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Abstract.  One of the most important solutions in designing the architecture of a deep neural 
network is to use suitable activation functions in the hidden layers of the network. This function 

plays an important role in the back propagation algorithm and the calculation of the gradient of the 

cost function is based on the output of the activation function. In this paper, we will model a deep 
neural network to address an application problem in the Internet of Things, using experimental 

data recorded in a smart home, with the goal of identifying and preventing unauthorized devices 

from entering the Internet of Things network. The method used in this study relies on the radio 
frequency fingerprint of a radio device connected to the Internet of Things. The database used in 

this study consists of 8000 samples from 15 test series, collected using the One RF Hack radio 

receiver in the smart home and on 4 different connected devices. Finally ,we evaluated the 
performance of different activation functions in the hidden layers of the network. Ultimately, the 

most effective activation function was selected for the efficient and effective network. The Python 

code of the network architecture is located in GitHub 
https://github.com/SaeidSarabadan/RF_with_-ANN. 
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1. Introduction 

Deep learning is a subset of machine learning that involves the use of artificial neural 

networks to model and solve complex problems [5]. In a deep learning system, there are 

usually several layers of artificial neurons, each layer processing and transforming the 

input data representation. This allows the system to learn hierarchical representations of 

data, with early layers learning low-level features and later layers learning higher-level 

abstractions [1,6]. The word depth refers to the number of layers through which data is 

transformed during processes. Artificial neural network consists of input layer, hidden 

layer and output layer [24]. Activation functions in hidden layers are crucial for deep neural 

networks.  They introduce non-linearity, improving model capacity and interpretability. 

Without activation functions, neural networks would be simple linear models [2].  Non-

linear activation functions help avoid vanishing gradients [10]. Common activation 

functions include Sigmoid, ReLU, Swish [9,26], Leaky ReLU, and Softmax. Choosing the 

right activation function depends on the problem, data, and model architecture. In recent 

years, many efforts have been made by deep neural network developers to design new 

Index to information contained in this paper 

1. Introduction 

2. Methodology  

3. Activation Function  
4. Performance comparison of an experimental architecture  
5. Conclusions 



2                          S. Sarabadan & M. Mousavi /𝐼𝐽𝑀2𝐶, 15 -02 (2025) 01-16. 

 

actuator functions to be a more effective and efficient alternative to traditional activation 

functions [10, 16,22]. 

The proliferation of mobile devices, Internet of Things devices and the increasing 

importance of security have led to more advanced and secure authentication methods [3]. 

One of these methods is using radio frequency fingerprint [18,19]. Radio frequency (RF) 

fingerprinting is a technique used to identify and classify radio frequency signals based on 

their unique characteristics, similar to human fingerprints. The goal is to extract a unique 

set of features from the RF signal that can be used to identify the source, type, or behavior 

of the signal. One of the applications of radio fingerprinting is the identification and 

classification of RF signals to identify and prevent unauthorized access to networks 

connected to the Internet of Things in a private area. The steps of using radio fingerprint 

are: signal capture, signal processing and finally extraction of unique features, which is a 

set of numerical values that represent the signal. The applications of deep learning in radio 

frequency are many and varied  [3,23,35]. Artificial intelligence algorithms can be trained 

to classify RF signals based on their characteristics to enable identification of specific 

devices, modulation schemes, or transmission protocols. 

 

 

 
Figure 1. Deep Learning for RF Fingerprinting.  

In this article, an attempt has been made to examine the properties, functions and 

applications of different types of activation functions in a neural network and to describe 

the latest research achievements in this field. Finally, we model a deep neural network on 

a practical problem with laboratory data recorded by a private company, whose purpose is 

to authenticate 4 IoT devices using radio fingerprints. 

After designing the network architecture, using different activator functions with 

appropriate hyperparameters in the hidden layers of the network, network performance has 

been evaluated and the best activation function has been selected for effective and efficient 

network.    

2. Methodology 

2.1. Deep learning and using empirical data 

The method of using data has undergone many changes after the spread of intelligent 

models among researchers and analysts [30]. Today, models based on classical 

mathematics have lost the ability to process and work with huge amounts of data [1,13,14]. 

