are very close to the genetic algorithm method. Very low values
of MSE and RMSE errors indicate that the simulation is effective and efficient. This article is the
first article that performs nonlinear modeling of system criminally active and prisoner and
optimally controls the chaos in the model. This type of modeling and optimal control has not
been done so far. Also, software and algorithms have been used that are very fast, accurate and
have the lowest possible error.
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1. Introduction

Criminal activities and issues related to prisoners are among the most important social, economic
and security challenges of today's societies, which have profound effects on sustainable
development, social stability and public welfare. The theoretical foundations in this field are
based on criminological theories, social psychology and dynamic models of crime [1,2]. Crime is
defined as behavior that violates social norms and formal laws of society and causes harm to
individuals, property and public order. Criminal activities are influenced by several factors such
as poverty, unemployment, social inequality, family structure, education and culture, and these
factors interact in a complex way to cause the emergence and spread of crime [5,6,7]. Prisoners,
as individuals who are held in detention centers for committing crimes, form part of this cycle of
crime and punishment, and the management of this population also has its own challenges,
including issues related to rehabilitation, prevention of further crimes and numerous social and
economic costs.[3,4] In recent years, with the advancement of data science, mathematical
modeling, and computational technologies, new approaches have been developed to analyze,
predict, and control criminal activities and manage prison populations. One of the key topics in
this area is the use of dynamic models and complex systems to simulate crime trends and prison
population behavior [10,11]. These models often include various variables such as crime rates,
levels of preventive activities, prison capacity, and the impact of social and economic policies.
Using these models allows for the analysis of the interaction of different factors and helps
policymakers make optimal decisions [8,9]. Along with modeling, optimization and optimal
control are among the most important tools for reducing criminal activities and improving prison
conditions [20,21]. Optimization means finding the best combination of policies and
interventions that can reduce crime and minimize social, economic, and human costs. Classical
optimization methods often have limitations in this field due to the complexity and
multidimensionality of the problem. For this reason, metaheuristic algorithms such as genetic
algorithms and particle swarm optimization have been introduced as new and powerful methods
[24]. These algorithms, due to their global search capability and high flexibility, have been able
to provide optimal and robust solutions for crime control and prisoner management. The use of
genetic algorithms in this field has made it possible to design policies that, in addition to
reducing crime rates, have positive effects on prisoner rehabilitation and reducing recidivism. By
simulating the processes of natural selection, mating, and mutation, this algorithm allows
discovering the best combination of interventions among thousands of options [26]. Also, the
particle swarm optimization algorithm, modeled on the collective behavior of birds or fish, has a
high convergence rate and is very suitable for optimization problems with continuous and
complex variables. The application of PSO in the control of criminal activities helps to optimize
intervention policies in a flexible and dynamic manner and to adjust them quickly in response to
environmental or social changes.[23] The main advantages of using these algorithms in this area
include the ability to search extensively and avoid getting stuck in local optima, the ability to
deal with unstable and incomplete data, and the ability to solve multi-objective problems. For
example, it is possible to simultaneously optimize crime rates, law enforcement costs, and social
impacts of correctional programs [22]. In addition to reducing financial costs, these methods can
help improve the quality of life of prisoners, reduce social disorders, and increase public safety.
From a research perspective, several studies have shown that the use of dynamic models together
with genetic algorithms and PSO in macro-social and judicial planning has improved the
efficiency and effectiveness of crime and prisoner control policies [25]. Recent studies have
examined different scenarios based on real crime and prison data, and their results demonstrate



