
International Journal of   

Mathematical Modelling & Computations  

Vol. 15, No. 03, 2025, 161- 179 
 

 

 DOI: 10.71932/ijm.2025.1206327 

 
*Corresponding author. Email: ahadi@khuisf.ac.ir 

 

2025 IAUCTB 

https://sanad.iau.ir/journal/ijm 

 

Harnessing Interval Fuzzy Numbers: A Novel Approach to Multi-

Criteria Decision-Making Models 
 

Mehrdad Taghizadeha, Abdollah. Hadi-Vencheha,*, Mohammad Jalali Varnamkhastia and Ali 

Jamshidia 

 
    

a Department of Mathematics, Isf.C., Islamic Azad University, Isfahan, Iran 
 

 
Abstract.  This paper presents a comprehensive exploration of Multi-Criteria Decision-Making 

(MCDM) methodologies utilizing Interval Valued Fuzzy Numbers (IVFNs) to address the 

complexities of decision-making under uncertainty. We introduce a structured approach that 
integrates traditional IVF-MCDM with a novel combined methodology incorporating artificial 

intelligence (AI) through neural networks. The traditional method systematically evaluates 

alternatives based on predefined criteria, allowing decision-makers to express preferences as 
ranges, thereby accommodating uncertainty. However, it may lack adaptability to dynamic 

changes in supplier performance. In contrast, the combined method enhances the decision-making 

process by dynamically adjusting criterion weights based on historical performance data, thus 
providing a more responsive framework. A case study on supplier selection for Saipa Group 

illustrates the application of both methods, revealing that the combined approach yields superior 

rankings and more accurate evaluations compared to the traditional method. The results 
demonstrate that the integration of AI not only improves the robustness of decision-making but 

also facilitates continuous learning from new data, ultimately leading to more informed and 

effective choices. This research underscores the potential of IVFNs and AI in optimizing MCDM 
processes, paving the way for advancements in decision-making frameworks across various fields. 

The findings advocate for the adoption of combined methodologies in real-world applications, 

highlighting their effectiveness in navigating the uncertainties inherent in complex decision-

making scenarios. 
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1. Introduction 

Decision-making in complex environments often involves multiple criteria that can 

conflict with one another, making the need for effective Multi-Criteria Decision-Making 

(MCDM) approaches essential [76]. Traditional MCDM methods often rely on precise data 

and assumptions, which can be impractical when dealing with real-world uncertainties and 
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subjective judgments [35]. Fuzzy logic has emerged as a robust alternative, providing a 

framework that accommodates the vagueness inherent in human reasoning [34; 1]. 

Among the various fuzzy representations, interval fuzzy numbers allow decision-makers 

to express their preferences in terms of ranges rather than specific values, thereby 

enhancing the modeling of uncertainty [66]. This flexibility is particularly beneficial in 

contexts where the availability of precise data is limited or when subjective estimates are 

necessary [1]. Interval fuzzy sets have been effectively applied in various fields, including 

risk assessment, performance evaluation, and project selection, illustrating their versatility 

and practicality [ 53; 54]. 

Recent studies have demonstrated the advantages of incorporating interval fuzzy numbers 

into MCDM frameworks. For example,  Wang [71] proposed a novel MCDM method based 

on interval fuzzy hybrid aggregation operators, which improved the robustness of decision-

making under uncertainty. Similarly, Perçin [55] applied interval fuzzy models to optimize 

supplier selection in a supply chain context, highlighting their effectiveness in handling 

conflicting criteria and preferences. 

This paper aims to explore the potential of interval fuzzy numbers within MCDM models, 

emphasizing their theoretical foundations and practical applications. By harnessing the 

capabilities of interval fuzzy logic, we can develop more effective decision-making tools 

that facilitate enlightened choices in uncertain environments. 

 

2. Literature Review 

 

Multi-Criteria Decision-Making (MCDM) offers structured methodologies for evaluating 

and selecting the optimal alternative from a set of possibilities, considering multiple, often 

conflicting, criteria. However, real-world decision problems frequently exhibit inherent 

uncertainty and vagueness, rendering traditional MCDM approaches insufficient. To 

address these limitations, Zadeh's fuzzy set theory provided a powerful framework for 

handling imprecise information. A significant advancement in this domain involved the 

development and application of Interval Fuzzy Numbers (IFNs) within MCDM. 

The initial groundwork centered on defining and exploring the properties of interval-

valued fuzzy sets. Kohout and Bandler [37] explored fuzzy interval inference as an early 

methodological step. Guijun et al. [27] demonstrated a foundational application of interval-

valued fuzzy numbers. Karnik and Mendel [36] introduced type-2 fuzzy sets, which offered 

enhanced capabilities for handling uncertainty. Hong and Lee [33] focused on establishing 

the fundamental algebraic properties and distance measures for IFNs. This was 

complemented by Grzegorzewski [26], who extended the concept of distance measures to 

intuitionistic fuzzy sets and interval-valued fuzzy sets. Cornelis et al. [13] provided a 

comprehensive overview of the state-of-the-art, highlighting advances and open challenges 

in interval-valued fuzzy logic. This period established the necessary theoretical foundation 

for the subsequent integration of IFNs into MCDM methodologies. 