The role of the emerging phenomenon of technology and the computer field, i.e. artificial 

intelligence, has emerged in data processing. Where the traditional analytical relationships 
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in estimating and processing data that require thousands of parameters in their equations 

will not be able to respond. 

Deep learning is one of the algorithms in the field of machine learning and the newest 

achievement in the field of artificial intelligence, which has received attention due to its 

different applications in modeling science and technology issues, and has attracted 

different trends of science [6,24]. In deep learning, the architect of the neural network by 

deepening the network or in better words, adding hidden layers to the network enables it 

to learn more complex algorithms and receive a huge amount of data. 

Each deep learning model generally consists of input layer, hidden layer and output 

layer. In each layer, depending on the type of network architecture, a number of neurons 

are placed. In the deep learning model, by going from each layer to another layer, the 

weighted sum of the set of neurons of the previous layer is calculated and transferred to 

the next layer. In this case, the outputs of the layers become linear and all layers become a 

similar layer. In this case, the neural network only models a linear function and will not be 

able to distinguish and learn nonlinear boundaries between classes. 

 

 
Figure2. Human neural network vs Deep Learning.  

 

 In deep neural network, it is necessary to use the activation function to activate the 

outputs of each layer. If the activation function is not used, the number of hidden layers 

will not affect the learning of the model. In fact, not using the activation functions only 

creates a linear equation of weights and biases  which cannot help us to solve complex 

problems. A neural network without an activation function is just a linear model [6]. 

In fact, learning in deep neural network by going from each layer to another layer, the 

weighted sum of the set of neurons of the previous layer is calculated and transferred to 

the next layer by applying a non-linear activation function. But how each weight should 

change is a bit complicated. Because the error obtained in the output of the final layer can 

be caused by the neurons of the last layer as well as the neurons of the previous layers. 

These weight changes are done by the backpropagation algorithm [2].  The error 

contribution of each neuron in each specific layer and the process of updating the weights 

continues until the best coefficients are reached. 

2.2. Back propagation algorithm  

Backpropagation is an essential algorithm in machine learning and deep learning that is 

used to train artificial neural networks. It is a supervised learning method, which means 

that the model is trained on labeled data and the goal is to minimize the difference between 

the model predictions and the actual labels [7]. The back-propagation algorithm consists 

of two main steps: 

1.Forward pass: In this step, the input data is propagated through the network to 

calculate the output predictions. 

2.Backward pass: In this step, the error between the predictions and the actual labels 

is calculated and propagated in reverse in the network to update the model parameters. 
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Figure3. Forward pass and Backward pass.  

 

2.3. The role of the derivative of the activation function in backpropagation  

In the backward pass, by calculating the gradient of the cost function according to each 

parameter, the error is propagated backward in the network. These gradients are used to 

update parameters using an optimization algorithm such as gradient descent. The gradients 

of the cost function determine the amount of changes according to parameters such as 

activation function, weights, bias and other relevant items [8]. The derivative of the 

activation function is used to calculate the gradient of the cost function according to the 

inputs of the activation function and plays an important role in the backward pass. 

Not paying attention to the derivative of the activation function causes two basic 

problems in network learning, vanishing gradient and exploding gradient. 

• Vanishing gradient problem or neuronal death 

Some activation functions map their large input values to the range 0 to 1. Therefore, 

the output of the derivative value of the function becomes a very small number. If the 

activation function is used in several consecutive layers, this causes the gradient value to 

decrease exponentially and approach zero. The gradient value approaching zero causes the 

neural network parameters such as weights and bias values in the initial layers of the 

network to not be updated, and therefore the learning of the network is not done properly. 

In fact, the neuron loses its function and therefore this state is called neuronal death [6]. 

• Exploding gradient problem 

The problem of gradient explosion occurs due to the exponential growth and repeated 

multiplication of large gradient values, in this case, the gradient values become more than 

1. This issue makes the amount of updating weights very large, which will lead to network 

instability. Following the explosion of gradients, network learning stops and network 

weights are not updated. 