the ability of these algorithms to create an optimal balance between economic, social, and
security goals. Also, combining these algorithms with machine learning models can improve the
decision-making and forecasting process and accelerate the response to environmental changes.
[13]. Finally, it can be said that the use of advanced optimization methods such as genetic
algorithms and particle swarm optimization in the field of criminal activity control and prisoner
management is an effective step towards reducing the social, economic, and human costs of
crime. These approaches allow policymakers to design policies that are both financially cost-
effective and promote social justice and public safety, and as a result, create a more sustainable
and secure society [14,15]. Models of criminal activity and prison populations often exhibit
nonlinear and chaotic behavior due to the inherent complexities of the influencing factors and the
multifaceted interactions between social, economic, psychological, and legal variables. The
chaotic nature of these models means that the system is highly sensitive to initial conditions and
parameters; such that small changes in the inputs can lead to completely different and
unpredictable results [18,19]. This feature causes the trend of criminal activity and changes in the
number of prisoners to move in an unstable and complex manner over short or long time periods.
Also, numerous positive and negative feedbacks, such as the impact of economic conditions on
crime, and the impact of judicial policies on prison populations, increase the dynamic and
chaotic dimensions of the model [16,17,18]. For this reason, accurate prediction and the design
of efficient control policies in this area are difficult and require tools that can optimize in a
nonlinear and chaotic space. In this regard, metaheuristic algorithms such as the genetic
algorithm (GA) and particle swarm optimization (PSO) play an important role. The genetic
algorithm, which is based on the natural processes of evolution and natural selection, is able to
search the complex and multidimensional problem space extensively and move towards global
optima by creating a population of possible solutions and updating them through operators such
as selection, mating, and mutation [25,26,27]. This feature is especially important for chaotic
crime and prisoner models that include multi-peak and nonlinear objective functions. With its
deep exploration ability and high population diversity, the genetic algorithm reduces the
probability of getting stuck in local optima and provides robust and balanced solutions for crime
reduction and prison population control. The application of genetic algorithms (GA) and particle
swarm optimization (PSO) in modeling criminal activity systems and prison populations has
significant advantages due to the special characteristics of these algorithms and the inherent
complexity of these systems [31,32,33]. First, both algorithms have the ability to search globally
in complex and nonlinear problem spaces, which is crucial for modeling crime systems with
chaotic and multidimensional behaviors. The genetic algorithm, with natural evolution
simulation processes, is able to examine complex and multi-objective system structures in a
multi-generational manner and discover the best combination of parameters and policies. This
helps to form dynamic crime and prison models with higher accuracy and to consider various
changes in social and economic conditions [28,29,30]. On the other hand, PSO, due to its high
convergence speed and algorithm simplicity, has the ability to quickly find optimal points and is
very suitable for models that require rapid updating and dynamic response. Second, both
algorithms have the ability to deal with multi-objective problems; that is, they can
simultaneously optimize for reducing crime rates, improving prisoner rehabilitation, and
reducing economic and social costs. This capability is important in modeling crime systems,
because these problems often have conflicting or multiple objectives that require careful
balancing [37,38,39]. In the field of optimal control, the advantage of these algorithms is their
high flexibility to find efficient intervention policies. Optimal control of criminal activities and



prisoner management requires fine-tuning of multiple variables and rapid response to
environmental changes. Genetic algorithms, due to their ability to diversify the solution
population, avoid getting stuck in local optima and provide more creative solutions. PSO also
provides dynamic and adaptive control due to its continuous updating of particle positions and
ability to quickly adapt to new conditions [34 ,44,45]. The combination of these two algorithms
(hybrid algorithms) allows us to benefit from both the extensive search capabilities of GA and
the speed and accuracy of PSO, which is very valuable for complex and chaotic crime and prison
systems. Ultimately, these methods allow managers and policymakers to optimize policies and
interventions, in addition to reducing crime rates and improving prisoner conditions, minimizing
direct and indirect social, economic, and human costs and achieving a safer and more sustainable
society [35,36,37]. On the other hand, the particle swarm optimization algorithm is designed
based on the collective behavior of living organisms such as birds or fish, and each particle in the
search space seeks the best optimal position by moving and interacting with other particles
[38,39,41] . Due to its simple structure, high convergence speed, and ability to handle continuous
variables, this algorithm is very suitable for dynamic problems with a large number of
parameters. In controlling crime and prison models, PSO can quickly reach practical optima and
facilitate policy updates in variable and uncertain conditions. Combining the application of GA
and PSO in criminal activity and prisoner population control models allows us to benefit from
both the exploration power of GA and the convergence speed of PSO [42 ,45]. This hybrid
combination can create a suitable balance between exploring the search space and exploiting the
best regions found, which is very crucial for chaotic and nonlinear models. Finally, the
application of these algorithms allows the design of optimal control policies that not only reduce
the crime rate, but also minimize the economic, social, and human costs of crime and punishment
[41,42,43]. These methods also have the ability to adapt and learn dynamically in the face of
environmental and social changes, which is very important for complex and chaotic systems.
Thus, the use of GA and PSO as optimization and control tools in models of criminal activities
and prisoner populations provides an efficient and innovative solution for better management of
these complex social phenomena [40,44].
1.2. Chaotic Fractional-Order Systems
This article investigates the parameters and conditions for which the fractional-order system
could have chaotic behavior. In this section, two relevant theorem for fractional-order systems
are stated [26,28]. The theorem is about proportional fractional-order systems.
Theorem 1.2.1. In an autonomously system we have:

a%x

— = Ax, x(0) = x,. (1)

at®

i) By considering 0 < a < 1and x € R™" | matrix A € R™" is asymptotically stable
if and only if |arg(1)| > az—” is valid. In this equation, A is the eigenvalue of matrixA

In addition, this matrix is stable if and only If |arg(1)| = az—n

ii) The equilibrium point in fractional-order systems is calculated as in ordinary
differential equations as below:
da
—= =100, 2)

f&x) =0. (3)



In the equation above, we have 0 < a < 1 and x € R™". The equilibrium point achieved by
solving the equation is asymptotically stable if the calculated eigenvalue A related to the

Jacobian matrix | = Z—{ satisfies the following equation in equilibrium point [26,27]:
larg(D)| > =+ )
Proof: See [26,28] for the proof.

Theorem.1.2.2. The n-dimensional dynamic fractional-order system could be specified as
follows[34]:

d“lxl
Tt = G11%1 F QiaXy + o Qi X,
d“zxz
dtez —_ alel + azzxz + + aann} (5)
d%nyx,
_dt“n = anlxl + anzxz + -+ annxn.