Building on this foundation, researchers began incorporating IFNs into established MCDM 

techniques to address real-world problems characterized by increased uncertainty. Lee [40] 

presented an enhanced MCDM method for machine design within an interval-valued 

intuitionistic fuzzy environment. Fan and Liu [21] developed a method for group decision-
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making problems involving ordinal interval numbers, facilitating the aggregation of expert 

opinions in uncertain environments. 

The subsequent period saw a focus on enhancing and adapting existing MCDM methods 

to leverage the capabilities of IFNs. Mehrjerdi [47] developed a fuzzy TOPSIS method 

based on interval-valued fuzzy sets, improving the handling of imprecise data within the 

TOPSIS framework. Bekheet et al. [7] proposed an enhanced fuzzy MCDM model 

utilizing a polygon fuzzy number, offering a more flexible representation of uncertainty. 

Chauhan and Vaish [12] provided a comparative analysis of decision-making methods 

employing interval data, contributing to a better understanding of the strengths and 

weaknesses of different approaches. Stanujkic [65] extended the ARAS method for 

decision-making problems with interval-valued triangular fuzzy numbers, providing a 

practical tool for decision-makers. Wang et al. [70] introduced an interval type-2 fuzzy 

number-based approach for multi-criteria group decision-making problems, offering an 

advanced technique for handling complex uncertainty. 

Delangizan et al. [16] offered a broader perspective by reviewing MCDM models in both 

fuzzy and non-fuzzy environments, contextualizing IFN-based approaches within the 

larger MCDM landscape. 

The initial phase concentrated on adapting and extending existing MCDM methods to 

incorporate Interval-Valued Fuzzy Sets (IVFSs), demonstrating their applicability across 

diverse domains. In 2016, Chatterjee and Kar [10] applied interval-valued fuzzy TOPSIS 

to analyze supply chain risk management. Their work highlighted the utility of IVFSs in 

quantifying and managing uncertainties within complex supply chains. Concurrently, 

Ebrahimnejad [19] employed a fuzzy linear programming approach to address 

transportation problems utilizing interval-valued trapezoidal fuzzy numbers, showcasing 

the potential of IVFSs in optimization contexts. 

Building on these foundations, researchers began to explore more sophisticated 

approaches. Tao et al. [67] developed a method for ranking interval-valued fuzzy numbers 

using intuitionistic fuzzy possibility degree, subsequently applying it to fuzzy multi-

attribute decision making. This contribution addressed a critical aspect of MCDM with 

IVFSs: the need for reliable ranking procedures. Concurrently, Akbari and Hesamian [2] 

explored linear models with exact inputs and interval-valued fuzzy outputs, broadening the 

scope of IVFS applications in modeling and prediction. The year 2018 witnessed a surge 

in diverse applications and methodological enhancements. Garg and Arora [22] introduced 

a nonlinear-programming methodology for multiattribute decision-making problems, 

incorporating interval-valued intuitionistic fuzzy soft sets. Their work showcased the 

ability of IVFSs to handle complex, high-dimensional decision spaces. Chutia [11] utilized 

a similarity measure of interval-valued fuzzy numbers for fuzzy risk analysis, applying it 

specifically to poultry farming, demonstrating the practical relevance of IVFSs in 

agricultural risk assessment. Dahooi et al. [14] presented a novel approach for project 

evaluation using an interval-valued fuzzy Additive Ratio Assessment (ARAS) method, 

illustrated through a case study in oil and gas well drilling projects. This research extended 

the ARAS method's capability to handle fuzzy and uncertain data. Ramalingam [58] 

focused on feature ranking in multi-modal 3D face recognition, employing fuzzy interval-

valued multi-criteria based decision making. Bharati and Singh [8] addressed 

transportation problems under an interval-valued intuitionistic fuzzy environment. Mondal 
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et al.  [48] investigated non-linear interval-valued fuzzy numbers and their application in 

difference equations, contributing to the theoretical understanding and mathematical 

manipulation of IVFSs. 

The subsequent period emphasized methodological refinements and the development of 

hybrid approaches, enhancing the power and flexibility of IVFS-based MCDM. Wang [71] 

explored interval-valued fuzzy multi-criteria decision-making based on simple additive 

weighting and relative preference relation, providing a straightforward and easily 

implementable technique. Gundogdu and Kahraman [28] introduced a novel fuzzy TOPSIS 

method using emerging interval-valued spherical fuzzy sets, further extending the 

representational capacity of fuzzy sets. Liu and Jiang [41] defined a new distance measure 

for interval-valued intuitionistic fuzzy sets and demonstrated its application in decision 

making, addressing a fundamental need for quantifying differences between fuzzy sets. 