3. Activation Function 

Due to the central role of activation functions in deep neural networks, the introduction of 

new functions has been the interest of many researchers in recent years [5,2,28,34]. Many 

of trainable activation functions have recently been proposed and there has been a lot of 

interest in this topic for years, as illustrated by the chart below. 
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Figure 4. Number of papers by year on trainable activation functions. 

  
Activation functions are actually like gates that exist in every neuron. The input of this 

gate is the input of each neuron in each layer and its output is transferred to the next layer. 

The activation function decides whether each neuron is activated or not and how its output 

values are expressed if activated. Neural networks use activation functions to help the 

network learn complex data and provide acceptable predictions in the output. 

 

 
Figure 5. Activation functions like gates. 

 

Non-linear activation functions allow the model to adapt to complex and non-linear 

data[10,21]. This is very important for complex data such as photos, videos, signals, etc. 

In this paper, we propose a possible taxonomy of activator functions. This classification is 

based on the possibility of changing the shape of the activation function during the training 

phase.  

We can separate two main categories: 

3.1. Fixed-shape activation functions 

Fixed parameter activation functions, or in other words, nonparametric activation 

functions, are fixed functions that do not rely on any parameters that need to be estimated 

or learned from data. All activation functions with a fixed form, for example, all classical 

activation functions used in neural networks, such as Sigmoid, SoftMax, ReLU, fall into 

this category [12,27,28]. 

•  Sigmoid activation function 

Sigmoid function is a real, bounded and differentiable function that can be defined for all 

real values and has a positive derivative [29]. Show the formula of this function as 

follows: 
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𝑆(𝑥) =
1

1 + 𝑒−𝑥
=

𝑒𝑥

𝑒𝑥 + 1
 

 

The domain of the sigmoid function includes all real numbers and the range of this 

function changes uniformly from 0 to 1 or from 1 to -1 depending on the type of 

function. The derivative of the sigmoid activation function is as follows: 

𝑆′(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) × (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)) 

The sigmoid function is considered a monotonic function, but the derivative of this 

function is not a monotonic function. 

 

 
Figure 6. Graph of sigmoid function with its derivative. 

 

The most important limitation that the sigmoid function creates in neural networks is 

the gradient vanishing problem, which occurs due to the derivative of this function. 

According to the image of the derivative curve of the sigmoid function, the gradient value 

of this function is very small for values greater than 3 or less than -3. When the gradient 

value tends to zero, the network stops learning [7]. 

• ReLU activation function: 

ReLU activation function stands for Rectified Liner Unit. ReLU function is the default 

activation function used in deep learning [15,21,34]. This function is the most popular 

activation function thanks to its simple implementation, good performance and optimal 

effectiveness, and it is defined as follows: 

𝑓(𝑥) = max⁡(0. 𝑥) 

This function considers negative values as zero and positive values and values equal to 

zero as its own value. The derivative of the ReLU function is considered as follows: 

𝑓′(𝑥) = {
0⁡𝑓𝑜𝑟⁡𝑥 < 0
1⁡𝑓𝑜𝑟⁡𝑥 ≥ 0

 

Note that when the input value is exactly equal to zero, the ReLU function is not 

derivable, and by default we consider the left derivative, i.e. zero value. 
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Figure 7. Graph of Rectified Liner Unit function with its derivative. 

 

The ReLU activation function is a cheap computational function and it converges very 

quickly. In addition, it greatly accelerates the convergence of the decreasing gradient 

compared to the Sigmoid and Tanh activation function and can deal with the gradient 

vanishing problem [33]. When most of the inputs to the RELU activation function are in 

the negative range, they cause the decay problem. In the case that most of the outputs of 

the functions become zero, in the post-propagation stage, the gradients do not flow along 

the network and thus, the weights of the network are not updated. 