In the equation above, all a; coefficients have values between 0 and 1. It is assumed that M is the
least common multiple of u; that is expressed as a = % Here (u;,v;) = 1 and u;, v; € Z* for i =
L

1,2,3, ...,n. A(A) Is described as below [35]:
/AMal - all _alz ans _aln \
AQY) = —0az1 Maz —ay, .. —dzn (6)

: : o /
\ —Qp1 —Qyo v Alen —q,

The system response described in (5) is asymptotically stable if all roots (1) of equation
det(A(A) = 0) satisfy the condition:

larg(A)| > ?
Denoting The matrix A(S) is the characteristic matrix, and det{A (s) ) is the polynomial

characteristic of the system (35).
Proof: See [26,28] for the proof.

Definition. 1.2.3. The fractional-order system is considered as follows:

d“ixi .
—a = fi(xn, %, %3, 0, %), 1= 1,23,..,n. (7)

In the equation above, all a; coefficients have values between 0 and 1. The equilibrium point of
the system (7) is acquired by solving the following Eq.[8]:

filxq, x5, %3, .., %) =0, i=123,..,n (8)
It is assumed that x; = (x1, x5, x3, ..., X5,) is the equilibrium point of the system (7) meaning
fi(xi,x5,%3, ..., xp) = 0. Considering the values for 7, the equation below is defined to evaluate
the stability of equilibrium point:

g=x—x;, =123, ..,n 9)
As the Caputo differentiation by a constant value is zero, we would conclude:
da. i * * * .
TZ‘ =filxi +e,x;+ &0 +€), 1=123,..,n (10)

If the second partial differentiation of function f; around the equilibrium point x* exists in the n-
dimensional space of R", the right-hand side of equation (10) could be rewritten as:

* * * * % * dfi ofi ofi T
[+ €005 + £, o X5+ ) = Fi(C XD ey X3) + [_6xi oy ]g +F(e). (1)
X X

x*



In the equation above, € = [&4, &;, ..., &,]7, and f,(g) consist of the higher-order terms of Taylor
expansion that is neglected. In addition, it is assumed that we have f;(x], x5, ...,x;) = 0, fori =
1,2,3,...,n. As a result, we could conclude:

ofi

f;.(xI + gllx; + 82, ...,x:’_ + Sl) =~ I:a—xl

ot

x* Oxz

o

x* o Oxn

*]e + f,(e). (12)

X

Furthermore, we could assume the following equation:

_ dal X1
dte
da%z X2

ww | =, (13)

d“éxn
'adtan -
where we have f = [fi, fo, ..., fu]Tand] = 2 .

oxly

It is assumed that M is the least common multiple of «; that is defined asa; = %,(ui, v;)) =1,
l

and u;, v; € Z*for i = 1,2,3, ..., n. According to Theorem (1.2.1), if |arg(1)| > % for all A
calculated by the equation below, the equilibrium point x = x* of the system (7) is
asymptotically stable [28]:

det(diag([\Mer AMaz . AMan]) —J) =0, (14)
It should be noted that diag([m1 Mz ... My]) is represented by a square n X n matrix as
below:

0 0o .. my,

1.2.4. The Required Conditions for the Presence of Chaos in Fractional-Order System

The saddle point is an equilibrium point in a three-dimensional integer-order system with at least
one eigenvalue at the stable region (the left-hand part of the imaginary axis) and at least one
eigenvalue in the unstable area (the right-hand part the imaginary axis). This saddle point is
called saddle point of kind one if one of the eigenvalues is unstable and the others are stable, and
if one eigenvalue is stable while two others are unstable, the saddle point is of kind two. The
chaotic behavior in a chaotic system is demonstrated around a saddle point of kind two. The
chaotic behavior could also be observed around a saddle point of the second kind in a three
dimensional fractional-order system, just as the three-dimensional integer order one [38,39]. It is
considered that the chaotic three-dimensional system of the form x = f(x) have chaotic
attractors. It is also assumed that () is a set of equilibrium points of the system surrounded by a

.. . d%1  qda2 4e3
twisting. On the other hand, the D%x = f(x) system with defined D* = ( ,—, ) and
dt@1’ dt@2’ dtas

the system x = f(x) have equal equilibrium points. Therefore, the required condition for a
fractional-order system of D%x = f(x) to have chaotic attractor is stated as the following
equation [40]:

(ﬁ) — minlarg(4)| = 0, (16)
where A; are the roots of the equation below:
det([AMar AMaz |, AMan]) —Z—i =0, Vx"€eq. (17)



The system's behavior around this point cannot tend to a chaotic attractor if the system has a
stable equilibrium point, and the initial conditions related to the system do not lie inside the
attracting region. In other words, the system cannot have a chaotic behavior for any initial
condition, and some of the initial conditions do not actually represent chaotic behavior. In
general, there is not a specific mathematical relation to the present attracting region. The
condition of being chaotic for the fractional-order system of (7) could be stated as follows (by
assuminga, = a, = az = a, for more details see [8,51] ):

a = %minlarg(/li)l, (18)
where A; are the eigenvalues of the Jacobin matrix that is defined as a—i .= 0 for every x* €

X=X

(). The relation (18) states the necessary condition for chaos to occur in a fractional-order system
[26,28]. Further detail could be found in. This relation could be used to acquire the minimum
order of the system for which the chaotic behavior could occur.
1.3. Optimal control
By assuming a function called objective function, this technique aims to determine the control
signal to optimizes an objective function. This method is applied in [7,8]. In the following
section, further descriptions will be provided about this controlling scheme.