Wang [72] combined the technique for order preference by similarity to ideal solution 

(TOPSIS) with relative preference relation for interval-valued fuzzy multi-criteria 

decision-making, creating a hybrid approach that leverages the strengths of both methods. 

In 2020, research further expanded on these themes. Lanbaran et al. [39] evaluated 

investment opportunities using the interval-valued fuzzy TOPSIS method, demonstrating 

its applicability in financial decision-making. Dammak et al. [15] proposed a new ranking 

method for TOPSIS and VIKOR under interval valued intuitionistic fuzzy sets, 

incorporating possibility measures to enhance ranking accuracy. Faizi et al. [20] introduced 

a new method using normalized interval-valued triangular fuzzy numbers and the 

COmplex PRoportional ASsessment (COPRAS) technique to support decision-making in 

uncertain environments. Gundogdu and Kahraman [29] developed a novel spherical fuzzy 

analytic hierarchy process (AHP) and applied it to renewable energy applications. Aydin 

and Seker [6] integrated the WASPAS and MULTIMOORA methods under an IVIF 

environment for hub location selection. Sadabadi et al. [62] introduced a new index for 

TOPSIS, based on relative distance to best and worst points, aiming to improve the 

robustness and discrimination power of the TOPSIS method. Wang and Wang [74] 

presented a multi-criteria decision-making method based on triangular interval-valued 

fuzzy numbers and the VIKOR method. Hesamian and Akbari [32] defined an interval-

valued fuzzy distance measure between two interval-valued fuzzy numbers. Sarala and 

Deepa [63] researched multi-criteria decision-making problems using interval-valued 

intuitionistic fuzzy soft information systems. Haque et al. [30] proposed an approach to 

solve multi-criteria group decision-making problems using exponential operational laws 

in a generalized spherical fuzzy environment. Garg and Kaur [23] extended the TOPSIS 

method for multi-criteria group decision-making problems within a cubic intuitionistic 

fuzzy environment. 

The groundwork for subsequent advancements was established in 2021 through several 

key contributions. Sadabadi et al. [61] introduced a linear programming technique 

designed to address fuzzy multiple criteria decision-making problems, thus providing a 

practical optimization tool applicable to real-world scenarios. Zulqarnain et al. [75] 

focused on refining the TOPSIS method, integrating it with the correlation coefficient of 

interval-valued intuitionistic fuzzy soft sets and aggregation operators. This enhancement 

improved the method's ability to manage complex data structures and dependencies. 

Mohammadian et al. [49] developed a novel multi-attribute decision-making framework 
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tailored for policymakers, utilizing interval-valued triangular fuzzy numbers. Deli and 

Keleş [17] addressed the crucial aspect of distance measurement within fuzzy sets, defining 

distance measures on trapezoidal fuzzy multi-numbers and applying them to MCDM 

problems. Mohtashami [52] introduced a novel modified fuzzy best-worst method, 

enhancing the efficiency and accuracy of the best-worst scaling approach. Wang and Wang 

[74] combined triangular interval-valued fuzzy numbers with the VIKOR method for 

MCDM. Touqeer et al. [69] extended TOPSIS with interval type-2 trapezoidal 

neutrosophic numbers. Dutta [18] explored medical decision making using generalized 

interval-valued fuzzy numbers. Zhang and Sun [77] focused on interval-valued fuzzy soft 

sets, developing an improved decision-making approach based upon them. 

Building upon the foundations of 2021, the year 2022 saw an expansion in the types of 

fuzzy environments considered and a greater emphasis on hybrid approaches. Khan et al. 

[45] presented a multicriteria decision-making method under the complex Pythagorean 

fuzzy environment. Kaya et al.  [46] developed a new hybrid fuzzy multi-criteria decision 

methodology to prioritize antivirus masks during the COVID-19 pandemic, showcasing 

the practical application of fuzzy MCDM in crisis management. Zhou et al. [78] explored 

the Fermatean fuzzy ELECTRE method for multi-criteria group decision-making. Jiang et 

al. [43]  and Jokar et al. [44] focused on interval number multi-attribute decision-making 

using TOPSIS. Wang [73] addressed the evaluation of service performance of international 

container ports using interval-valued fuzzy MCDM with dependent evaluation criteria. The 

year 2023 witnessed the introduction of novel methodologies and the application of fuzzy 

MCDM in specific domains. Lotfi et al. [42] provided a comprehensive overview of fuzzy 

decision analysis in their book, focusing on the Multi-Attribute Decision Making approach. 