3.2. Parameterized standard activation functions 

This category is referred to as activation functions  to all functions with a form very similar 

to a given constant form function, but having a set of  learnable parameters that allow this 

shape to be set [11,12,31]. Adding these parameters to standard activation functions, and  

it requires changes in the learning process. For example, when using gradient based 

methods, partial derivatives of these new parameters are required. In the rest of this section, 

the first attempt to have a trainable activation function with the parameter presented in 

[17]. The proposed activation function was a generalization of the classical sigmoid 

function and by adding two parameters to adjust the shape of the activation function, i.e.:  

𝑨𝒅𝒋𝒖𝒔𝒕𝒂𝒃𝒍𝒆⁡𝑮𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒆𝒅⁡𝑺𝒊𝒈𝒎𝒐𝒊𝒅(𝑥) = 𝑨𝑮𝑆𝑖𝑔(𝑥) =
𝛽

1 + 𝑒−𝛼𝑥
 

Both parameters are learned concurrently using gradient descent based on the 

backpropagation algorithm, which calculates the error function's derivatives with respect 

to network parameters. Another generalization of this function that used only one 

parameter was presented in [7,29] as follows: 

𝑆𝑘(𝑥) = (
1

1 + 𝑒−𝑥
)𝑚 

These functions are parameterized by a value 𝑚 ∈ (0,+∞). 

 
Figure 8. The figure illustrates the parametric Sigmoid for various values of 𝑚∈⁡(0.1, 0.5, 

1, 5, 10, and 50) with its derivative. 
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Trottier (2017) [31] proposes an alternative ELU (exponential linear units) unit 

formulation with two learnable parameters, aiming to eliminate manual tuning of the ELU 

parameter, i.e. 

𝑃𝐸𝐿𝑈(𝑥) = {

𝛽

𝛼
𝑥⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑥 ≥ 0

𝛽. (𝑒𝑥 𝛼⁄ − 1)⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑥 < 0

 

The parameters α ,β > 0 regulate the function's shape and are jointly learned with other 

network parameters through a gradient-based optimization method. 

Qiu (2018) [25] propose the following function: 

𝐹𝑙𝑒𝑥𝑖𝑏𝑙𝑒⁡𝑅𝑒𝐿𝑈⁡⁡ = 𝐹𝑅𝑒𝐿𝑈(𝑥) = 𝑅𝑒𝐿𝑈(𝑥 + 𝛼) + 𝛽 

with α , β learned by data. This modification aims to capture lost negative information 

in the classic ReLU function, while also preserving its zero-like property. This 

modification aims to capture lost negative information in the classic ReLU function, while 

also preserving its zero-like property. These efforts are still of interest to researchers today 

due to the different types of neural network models [25]. 

We focus on the Swish parametric activation function, which performed better than 

other activation functions in our neural network modeling. 

3.3. Swish 

In 2018, the swish activation function was introduced for the first time  [4,26], and it is 

defined as follows: 

𝑓(𝑥) = 𝑥 ∗ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
𝑥

1 + 𝑒−𝑥
 

This function is designed to be a more effective and efficient alternative to traditional 

activation functions such as ReLU and its variants. By adding the training parameter to 

this activation function, its new form is as follows: 

𝑆𝑤𝑖𝑠ℎ(𝑥) = 𝑥⁡𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝛽𝑥) =
𝑥

1 + 𝑒−𝛽𝑥
 

❖ If β=1, the Swish function becomes a linear sigmoid function or SiLU [22]. 

❖ In β→+∞ mode, the function becomes ReLU or max (x.0). 

❖ In the case of β→0, the resulting function is linear and equal to x/2. 

❖ In β→-∞ mode, the function becomes min (x.0). 

Like the ReLU activation function, the Swish activation function is bounded from 

above and bounded from below. Unlike the ReLU activation function, the Swish activation 

function is smooth and non-uniform. In fact, the difference between this function and the 

most common activation function is the non-uniformity of the Swish activation function, 

which helps to learn the weights of the network. The derivative of the Swish activation 

function is defined as follows: 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓′(𝑥) = 𝜎(𝛽𝑥) + 𝛽𝑥 ∙ 𝜎(𝛽𝑥)(1 − 𝜎(𝛽𝑥))

= 𝜎(𝛽𝑥) + (𝛽𝑥 ∙ 𝜎(𝛽𝑥)) − ⁡𝛽𝑥 ∙ 𝜎(𝛽𝑥)2

= 𝛽𝑥 × 𝜎(𝛽𝑥) + 𝜎(𝛽𝑥)(1 − 𝛽𝑥 ∙ 𝜎(𝛽𝑥))

= 𝛽𝑓(𝑥) + 𝜎(𝛽𝑥)(1 − 𝛽𝑓(𝑥)) 
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Figure 9. Graph of Swish function with various values of parameters. 