- 5 Reference Model 4’97_’
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Fig 1. The diagram of controlling system by adaptive method [32,33]

2. Research method
In this chapter, we studied the optimal control problem of the fractional-order system of the
criminally active and prisoner. We were ready to solve the specified fractional-order model by
the particle swarm optimization and genetic algorithms.
2.1. Characteristics of the model understudy
We build and analyze a model of a dynamic system of criminally active, prisoner and recidivism
using some parameters. In the models, they tried to find equations of the criminally active ,
prisoner and the factors affecting them. Accordingly, in this article, using the model related to
crime in the coupled Egs. (19), we examine the issue of optimal control of the criminally active
and prisoner. So we will have [26]:
X = a1y — axy + asz,
Yy =—aqy + a;xy — a,y + asz, (19)
z = asy—(as+az)z,

Where The fundamental components of our model is: x: those who are not criminally active at a
given time; y: those who are criminally active but have never been incarcerated; z:those who are
incarcerated at a given time; a,: Rate at which criminals discontinue criminal habits (desistance),
a,: Contagion parameter of criminal behavior, as: Rate at which incarcerated individuals are
released and assimilate back into society, a,: Rate at which criminals are incarcerated, as: Rate



at which incarcerated are released and return to criminal life. It is clear that the system behavior
is chaotic with parameters a; = 0.4,a, =0.9,a;3 =0.1,a, = 0.5,a5 = 0.6.and initial
condition x, = [0.3,1.5,0.5].

2.2. Fractional-Order system of the criminally active and prisoner

In this dissertation, we aim to control the fractional-order system of the criminally active and
prisoner. Therefore, we consider a chaotic model with fractional-order derivatives based on the
stability theorem related to fractional-order systems. Because modeling a system with fractional
derivatives can show the system behavior better than ordinary derivatives. To find the lowest
fractional-order for the system to be in the chaotic region, we put:

a=> %minlarg(/li)l, (20)

where for parameters [0.4,0.9,0.1,0.5,0.6] the system order is considered as [1, 0.99, 0.99].
Because for these parameters and specified order, the relation (20) is in work. Based on specified
order, we show the chaotic system related to the growth of criminally active and prisoner with
the differential equation of fractional-order as follows.
x(t) = 0.4y — 0.9xy + 0.1z,
D2?°y(t) = —0.4y + 0.9xy — 0.5y + 0.6z, (21)
D?°y(t) = 0.5y — (0.5 + 0.1)z,
2.3. Optimal control of system of the criminally active and prisoner
It is necessary first to determine the purpose of the control for optimal control of the system of
the criminally active and prisoner. Here, our desired aim is to reach zero criminally active and
prisoner. It is necessary to define a standard mathematical function based on the specified goal. It
is feasible to represent the function by the following relation,
j= fotf(x2 + u?)dt. (22)
The physical meaning of the suggested standard function is that by selecting the appropriate
control input, the criminally active and prisoner reach zero. In other words, the main task of the
control is to optimally find the control signal so that it minimizes the standard function specified
in (36). Now, the crime fractional-order model is regarded by considering the control variable as
the following relation,
x(t) =04y —09xy + 0.1z — u,
D2*°y(t) = —0.4y + 0.9xy — 0.5y + 0.6z — 0.25u, (23)
D2%%y(t) = 0.5y — (0.5 + 0.1)z — 0.25,

The model of the system and the objective function are specified, determining an optimal control
method solves the problem. In this article, we used the particle swarm optimization algorithm
and genetic algorithm methods to solve the problem. We present the results of each method.
3. Computational Results
3.1. Without control
In uncontrolled mode, in Figs. 2 and 3, we obtained the following results for three-mode
variables that are not desirable:
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Fig 2.results for three-mode variables for while System order is considered as [1, 0.99, 0.99].
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Fig 3.results for three-mode variables for while System order is considered as [1, 0.93, 0.93].