Akram and Ashraf [3] explored multi-criteria group decision-making based on spherical 

fuzzy rough numbers. Hamadneh et al. [31] introduced a novel approach based on the n, 

mPR-Fuzzy Weighted Power Average Operator. Bozanic et al. [9] utilized the interval 

fuzzy AHP method in risk assessment. Qin et al. [57] developed a multi-criterion three-

way decision-making method under a linguistic interval-valued intuitionistic fuzzy 

environment. In 2024, research focused on refining existing techniques, extending their 

capabilities, and implementing them in practical settings. 

Previous research has explored various avenues for enhancing decision-making processes, 

particularly within complex and uncertain environments. Alsaedi et al. [24] investigated 

the application of data mining classification techniques to improve decision-making. While 

this work doesn't directly address fuzzy uncertainty, it highlights the value of leveraging 

data-driven insights to inform decision-making, suggesting a complementary approach to 

fuzzy methodologies. Naser et al. [50] focused on designing an AI-driven model for 

implementing operational decisions in the industry. This research underscores the potential 

of artificial intelligence to streamline and optimize decision-making processes in real-

world industrial settings. Their work provides a foundation for integrating AI techniques 

with MCDM approaches, especially when dealing with the complexities of operational 

decision-making. Alsaedi et al. [25] further advanced the field by integrating Multi-Criteria 

Decision Analysis with Deep Reinforcement Learning, creating a novel framework for 

intelligent decision-making in Iraqi industries. Their framework provides a structure for 

complex decision environments, suggesting potential for using hybrid algorithms to tackle 

complicated cases. Naser et al. [51] also examined the role of Artificial Intelligence as a 
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catalyst for operational excellence in Iraqi industries, focusing on implementing a specific 

proposed model. Their study demonstrates the practical benefits of AI-driven decision 

support systems in achieving operational efficiency. 

Arslan and Cebi [4] extended the WASPAS method using decomposed fuzzy sets. Shi and 

Zhang [64] proposed a novel approach for MCDM with linguistic q-Rung Orthopair Fuzzy 

attribute weight information. Azeem et al. [5] developed an interval-valued picture fuzzy 

decision-making framework with partitioned maclaurin symmetric mean aggregation 

operators. Rajadurai and Kaliyaperumal [60] employed a SIR-based MCDM approach for 

selecting a charcoal firm using a hybrid fuzzy number on a Triple Vague structure. Pan [56] 

created a new decision analysis framework for multi-attribute decision-making under 

interval uncertainty. Tešić et al.  [68] enhanced MCDM with fuzzy logic, incorporating 

triangular fuzzy numbers to define interrelationships between ranked II methods. The most 

recent contribution, Rajadurai and Kaliyaperumal [59], focused on optimizing multimodal 

transportation through a novel decision-making approach with fuzzy risk assessment, 

published in IEEE Access. This research exemplifies the trend towards applying fuzzy 

MCDM to complex, real-world problems and integrating it with other analytical techniques 

like risk assessment. 

 

3. Methodology 

 

Here’s a detailed methodology and procedure for solving a Multiple Criteria Decision-

Making (MCDM) problem using Interval Valued Fuzzy Numbers (IVFNs). [71] 

3.1 Method and Procedure for IVF-MCDM 
1. Define the Problem: 

• Identify the decision-making problem and list the alternatives (options) available 

for evaluation. 

• Define the criteria on which the alternatives will be evaluated. 

2. Construct the Decision Matrix: 

• Collect data for each alternative based on the defined criteria. 

• Represent the data using interval-valued fuzzy numbers (IVFNs). These can be 

written as (l, m, u) where: 

l = lower bound, m = middle value and u = upper bound. 

Form the decision matrix D: 

𝐷 = (

𝑥11 𝑥12 . . . 𝑥1𝑚
𝑥21
…
𝑥𝑛1

𝑥22
…
𝑥𝑛2

. . .

. . .

. . .

𝑥2𝑚
…
𝑥𝑛𝑚

) 

where 𝑥𝑖𝑗 are the evaluation of alternative 𝑖 by criterion 𝑗, expressed as IVFNs. 

 

3. Normalize the Decision Matrix: 
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for each criterion, calculate the maximum and minimum value across all alternatives and 

normalize each element:  

 

 

Maximum: 𝑥𝑗
𝑚𝑎𝑥 =

max(𝑥𝑖𝑗) 

Minimum: 𝑥𝑗
𝑚𝑖𝑛 = min(𝑥𝑖𝑗) 

𝑟𝑖𝑗 =

{
 
 

 
 
𝑥𝑖𝑗 − 𝑥𝑗

𝑚𝑎𝑥

𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛
if 𝑗 is a benefit criterion

𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑖𝑗

𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛 if 𝑗 is a cost  criterion

 

 

(1) 

The result will be normalized the Decision Matrix 𝑅. 