 

The first and second derivatives of the Swish function are shown in the figure below. 

For inputs less than about 1.25, the value of the derivative is less than 1. A successful swish 

means that the gradient is preserved. 

 
Figure 10. The first and second derivatives of the Swish function . 

 

The analysis and examination of the advantages and disadvantages of the swish 

activation  

function compared to other activation functions is given in [2]. Here we briefly discuss 

some of the differences between this activation function and the ReLU function 

• Advantages and disadvantages of Swish activation function: 

One of the advantages of the Swish activator function is the continuity of the function and 

its derivability along with the gentle and controllable slope of the curve. Unlike traditional 

activation functions such as ReLU, which have sharp turns or kinks, Swish is smooth and 

non-uniform. This smoothness helps to learn complex functions and gradient descent 

process during backpropagation. In addition; Unlike the ReLU activation function, it does 
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not suddenly change direction when the value of x is close to zero. In the ReLU activator 

function, negative values are converted to zero; While these negative values may contain 

important information of data patterns. In the Swish function, only large negative values 

are converted to zero. 

The main drawback of the Swish activation function is that because the Swish function 

uses the sigmoid function in its calculations; The calculations of this function are heavier 

than the ReLU activation functions. Another weakness of this function is that based on the 

investigations, the performance of this function is unstable and its output cannot be 

predicted in advance. 

4. Performance comparison of an experimental architecture 

In this section, by using the modeling of a deep neural network, an attempt is made to 

detect the identity change of authorized devices from unauthorized devices to enter the 

local network and to prevent unauthorized devices from entering this secure network. 

Artificial intelligence algorithms can be used for preprocessing and analysis of RF 

signals[3]. In addition, AI-based RF analytics can detect and prevent unauthorized access 

or malicious activity in wireless networks, increasing security and reducing the risk of 

cyber-attacks [35]. Overall, the use of artificial intelligence in RF fingerprinting has the 

potential to significantly improve the accuracy and efficiency of RF signal identification 

and classification, enabling a wide range of applications in wireless communications, cyber 

security, and electronic warfare  [19,23]. In this section, we demonstrate the performance 

of parametric activation functions on an experimental database that deals with the 

authentication of IoT devices. The following sections will describe our experimental setup 

and results in more detail. 

4.1. Modeling an experimental problem with a neural network 

The experimental problem in this article is of supervised learning and classification. In 

order to design the deep neural network of this article, firstly, we have considered the 

database containing the data set with 8000 samples and including 102 features and one 

label as the main data. This data was collected by One RF Hack radio receiver in a building 

with 24 rooms and on 4 Internet of Things devices. In a short time (3 seconds), this device 

records the number of 102 features along with a label that indicates the type of device in 

that particular situation. The database was created by a library named PyRadio in Python 

programming language to record and process wireless radio frequency signals at different 

points and 102 features were extracted and labeled to the desired device. These data have 

been saved in the form of a .csv file and various stages of data processing have been 

performed on it by the Scikit_learn library. TensorFlow platform and Functional API have 

been used for network architecture. 

• Neural network architecture process 

Neural network training involves adjusting the model parameters to minimize the 

difference between the network output and the desired output. The input data used to build 

the model are usually divided into multiple data sets. In particular, three data sets are 

usually used in different stages of model creation: training, validation, and test sets. At 

first, the model is built on a training data set in order to provide the ability to fit the 

parameters of the model by using a set of examples. It is then trained using a supervised 

learning method, such as optimization methods, on the training data set.  Subsequently, the 

model built on the dataset is used to predict the results of the observations on a second 

dataset called the validation dataset.  Finally, the test dataset is the dataset used to provide 

an unbiased evaluation of the final model fit to the training dataset.   
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Figure 11. Experimental data table in TensorFlow platform . 