3.2. Results of genetic algorithm method



First, we consider the time of implementing the control input and obtain the following results. It
is clear that the results are excellent as soon as the control input is applied (in Figs. 4 and 5, blue
lines are for the uncontrolled method and red are for the controlled ones):
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Fig 4.blue lines are for the uncontrolled method and red are for the controlled ones for while System order is
considered as [1, 0.99, 0.99]
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Fig 5.blue lines are for the uncontrolled method and red are for the controlled ones for while System order is
considered as [1, 0.93, 0.93]



Again, in Figs. 6 and 7 we examine the results when the controller is in use from the beginning.
It is easy to see that the answers are excellent from the start.
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Fig 6.the results when the controller is in use from the beginning for while System order is considered as [1,

0.99, 0.99]
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Fig 7.the results when the controller is in use from the beginning for while System order is considered as [1,
0.93, 0.93]



In Figs. 8 and 9, Changes in control input are as follows:
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Fig 8. Changes in control input for while System order is considered as [1, 0.99, 0.99]
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Fig 9. Changes in control input for while System order is considered as [1, 0.93, 0.93]

We saved an Excel file that contains the numeric values of the model variables and the control
input (in full control mode). The following picture is only part of the Table 1.



Table 1.the numeric values of the model variables and the control input

Time X Y V4 U Time X Y V4 U

0 0.3000 1.5000 0.5000 0 205.0000 | 0.0710 3.1731e-04 0.0077 | -0.0130
5.0000 0.0015 4.4019e-04 4.2797e-04 | 0.0515 210.0000 | 0.0786 0.0044 0.0037 | 0.0010
10.0000 | 0.0106 0.0027 0.0027 0.0713 215.0000 | 0.0754 0.0022 0.0056 | -0.1038
15.0000 | 0.0077 0.0018 0.0018 -0.0362 220.0000 | 0.0809 0.0052 0.0027 | -0.0055
20.0000 | 0.0086 0.0023 0.0023 0.1486 225.0000 | 0.0780 0.0044 0.0037 | -0.1177
25.0000 | 0.0102 0.0023 0.0023 -0.0070 230.0000 | 0.0685 0.0011 0.0091 | 0.0237
30.0000 | 0.0128 0.0032 0.0032 0.1127 235.0000 | 0.0669 0.0018 0.0098 | 0.0314
35.0000 | 0.0023 3.9178e-04 4.2137e-04 | 0.0579 240.0000 | 0.0556 0.0084 0.0155 | 0.0320
40.0000 | 0.0197 0.0050 0.0050 -0.1662 245.0000 | 0.0780 0.0041 0.0040 | -0.1007
45.0000 | 4.0817e-04 | 3.2458e-04 2.9033e-04 | -0.0042 250.0000 | 0.0702 2.4219e-04 0.0081 | -0.0219
50.0000 | 0.0027 8.4078e-04 8.1092e-04 | -0.0634 255.0000 | 0.0582 0.0065 0.0144 | 0.0909
55.0000 | 0.0038 9.5615e-04 9.5721e-04 | -0.0095 260.0000 | 0.0740 0.0019 0.0061 | 0.0573
60.0000 | 0.0048 0.0011 0.0011 -0.0137 265.0000 | 0.0754 0.0030 0.0051 | -0.0018
65.0000 | 0.0150 0.0040 0.0039 0.2948 270.0000 | 0.0797 0.0046 0.0033 | -0.1748
70.0000 | 0.0018 4.8986e-04 4.8394e-04 | -0.0250 275.0000 | 0.0675 0.0016 0.0096 | -0.0161
75.0000 | 0.0011 5.4091e-04 4.9221e-04 | -0.0671 280.0000 | 0.0757 0.0030 0.0051 | -0.0029
80.0000 | 0.0014 3.0841e-04 3.1303e-04 | -0.0102 285.0000 | 0.0657 0.0023 0.0103 | 0.2321
85.0000 | 0.0277 0.0065 0.0066 0.0304 290.0000 | 0.0758 0.0030 0.0051 | -0.0983
90.0000 | 0.0047 0.0011 0.0011 0.0141 295.0000 | 0.0758 0.0028 0.0052 | -0.0340
95.0000 | 0.0050 0.0011 0.0011 -0.0056 300.0000 | 0.0902 0.0101 0.0022 | -0.0866
100.0000 | 0.0146 0.0038 0.0038 0.0733 305.0000 | 0.0775 0.0031 0.0044 | -0.0820
105.0000 | 0.0066 0.0016 0.0016 0.0629 310.0000 | 0.0720 4.0637e-04 0.0073 | 0.0952
110.0000 | 0.0030 7.44776e-04 7.5225e-04 | -0.0382 315.0000 | 0.0703 3.7212e-05 0.0080 | 0.0360
115.0000 | 0.0047 0.0011 0.0011 -0.0310 320.0000 | 0.0918 0.0117 0.0036 | -0.0120
120.0000 | 0.0162 0.0042 0.0042 0.2840 325.0000 | 0.0702 4.8280e-04 0.0082 | -0.0794
125.0000 | 0.0028 6.3692¢-04 6.4951e-04 | 0.0260 330.0000 | 0.0740 0.0023 0.0059 | 0.2400
130.0000 | 0.0106 0.0025 0.0025 -0.0415 335.0000 | 0.0798 0.0050 0.0031 | -0.0362
135.0000 | 0.0049 0.0012 0.0012 0.0094 340.0000 | 0.0687 0.0011 0.0090 | 0.0134
140.0000 | 0.0082 0.0020 0.0021 -0.0445 345.0000 | 0.0726 7.8538e-04 0.0070 | 0.0106
145.0000 | 0.0030 6.5503e-04 6.7603e-04 | -0.0099 350.0000 | 0.0560 0.0076 0.0154 | 0.0377
150.0000 | 0.0019 4.5240e-04 4.6098e-04 | -0.0074 355.0000 | 0.0687 8.0499¢e-04 0.0087 | -0.0245
155.0000 | 0.0050 0.0012 0.0012 0.1417 360.0000 | 0.0719 0.0012 0.0069 | 0.0257
160.0000 | 0.0053 0.0011 0.0012 0.1741 365.0000 | 0.0751 0.0022 0.0057 | -0.0518
165.0000 | 0.0145 0.0036 0.0037 -0.0931 370.0000 | 0.0807 0.0048 0.0027 | 0.0198
170.0000 | 0.0076 0.0017 0.0018 -0.0035 375.0000 | 0.0759 0.0030 0.0051 | -0.0729
175.0000 | 5.8654e-04 | 3.4033e-04 3.0018e-04 | -0.0959 380.0000 | 0.0721 9.1614e-04 0.0071 | 0.0225
180.0000 | 0.0028 6.3469¢-04 6.4875e-04 | -0.0284 385.0000 | 0.0718 8.8500e-04 0.0072 | 0.0124
185.0000 | 0.0021 5.4203e-04 5.3534e-04 | -0.0130 390.0000 | 0.0727 0.0011 0.0069 | -0.0095
190.0000 | 0.0064 0.0015 0.0015 0.0010 395.0000 | 0.0736 8.1218e-04 0.0065 | 0.0188




