

Study of Iron Spongy powder Effect on Microwave Absorbing Properties of Iron Spongy powder/ Epoxy Resin Composites

E. Khosravipanah^{1, 2,*}, A. Salemi Golezani^{1, 2}, H. Sabet^{1, 2}

¹ Department of Materials Engineering, Ka.C., Islamic Azad University, Karaj, Iran

²Institute of Manufacturing Engineering and Industrial Technologies, Ka.C., Islamic Azad University, Karaj, Iran

Abstract

Electromagnetic wave (EMW) absorbing materials working at gigahertz band have attracted increasing attention because of the increasing electromagnetic interference and radiation problems. Therefore, with development of wireless electronic devices, we need to have knowledge on some devices that should absorb harmful radiation. so today, absorbers are doubly necessary. In this study, iron spongy powder (ISP) used for microwave absorption. For the fabrication of composite samples, ISP and epoxy resin were used. In the composite compound, values of weight percentages 5, 10, 15, and 20 % were selected. Scanning electron microscope (SEM) was used to analyze the microstructure ISP. The microwave reflection loss (R.L.) have been investigated using a Vector Network Analyzer (VNA) at the X-band (8–12 GHz). The thickness of the ISP/epoxy composites was 2 mm. Compared with the microwave absorption performance, the minimum R.L. value is -7.4 dB with the 20 wt % at 10.7 GHz. It was concluded the increase in the weight percentage of sponge iron powder had an impact on improving microwave absorption performance.

Key words: Composite, Microwave absorber Materials, Sponge Iron, Reflection Loss.

1. Introduction

Nowadays, with the fast progress of electronic techniques, excessive electromagnetic radiation in the microwave band leads to a large number of serious hazards, e.g. electromagnetic interference (EMI), electromagnetic leakage of classified information, and possible health problems for human beings, etc [1–6]. Electromagnetic contamination gradually becomes one of the non-negligible hazard factors to be addressed urgently. Among the many methods of electromagnetic protection, the design and preparation of electromagnetic-wave absorption materials (EWAMs) has been proven to be a very effective technique for eliminating such troubles induced by excessive microwave radiation [7–12]. Electromagnetic wave (EMW) absorption materials such as MXene

[13], rare earth [14], and carbon materials [15–19] have attracted significant attention in recent years for their ability to efficiently convert incident microwaves into heat and other forms of energy [14,20,21]. Although conventional EMW absorption materials, including ferrites, ceramics, metal oxides [22], etc. exhibit excellent microwave absorption efficiency, they often suffer from high density and lack of tunability. Ideal EMW absorption materials should possess characteristics such as strong absorption capability, broad absorption range, thin thickness and low filling ratio, etc [23–25]. Moreover, given the widespread applications of EMW materials, the fabrication of microwave absorbers should also meet the requirements in the practical [26,27] or industrial realm, including accessible raw materials and facile preparation methods conducive to mass production [16]. The growing need for microwave absorbing materials requires effective and cost effective solutions for both defense and civilian fields. Microwave absorbing materials impart stealth features which increase the possibility of survivability of the military equipment in the advent of any war. Apart from instilling stealth features to the military equipment, microwave absorbing materials also plays a significant role in suppressing the problem of electromagnetic interference (EMI) problem in this technology-driven era. EMI not only disrupts the proper functioning of electronic gadgets by interfering with the electronic circuitry but also acts as a source for hazardous health implications to human and other biological systems from chronic exposures to microwave radiations [28,29]. In response to the need, much attention has been focused on tailoring the structural parameters of the microwave absorbers to achieve enhanced microwave absorbing properties. The importance of microwave absorbing materials has significantly drawn the keen attention of the searchers to develop new materials and techniques for achieving enhanced microwave absorption [30–33].

Iron powder and ferrite are magnetic materials are usually used as microwave absorbencies [34,35]. Previous research [36] reported that the thicknesses of microwave absorbing composites containing CIPs 0.3–0.6 volume content (77–92 wt %) were all 1 mm; such composites reached 10 dB R.L. at S, C, X, and Ku bands. Although their thickness was only 1 mm, containing too much CIPs would make the composites inflexible, heavy, and easily-broken.

Two US patents [37,38] and the Sandia report [39] showed that iron powders with spongy and porous structures were usually used in heating compositions for thermo-piles and electrical energy accumulators, such as electrical Ni–Cd cells or Ni–metal hydride cells. Since the spongy structure

and porous characteristic, spongy iron powders (SIPs) possess high surface areas, which lead to plenty of interfacial polarization to weaken the energy of EM waves. In this study, the SIP were used to be bound with the epoxy for the preparation of microwave absorbing composites.