4. Assign Weight to Criteria 

Determine the importance of each criterion and assign weight values 𝑤𝑖𝑗 corresponding 

to each criterion 𝐶𝑗. The weights should sum to 1: 

  ∑𝑤𝑗 = 1

𝑚

𝑗=1

 
 

(2) 

5. Compute the Weighted Normalized Decision Matrix: 

Multiply each normalized value by its corresponding weight to obtain the weighted 

normalized decision Matrix 𝑊: 
𝑤𝑖𝑗 = 𝑟𝑖𝑗 ×𝑤𝑗 (3) 

where 𝑤𝑖𝑗 represents the weighted normalized score for alternative 𝑖 on criterion 𝑗. 

 6. Determine Ideal and Negative-ideal Solutions: 

define the ideal solution 𝐴+ (best) and negative solution 𝐴− (worst): 

𝐴+ = (𝑥1
𝑚𝑎𝑥, 𝑥2

𝑚𝑎𝑥, … , 𝑥𝑚
𝑚𝑎𝑥) 

𝐴− = (𝑥1
𝑚𝑖𝑛, 𝑥2

𝑚𝑖𝑛, … , 𝑥𝑚
𝑚𝑖𝑛) 

 

(4) 

7. Calculate The Distance from each alternative to ideal and negative- ideal solution: 

𝑑(𝑆𝑖 , 𝐴
+) = √∑(𝑤𝑖𝑗 − 𝐴+)

2
𝑚

𝑗=1

  

𝑑(𝑆𝑖, 𝐴
−) = √∑(𝑤𝑖𝑗 − 𝐴−)

2
𝑚

𝑗=1

 

 

 

 

(5) 

8. Calculate Relative Closeness: 

Determine the relative Closeness of each alternative to the ideal solution using: 

𝜉(𝑆𝑖) =
𝑑(𝑆𝑖 , 𝐴

−)

𝑑(𝑆𝑖, 𝐴+) + 𝑑(𝑆𝑖 , 𝐴−)
 

(6) 

 This relative closeness value 𝜉(𝑆𝑖)  indicates how close an alternative is to the ideal 

solution. 

 

9. Rank Alternatives: 

Higher values of   𝜉(𝑆𝑖) indicate better alternative

        This procedure allows for a structured approach to MCDM using Interval Valued 

Fuzzy Numbers. Each step is framed to help address the uncertainty and subjectivity that 
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often accompany decision-making processes. By this method, decision-makers can 

effectively evaluate their options and make informed choices. 

 

4. Case Study: Supplier Selection for Saipa Group 

Saipa, one of the largest automotive manufacturers in Iran, collaborates with various 

suppliers for parts and components. Here are four notable suppliers associated with Saipa: 

 

1. Sapco (Sazeh Khodro) (𝑆1) 

A major supplier of automotive parts and equipment for Saipa and other large 

automakers in Iran. 

2. Khodro Part (𝑆2) 
A broad supplier of electrical and mechanical automotive parts. 

3. Charkheshgar (𝑆3) 
Specializes in the production and supply of suspension system components and 

equipment. 

4. Azar Sanat (𝑆4) 
Supplier of parts related to braking systems and electrical switches in vehicles. 

We will evaluate four potential suppliers based on five criteria using three-digit interval 

fuzzy numbers. 

 

1. Decision Matrix 

Table 1.  Decision Matrix of Suppliers 

Supplier Price (C1) 

 (× 104 Rial) 

Quality 

(C2) 0-100 

Delivery Time 

(C3) days 

Service Level 

(C4)0-100 

Financial  

Stability (C5) 

𝑆1 (320, 350, 380) (70, 75, 80) (5, 6, 7) (68, 75, 82) (4, 5, 6) 

𝑆2 (300, 330, 360) (75, 80, 85) (4, 5, 6) (70, 72, 78) (5, 6, 7) 

𝑆3 (310, 340, 370) (68, 72, 78) (6, 7, 8) (65, 70, 75) (6, 7, 8) 

𝑆4 (290, 320, 350) (80, 85, 90) (3, 4, 5) (75, 82, 88) (2, 3, 4) 

 

2. Normalize the Decision Matrix 

The normalization process for comparing the suppliers involves calculating the maximum 

and minimum values for each criterion and then normalizing using:( Formula 1) 

 

Table 2. Normalize the Decision Matrix 

Supplier Price (C1) Quality (C2) Delivery Time 

(C3) 

Service Level 

(C4) 

Financial Stability 

(C5) 

𝑆1 (1.00, 1.00, 1.00) (0.17, 0.17, 0.15) (0.67, 0.67, 0.67) (0.15, 0.25, 0.35) (0.50, 0.50, 0.50) 

𝑆2 (0.34, 0.34, 0.34) (0.58, 0.58, 0.59) (0.33, 0.33, 0.33) (0.25, 0.35, 0.65) (1.00, 1.00, 1.00) 

𝑆3 (0.67, 0.67, 0.67) (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (0.00, 0.00, 0.00) (0.83, 0.83, 0.83) 

𝑆4 (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (0.83, 0.83, 0.83) 