195.0000 | 0.0011 4.5470e-04 4.3061e-04 -0.1038 400.0000 | 0.0594 0.0060 0.0139 | 0.4018

200.0000 | 0.0075 0.0019 0.0019 -0.0055 - - - - -

In this control problem, the goal is to reduce the number of crime with its related costs , the
variable z, to zero. For this reason, in Figs. 10 and 11 we draw a diagram for the approximation
and error of the zero reference signals:
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Fig 10.diagram for the approximation and error of the zero reference signal for while System order is
considered as [1, 0.99, 0.99]
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Fig 11.diagram for the approximation and error of the zero reference signal for while System order is
considered as [1, 0.93, 0.93]

The MSE and RMSE specifications for error are on the table 2. We observe that their values are
small. Consequently, the simulation is effective.



Table 2.The MSE and RMSE specifications for error

System order MSE RMSE
[1,0.99,0.99] 6.8194¢-05 0.008258
[1,0.93,0.93] 6.9062¢-05 0.0083104

3.3. Results of particle swarm optimization algorithm
We also repeated all the above steps for this method and observed that it is very successful.
Moreover, in Figs 12 to 19, its results are very close to the genetic algorithm method.
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Fig 12.blue lines are for the uncontrolled method and red are for the controlled ones For while System order
is considered as [1, 0.99, 0.99]
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Fig 13.blue lines are for the uncontrolled method and red are for the controlled ones
For while System order is considered as [1, 0.93, 0.93]
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Fig14 .the results when the controller is in use from the beginning for while System order is considered as [1,
0.99, 0.99]
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Fig 15.the results when the controller is in use from the beginning for while System order is considered as [1,
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Fig 16. Changes in control input for while System order is considered as [1, 0.99, 0.99]
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Fig 17. Changes in control input for while System order is considered as [1, 0.93, 0.93]
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Fig 19. diagram for the approximation and error of the zero reference signals for while System order is
considered as [1, 0.93, 0.93]

We observe that MSE and RMSE error values in table 3 are small. Consequently, the simulation
is effective. The numeric values of the model variables and the control input (in full control
mode). The following picture is only part of the Table 4.

Table 3.The MSE and RMSE specifications for error

System order MSE RMSE
[1,0.99,0.99] 6.8232e-05 0.0082603




[1,0.93,0.93]