 

We define the model using TensorFlow and Cross libraries. The number of training 

data in the model was determined to be 6480, equivalent to 70% of the data set. Also, the 

number of test and evaluator data is 800, equivalent to 15% of the total data set, and the 

number of evaluator data is 720, equivalent to 15% of the training data. Each sample has 

102 features as neural network inputs and a label as output. It should be noted that the 

training and test data in this model have the same distribution and the aggregation of the 

test data was not done in a specific area of the training samples. Also, a specific sample of 

devices is not used to measure the performance of the model, and among the 4 types of 

devices in the network training process, there is a test sample among the test data. Figure 

12 shows these claims. We train fully connected networks of different depths on this 

database, each layer having 20 to 40 neurons.  

The presented deep neural network architecture is the result of examining a large 

number of different types of hyperparameters, including the application of different 

methods in the initial weighting of layers, changes in the learning rate of the Adam 

optimizer algorithm [13], changes in the number of hidden layers, neurons and the number 

of repetitions of the network and specifically the types of activation functions. The network 

is optimized using Adam on a batch size of 256, and for fair comparison, we try the same 

number of learning rates for each activation function.  

In the future model, using the possibility of grid search, the appropriate range for the 

hyperparameters of the model, the learning rate is in the range of 0.0001, the number of 

neurons is around 20 to 40, and the number of hidden layers is between 3 and 5. is provided. 

All networks are initialized with He initialization (He et al., 2015) [15]. The Python codes 

related to the network architecture are located at the GitHub address 
https://github.com/SaeidSarabadan/RF_with_-ANN. 

4.2. Comparison of activation functions on the model 

The following figure shows the test accuracy when changing the number of layers in the 

model with different activation functions on the experimental problem. This figure shows 

the average result of 3 runs. 

In our experiments, activation functions up to 4 layers have almost the same 

performance. However, as shown in the figure, Swish outperforms the other activation 

functions by a large margin in the range between 3 and 4.  

We compare Swish with several parametric activation functions in this experimental 

model and using the grid search process in the parameters of the activation functions, we 

have reached the results that we have given in Table 15. Since there are many parametric 

activation functions, we have selected the most common ones as follows : 
 

 

https://github.com/SaeidSarabadan/RF_with_-ANN
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Figure 12: Distribution plot of Feature lable. 

 

 

• Leaky ReLU (LReLU)[21] (Maas et al., 2013): 

 𝑓(x) = {
x x ≥ 0
αx x < 0

  Where α = 0.868. 

• Scaled Exponential Linear Unit [20] (SELU( (Klambauer et al., 2017): 

 ⁡SELU(x) = λ {
α(ex − 1).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡for⁡x < 0
x.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡for⁡x ≥ 0

⁡⁡⁡Where α ≈ 1.8683⁡and⁡λ ≈ 1.0483⁡. 

• Parametric ReLU [15] (PReLU) (He et al., 2015):  

The same form as LReLU but α is a learnable parameter. Each channel has a shared   

α which is initialized to 0.12. 

• Smish [32]  (Achuan Wang et al., 2022): 

 

𝑀𝑖𝑠ℎ(𝑥) = 𝑥 ∙ 𝑡𝑎𝑛ℎ⁡(𝑙𝑛(1 + 𝑒𝑥)) 
𝑆𝑚𝑖𝑠ℎ(𝑥) = 𝑥 ∙ 𝑡𝑎𝑛ℎ⁡(𝑙𝑛(1 + sigmoid(x)) 

 

The Smish function aligns with the Logish function in its early stages by using the 

sigmoid function to reduce value ranges and applying a logarithmic operation to create a 

smooth curve and stable trend [9,12]. 