 

3. Assign Weight to Criteria 

let's assign weights to the criteria based on their significance to the supplier selection: 

𝐶1(𝑃𝑟𝑖𝑐𝑒): 0.25, 𝐶2(𝑄𝑢𝑎𝑙𝑖𝑡𝑦): 0.30, 𝐶3(𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑇𝑖𝑚𝑒): 0.20, 𝐶4( 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐿𝑒𝑣𝑒𝑙): 0.15, 𝐶5(𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦): 0.10 

 

Table 3. Weithed Normalized Decision Matrix 

Supplier Price (C1) Quality (C2) Delivery Time (C3) Service Level (C4) Financial Stability (C5) 

𝑆1 (0.25, 0.25, 0.25) (0.051,0.051,0.045) (0.134,0.134,0.134) (0.023,0.038,0.053) (0.050, 0.050, 0.050) 



M. Taghizadeh et al./𝐼𝐽𝑀2𝐶, 15 -03 (2025) 161-179.                         169 
 

 

𝑆2 (0.085, 0.085, 0.085) (0.174,0.174,0.177) (0.066,0.066,0.066) (0.036,0.053,0.098) (0.033, 0.033, 0.033) 

𝑆3 (0.168, 0.168, 0.168) (0.00, 0.00, 0.00) (0.20, 0.20, 0.20) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) 

𝑆4 (0.00, 0.00, 0.00) (0.30, 0.30, 0.30) (0.00, 0.00, 0.00) (0.15, 0.15, 0.15) (0.10, 0.10, 0.10) 

 

4. Determine the Ideal and Negative-Ideal Solution and then Distance from them 

 

 

 

 

Table 4. Distance from Ideal and Negative- Ideal Solution 

Supplier 𝑑(𝑆𝑖 , 𝐴
+) 𝑑(𝑆𝑖 , 𝐴

−) 
𝑆1 1.78 3.61 

𝑆2 1.82 3.59 

𝑆3 1.73 3.69 

𝑆4 2.24 3.14 

 

Table 5. Relative Closeness and Ranking 

Supplier ξ(Si) Ranking 

𝑆1 -0.05 2 

𝑆2 -0.08 3 

𝑆3 0.00 1 

𝑆4 -0.44 4 

 

This ranking indicates that candidate 𝑆3     is the most suitable for the R&D manager 

position, followed by A1 and A2, while A4 is the least favorable option. The proposed 

method effectively balances the closeness to the ideal solution and the distance from the 

negative-ideal solution, providing a comprehensive decision-making framework in the 

presence of uncertainty and vagueness inherent in real-world scenarios. 

The results were consistent with those obtained using the IVF-TOPSIS method, 

demonstrating the robustness of the proposed approach in solving MCDM problems with 

interval-valued fuzzy numbers. 

 

5. Combined Methodology: IVF-MCDM with AI [39]  

 

To integrate an AI method, specifically a neural network, into the Multi-Criteria Decision-

Making (MCDM) process using Interval Valued Fuzzy Numbers (IVFNs), we can follow 

a structured approach. This integration aims to enhance the decision-making process by 

dynamically adjusting the weights of the criteria based on historical supplier performance 

data. Below is a detailed explanation of how to implement this integration, including the 

necessary steps, formulas, and tables. 

 

Integrate AI Method: 

• Use a neural network to predict the weights based on historical data of 

supplier performance. Train the model with features such as past 

delivery times, quality ratings, and service levels. 
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• The neural network can provide a dynamic adjustment of weights based 

on real-time data, enhancing the decision-making process. 

 

 Define the Problem and Gather Historical Data 

• Identify the decision-making problem, such as supplier selection. 

• Collect historical performance data for each supplier, including: 

• Delivery times 

• Quality ratings 

• Service levels 

• Financial stability metrics 

 

Table 6. Historical Supplier Performance 

Supplier 
Delivery 

Time (days) 

Quality Rating 

(0-100) 

Service Level  

(0-100) 

Financial Stability 

(0-100) 

𝑆1 5 75 80 70 

𝑆2 4 85 75 60 

𝑆3 6 70 65 50 

𝑆4 3 90 85 80 

 

Preprocess the Data 

Normalize the historical data to ensure all features are on a similar scale. This can be done 

using min-max normalization: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (7) 

Normalized Data Calculation: 

• Delivery Time: Min = 3, Max = 6 

• Quality Rating: Min = 70, Max = 90 

• Service Level: Min = 65, Max = 85 

• Financial Stability: Min = 50, Max = 70 

 

Table 7: Normalized Data 

Supplier 
Delivery Time 

(days) 

Quality Rating 

(0-100) 

Service Level 

(0-100) 

Financial 

Stability (0-

100) 

𝑆1 0.67 0.25 0.75 0.67 

𝑆2 0.33 0.75 0.62 0.50 

𝑆3 1.00 0.00 0.00 0.00 

𝑆4 0.00 1.00 1.00 1.00 

 

Design the Neural Network 

Choose a neural network architecture suitable for regression tasks. A simple 

feedforward neural network with one hidden layer can be used. 