| 6.8922¢-05 |

0.0083019 |

Table 4.the numeric values of the model variables and the control input

Time X Y z 18} Time X Y z U

0 0.3000 1.5000 0.5000 0 205.0000 | 0.2082 | 0.0026 0.0027 0.0997
5.0000 0.0045 0.0015 0.0015 -0.1646 | 210.0000 | 0.2266 | 0.0066 0.0068 0.0800
10.0000 | 0.0027 5.2272e-04 5.5937e-04 | -0.0229 | 215.0000 | 0.2151 0.0016 9.8606e-05 | -0.0859
15.0000 | 0.0028 4.1777e-04 4.6130e-04 | 0.0049 220.0000 | 0.2058 0.0039 0.0037 0.0023
20.0000 | 0.0106 0.0029 0.0029 -0.0112 | 225.0000 | 0.2233 0.0051 0.0051 -0.2572
25.0000 | 0.0044 9.2014e-04 9.7699¢-04 | -0.0336 | 230.0000 | 0.2108 0.0014 0.0011 -0.0029
30.0000 | 0.0033 7.1360e-04 7.6479¢-04 | -0.0165 | 235.0000 | 0.2232 0.0051 0.0050 -0.0966
35.0000 | 0.0013 5.8761e-04 5.6370e-04 | -0.0839 | 240.0000 | 0.2110 | 0.0010 0.0015 8.6542¢-05
40.0000 | 0.0332 0.0086 0.0087 -0.0287 | 245.0000 | 0.2202 | 0.0035 0.0034 0.0144
45.0000 | 0.0165 0.0037 0.0039 -0.0542 | 250.0000 | 0.2040 | 0.0045 0.0051 -0.0197
50.0000 | 0.0087 0.0027 0.0027 0.1749 255.0000 | 0.2248 0.0057 0.0059 0.0108
55.0000 | 0.0130 0.0038 0.0038 -0.1302 | 260.0000 | 0.2163 0.0016 0.0016 -0.2953
60.0000 | 0.0016 4.1929¢-04 4.4063e-04 | -0.0288 | 265.0000 | 0.2152 8.5603e-04 | 9.2926e-04 | 0.0086
65.0000 | 5.8052e-04 | 2.1394e-04 2.1224e-04 | -0.0374 | 270.0000 | 0.2099 | 0.0017 0.0019 0.0017
70.0000 | 0.0066 0.0016 0.0016 -0.0353 | 275.0000 | 0.2131 1.2295e-05 | 3.8376e-04 | -0.0197
75.0000 | 0.0045 0.0014 0.0014 0.0588 280.0000 | 0.2105 0.0017 9.5673e-04 | -0.0253
80.0000 | 0.0105 0.0029 0.0029 -0.0073 | 285.0000 | 0.2181 0.0023 0.0024 -0.0423
85.0000 | 0.0024 7.7742e-04 7.6294e-04 | 0.0089 290.0000 | 0.2323 0.0093 0.0103 -0.0778
90.0000 | 8.3164e-04 1.8771e-04 2.0879¢-04 | -0.0935 | 295.0000 | 0.2075 0.0027 0.0035 0.1286
95.0000 | 0.0100 0.0021 0.0022 -0.0126 | 300.0000 | 0.2164 | 0.0013 0.0020 0.0057
100.0000 | 0.0028 7.2050e-04 7.3447e-04 | -0.0400 | 305.0000 | 0.2157 | 0.0011 0.0013 -0.0361
105.0000 | 0.0091 0.0029 0.0029 0.1520 310.0000 | 0.2197 0.0032 0.0032 6.8514e-04
110.0000 | 0.0030 8.7406e-04 8.7128e-04 | -0.0051 315.0000 | 0.2128 1.4426e-04 | 4.2155e-04 | -0.0849
115.0000 | 0.0019 1.8370e-04 2.0725e-04 | 0.0761 320.0000 | 0.2313 0.0089 0.0095 0.0066
120.0000 | 0.0160 0.0050 0.0049 0.2533 325.0000 | 0.2132 1.8335e-04 | 7.4833e-05 | -0.0221
125.0000 | 0.0077 0.0020 0.0020 0.0286 330.0000 | 0.2281 0.0075 0.0076 -0.0937
130.0000 | 0.0079 0.0022 0.0022 0.0413 335.0000 | 0.2150 | 7.7001e-04 | 8.2825e-04 | 5.8871e-04
135.0000 | 0.0065 0.0019 0.0019 0.0427 340.0000 | 0.2292 0.0077 0.0088 -0.0817
140.0000 | 0.0060 0.0016 0.0016 0.0067 345.0000 | 0.2156 | 0.0010 0.0012 0.0341
145.0000 | 0.0241 0.0066 0.0067 0.1505 350.0000 | 0.2072 0.0032 0.0032 0.0249
150.0000 | 0.0077 0.0021 0.0022 0.0567 355.0000 | 0.2108 9.9061e-04 | 0.0017 -0.0113
155.0000 | 0.0143 0.0040 0.0041 -0.1512 | 360.0000 | 0.2150 6.0774e-04 | 0.0010 0.0411
160.0000 | 0.0041 0.0013 0.0013 0.0955 365.0000 | 0.2127 | 4.0653e-04 | 2.5685e-04 | -0.0253
165.0000 | 8.4085e-04 1.9388e-04 2.1074e-04 | 0.0530 370.0000 | 0.2109 | 0.0013 0.0014 0.0096
170.0000 | 0.0082 0.0028 0.0028 -0.3939 | 375.0000 | 0.2108 0.0014 0.0012 0.0531
175.0000 | 0.0039 0.0015 0.0014 -0.1568 | 380.0000 | 0.2254 | 0.0061 0.0062 -0.0086
180.0000 | 0.0062 0.0015 0.0016 0.0437 385.0000 | 0.2173 0.0021 0.0019 -0.0126
185.0000 | 3.9299e-04 | 4.9479¢-04 4.6180e-04 | 0.1183 390.0000 | 0.2250 | 0.0064 0.0053 -0.0539