• Swish[26] (Ramachandran, P ,  2018]): 

by adding a multiplicative coefficient to the SiLU function, and obtaining: 

𝑆𝑤𝑖𝑠ℎ(𝑥) = 𝑥⁡𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝛽𝑥) =
𝑥

1 + 𝑒−𝛽𝑥
 

With 𝛽 = 1.852 
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Here, due to the fact that the wish activation function has a higher efficiency in this 

experimental example, its network architecture specifications are given in the table below, 

and this table has been omitted for other activation functions used. 
 

 

 
Figure 13.The test accuracy when changing the number of layers in fully connected    

networks with different activation functions. 

 
Table 1. Performance of Swish activation function on experimental dataset. 

 

As mentioned before, we have considered 15 percent of the training data in order to 

avoid overfitting the model, whose We plot the learning curves for this model with swish 

activation function in Figure 14. 

Swish activation function. 

Loss function: Categorical Cross Entropy. Optimizer algorithm is ADAM with learning 

rate=0.0001  ،𝜷𝟐 = 𝜷𝟏و   𝟎.𝟗𝟗𝟖 = 𝟎.𝟗𝟕. 

The number of epochs is 3000. 
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3064 461.7 0.3 0.7522 0.7560 0.7895 0.7545 1.852 20,40 2 

3804 474.9 0.3 0.7612 0.7641 0.7616 0.7610 1.852 20,40,20 3 

4384 388.5 0.3 0.7822 0.7895 0.7845 0.7814 1.852 10,20,30,40 4 



14                          S. Sarabadan & M. Mousavi /𝐼𝐽𝑀2𝐶, 15 -02 (2025) 01-16. 

 

 

Figure 14. Training curves of Model. 

• Performance comparison of an experimental architecture 

We have compared all the activation functions in various designed architectures and on 

the collected authentication database. For each activation function, we try 3 different 

learning rates with ADAM and pick the best. To verify that the performance differences 

are reproducible, we run the Models experiments 3 times with the best learning rate from 

the first experiment. The results in Tables 2 show strong performance for Swish. 

 
Table 2. Performance of Multiple activation functions on experimental dataset. 

ReLU ،Swish  ،LReLU  ،PReLU و   SELU 

Loss function: Categorical Cross Entropy. Optimizer algorithm is ADAM with learning rate=0.0001  ،

𝜷𝟐 = 𝟎. 𝜷𝟏و   𝟗𝟗𝟖 = 𝟎.𝟗𝟕. The number of epochs is 3000.The hidden layer :20,30,40,10 with 4384 

parameters. 
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Number of 

neurons 

345.3 0.3123 0.6951 0.7069 0.6991 0.6912  _ RELU)2010 ( 

522.6 0.3254 0.6893 0.6811 0.6885 0.6894 0.0158 Leaky ReLU  )2013( 

501.8 0.389 0.6996 0.7041 0.6997 0.6981 0.23 
Parametric 

ReLU)2015 ( 

459.6 0.3921 0.7179 0.7215 0.7140 0.7183 
α = 1.86 

λ = 1.04 
SELU  )2017 ( 

478/9 0.3628 0.7568 0.7561 0.7569 0.7565  _ Mish  )2019( 

388.5 0.3876 0.7829 0.7895 0.7845 0.7814 1.852 Swish )2018 ( 
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Swish also matches or exceeds the best performing baseline on most models, where 

again, the best performing baseline differs depending on the model. Our study shows that 

Swish consistently outperforms ReLU, Parametric ReLU, SELU, on this model. 

5. Conclusion 

In this work, we improved the architecture of a deep neural network aimed at authenticating 

IoT devices by using different parametric activation functions. Among the most important 

results obtained in this article, we can mention the reduction of the error rate and time of 

model training and the increase of accuracy and speed of model training with the changes 

of the activator functions. According to our experimental test, the swish activation function 

was selected as the best option by determining the appropriate parameter. The use of 

convolutional networks in this research was not considered due to the type of database and 

having simple and one-dimensional numerical data, but it is recommended for modeling 

with larger data and higher dimensions. 

Authentication in the Internet of Things is one of the most important and up-to-date 

issues, and it is done by different methods, and the use of neural networks is considered 

one of the effective methods. The database used is in a private location and collected by 

the One RF Hack radio receiver device.  
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