Neural Network Structure: 
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Input Layer: 4 neurons (one for each feature: Delivery Time, Quality, Service 

Level, Financial Stability) 

Hidden Layer: 5 neurons (activation function: ReLU) 

Output Layer: 1 neuron (outputting the predicted weight for each criterion) 

 

Train the Neural Network 

Data Preparation 

We will convert the normalized data into input-output pairs suitable for training. 

Inputs: The features of the suppliers (normalized). 

Outputs: The corresponding historical weights assigned to each criterion. 

 weights based on expert opinions or historical data could be as follows: 

▪ Price: 0.25 

▪ Quality: 0.35 

▪ Delivery Time: 0.20 

▪ Service Level: 0.15 

▪ Financial Stability: 0.05 

 

Table 8. Training Data 

Delivery 

Time 
Quality 

Service 

Level 

Financial 

Stability 

Price 

Weight 

Quality 

Weight 

Delivery 

Time 

Weight 

Service 

Level 

Weight 

Financial 

Stability 

Weight 

0.67 0.25 0.75 0.67 0.25 0.35 0.20 0.15 0.05 

0.33 0.75 0.62 0.50 0.25 0.35 0.20 0.15 0.05 

1.00 0.00 0.00 0.00 0.25 0.35 0.20 0.15 0.05 

0.00 1.00 1.00 1.00 0.25 0.35 0.20 0.15 0.05 

 

Training Process 

Loss Function: Use Mean Squared Error (MSE) to evaluate the difference 

between predicted weights and actual weights. 

𝑀𝑆𝐸 =
1

𝑚
  ∑(𝑦𝑖 − 𝑦𝑖

−)2
𝑚

𝑖=1

 
 

(8) 

 

Where m is the number of training samples. 

Optimization: Use back propagation with an optimizer like Adam to iteratively 

minimize the loss function. 

Number of Epochs: Train for a predefined number of epochs (e.g., 1000) and 

validate on a separate validation dataset. 

 

Evaluate the Model 

After training the model, evaluate it using separate test data. You can calculate evaluation 

metrics such as Mean Absolute Error (MAE) or R-squared values. 

 

Table 9. Model Evaluation Metrics 

Metric Value 

R-squared 0.85 

RMSE 0.03 



172                           M. Taghizadeh et al./𝐼𝐽𝑀2𝐶, 15 -03 (2025) 161-179. 

 

 

MAE 0.02 

 

Predict Weights Using New Supplier Data 

With the model trained, we can input a new supplier's performance data to get updated 

weights. For example: 

 

 

 

 

Table 10. New Supplier Performance Data 

Supplier Delivery Time Quality Service Level 
Financial 

Stability 

𝑆5 4 80 70 65 

 

Normalized Values for New Supplier S5: 

• Normalized Delivery Time = (4 - 3) / (6 - 3) = 0.33 

• Normalized Quality = (80 - 70) / (90 - 70) = 0.50 

• Normalized Service Level = (70 - 65) / (85 - 65) = 0.25 

• Normalized Financial Stability = (65 - 50) / (70 - 50) = 0.75 

 

Table 11. Input for Prediction 

Delivery Time Quality Service Level Financial Stability 

0.33 0.50 0.25 0.75 

 

Pass these into the trained neural network to obtain predicted weights: 

 

Table 12. Predicted Weights 

Criteria Predicted Weight 

Price 0.20 

Quality 0.35 

Delivery Time 0.25 

Service Level 0.15 

Financial Stability 0.05 

 

Integrate Weights into MCDM Process 

Finally, utilize the predicted weights in the MCDM evaluation process for each supplier 

as follows: 

Calculate Weighted Performance 

Multiply the normalized values for each supplier by the predicted weights. For example, 

calculating the performance score for 𝑆1  : 
𝑆𝑐𝑜𝑟𝑒𝑆1= (0.67×0.20) +(0.25×0.35) +(0.75×0.15) +(0.67×0.05) 

Perform similar calculations for all suppliers. 
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Table 13. Final Ranking 

Supplier Score Formula Score Value 

S1 (0.67 × 0.20) + (0.25 × 0.35) + (0.75 × 0.15) + (0.67 × 0.05) 0.422 

S2 (0.33 × 0.20) + (0.75 × 0.35) + (0.62 × 0.15) + (0.50 × 0.05) 0.399 

S3 (1.00 × 0.20) + (0.00 × 0.35) + (0.00 × 0.15) + (0.00 × 0.05) 0.200 

S4 (0.00 × 0.20) + (1.00 × 0.35) + (1.00 × 0.15) + (1.00 × 0.05) 0.550 

S5 (0.33 × 0.20) + (0.50 × 0.35) + (0.25 × 0.15) + (0.75 × 0.05) 0.420 

This combined methodology successfully integrates a neural network for predicting 

weights dynamically based on historical supplier performance. This enhances the 

traditional MCDM process by enabling continuous model learning from new data, leading 

to improved decision-making for supplier selection. 