190.0000 | 3.0504e-04 1.5835e-05 7.4937e-06 | -0.0585 395.0000 | 0.2208 0.0035 0.0043 0.1216
195.0000 | 0.0059 0.0013 0.0014 -0.0156 | 400.0000 | 0.2086 0.0023 0.0027 0.0278

200.0000 | 0.0073 0.0020 0.0020 0.0013

3.4. Lie symmetry for criminally Active and prisoner model

In this section, we deal with the general procedure of Lie symmetry analysis for determining the
symmetries for any system of nonlinear partial differential equation. Let us consider a general
nonlinear system of n-th order partial differential equations (PDEs) in p independent variables
[29,36]:

X =g, .., Xp€RP, (23)
and ¢ dependent variables viz.
U=u(ut,u? ..., u?)eRq. (24)
in the follolwing form:
A(X, U™) =0, o=12,..,L (25)

Where U™ represents all the derivatives of u of all orders from 0 to n. We now consider a one
parameter Lie group infinitesimal transformations acting on the both the independent and
dependent variables of the system (25), given as:

¥t =xt+ & (X, U)+0(e?), i=12,..,p, (26)

a'=ul+en;(X,U)+0(e?), j=1.2,..,p (27)
where € < 1 is a small parameter of the transformation and ¢;, n; are the infinitesimals of the
transformations for the independent and dependent variables respectively. The infinitesimal
generator V associated with the above group of transformations can be written as [30,37]:

V=3l ,&X 00, +XL,nX U)a,. (28)
The invariance under the infinitesimal transformations leads to the invariance conditions, which
is given as:

Provv[A(X,U™)=0,, o=12,..,1 (29)
Where Pr™ is called the nth order prolongation of the infinitesimal generator, given by:

Provy =V + 31 ¥ ini(x,u™) 0, (30)

Where | = j;,...,Js, 1K j, Kp, 1<Ks Knandthe sum is over all J’s of order 0 < #J < n.
If#J = s, the coefficient n ,]c of @« will only depend on s-th and lower order derivatives of u, and
J

we have[31]:

j 9
TI,]((X, U(n)) ZDJ(nk_Z?=1fiu}c)+Z?=1€ia . u}c > (31)
uj,i
, K _ ou” K _
Where: u; =—— and u;; = ——.

In this section, techniques of Lie group analysis for the equation with Riemann-Liouville
derivative have been investigated. Symmetries of this equation are obtained. We take into
consideration a one-parameter Lie group of infinitesimal transformation:
x - x+ef*(x, t,u), (32)
t > t+ efl(x, t,u),
u—-x+eft(x t,u),
With a small parameter € < 1. The vector field associated with the above group of
transformations can be written as



X=fx(x,t,u);—x+€t(x,t,u)%+n(x,t,u)%, (33)
and the vector field will generate the symmetry group of equation. Thus, the Lie algebra of
symmetries is spanned by the following vector fields:

]
Xl = a,
]

TN
X3 = —ta+ (u+ 1)5,
The one-parameter groups G; generated by the X;(i = 1,2) are as follows:
Gy: (x,t,u) - (x, t+¢€u),
Gy: (x, t,u) » (x+¢€t,u), (35)
Gs: (x,t,u) - (x,—te€, (u+ 1)e®),

We observe that G; is a time translation, G,is space translation, while the group G5 genuinely
local group of transformation.

(34)

3.6. Invariant Transformation
Consider the list of infinitesimals of a symmetry group.
S=[_&=0,_&=1,_n,=0] (36)

In the input above we can also obtain infinitesimal generator:
G:=f— 9
ot (37)

he transformation and its inverse, from the original variables {t, x, u(x , t)} to new coordinates,
say {r, s, v(1, s)}, that reduces by one the number of independent variables of a Eq.(1) invariant
under G above is obtained via:

{r=x,v(r,s)=u(x,t)}, {x=r, u(x, t) =v(r,s)} (38)
Invariant Transformation(S, u(x, t), v(r, s), and jet notation) is:

{r=x,v=u},{u=v,x=r} (39)

4. Discussion and Conclusion
Chaotic behavior occurs in many engineering and natural systems. Although traditionally
regarded as being irregular or unpredictable in nature and caused by random external
influences, recent studies have shown that chaotic behavior is actually deterministic and
is a typical characteristic of nonlinear systems. Chaos is undesirable in many engineering
applications since it degrades the system performance and restricts the operating range of
dynamic systems. Therefore, the problem of developing effective chaos control strategies
has attracted significant interest over the years [40]. In this study, the model of the
chaotic criminally active and prisoner system of fractional order was presented. Then the
optimal control of this system was done by genetic algorithm and Particle swarm
optimization algorithm. Also, Lie symmetry was presented for the proposed model. At
the end, the optimal control of the proposed model for different states of data parameters
was presented. All the results obtained for the particle swarm optimization method and
genetic algorithm show that this methods has been very successful In addition we observe
that error values are small. In the end simulation is effective.
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