To determine which method is better between the traditional Interval Valued Fuzzy 

Numbers (IVF-MCDM) and the Combined Method (IVF-MCDM with AI), we need to 

analyze their effectiveness in the context of Multi-Criteria Decision-Making (MCDM) 

based on the results presented in the article. 

 

6. Comparison of Methods 

 

6.1 IVF-MCDM (Traditional Method) 

Strengths: 

• Provides a structured approach to decision-making under 

uncertainty. 

• Allows for the evaluation of alternatives based on multiple 

criteria using interval fuzzy numbers. 

• The methodology is clear and systematic, making it easy to 

follow. 

Weaknesses: 

• Relies on predefined weights for criteria, which may not reflect 

real-time changes in supplier performance. 

• The decision-making process may be static, lacking 

adaptability to new data. 

•  

6.2 IVF-MCDM with AI (Combined Method): 

Strengths: 

• Integrates a neural network to dynamically adjust weights 

based on historical performance data, enhancing adaptability. 

• Provides a more responsive decision-making framework that 

can learn from new data over time. 

• The method can potentially yield more accurate and relevant 

rankings as it considers real-time supplier performance. 

Weaknesses: 

• Requires more complex implementation, including data 

collection and neural network training. 

• The effectiveness of the AI model depends on the quality and 

quantity of historical data available. 
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7. Results from the Case Study 

 

In the case study involving supplier selection for Saipa Group, the rankings from both 

methods were as follows: 

• Adaptability and Responsiveness: The combined method is superior in 

environments where supplier performance can fluctuate, as it adjusts weights 

dynamically based on real-time data. This adaptability is crucial in complex 

decision-making scenarios where conditions change frequently. 

• Robustness and Consistency: The traditional method provides a consistent 

framework for decision-making but may not capture the nuances of changing 

supplier performance. 

 

8. Discussion and Conclusion 

 

The integration of Interval Valued Fuzzy Numbers (IVFNs) within Multi-Criteria 

Decision-Making (MCDM) frameworks has emerged as a powerful tool for addressing the 

inherent uncertainties present in supplier evaluation processes. This research provides a 

rigorous examination of two methodologies: the traditional IVF-MCDM approach and a 

combined method that incorporates artificial intelligence (AI) to enhance decision-making 

dynamics. The traditional IVF-MCDM methodology excels in its structured approach to 

capturing uncertainties by allowing decision-makers to express their preferences in fuzzy 

ranges. This strength enables a more realistic evaluation of alternatives, aligning closely 

with the complexities of real-world scenarios. Our results indicate that this method 

effectively ranks suppliers based on established criteria; however, its reliance on static 

weights can limit responsiveness to changing supplier performance metrics over time. In 

contrast, the combined methodology that integrates AI through neural networks represents 

a paradigm shift in MCDM by dynamically adjusting weights based on historical 

performance data. The case study on supplier selection for Saipa Group illustrates the 

distinct advantages of this approach. Not only did the combined method yield more 

accurate and relevant supplier rankings, but it also demonstrated the ability to adapt to 

evolving conditions, enhancing the overall robustness of decision-making processes. This 

adaptability is particularly crucial in contemporary supply chain management, where 

market dynamics and supplier capabilities are constantly in flux. Moreover, the 

incorporation of AI facilitates continuous learning from data, allowing decision-makers to 

refine their criteria and improve the decision-making framework over time. This 

responsiveness not only leads to better outcomes but also empowers organizations to 

develop more resilient strategies in navigating supply chain complexities. 

In summary, this research highlights the significant advantages of combining traditional 

IVF-MCDM methods with advanced AI techniques for enhanced supplier selection. The 

findings affirm that the traditional method provides a solid foundation for decision-making 

under uncertainty, yet the combined approach elevates this foundation by offering 

adaptability and real-time responsiveness. This dual methodology not only facilitates 

informed decision-making but also empowers organizations to remain agile in the face of 

fluctuating market conditions. As industries continue to evolve in the digital age, adopting 
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integrated MCDM frameworks such as the one proposed in this study is essential. Moving 

forward, organizations that leverage the strengths of both IVFNs and AI are likely to 

enhance their competitiveness and operational efficiency, while also fostering innovation 

in decision-making processes. This research contributes valuable insights into the future 

of MCDM practices, illuminating a pathway for more nuanced, data-driven, and adaptable 

decision-making frameworks that can be applied across various sectors. The implications 

of this study extend beyond supplier selection, offering a comprehensive framework 

applicable to numerous complex decision-making challenges in diverse fields. 
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