2. Materials and Methods

The iron powder was bound with epoxy to prepare microwave-absorbing composites. In total, four samples with dimensions of 0.9×2.4 in² were prepared. The microwave R.L. at the X-band was measured.

The reflection loss (RL) and transmission loss (TL) were measured by using vector network analyzer (VNA) to study the microwave absorption properties in the frequency range of 8–12 GHz (X-band) as can be seen in figure 1 [40].

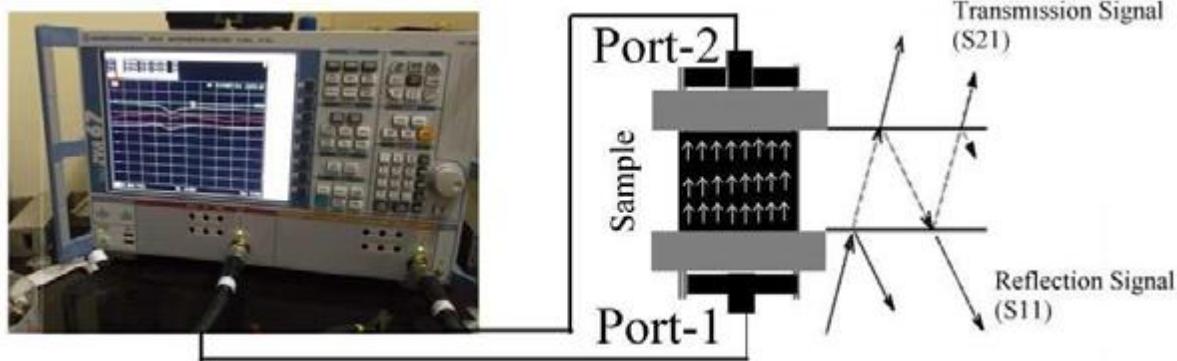


Fig. 1. The experimental vector network in the frequency of 8–12 GHz.

3. Results and Discussion

3.1. Morphological and physical properties of the ISP

Fig. 4. shows the SEM images of ISP, which was prepared in this study. They show that the structure of ISP is spongy, noodle-like, and porous. Therefore, it could be suspected that the ISP may have a large specific area.

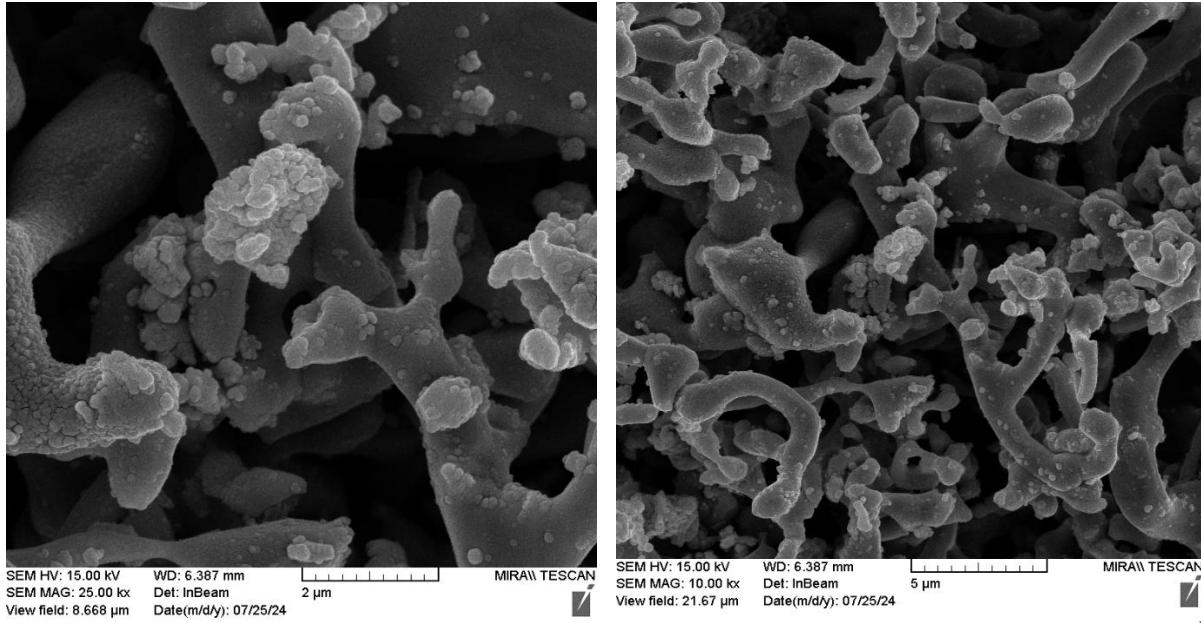


Fig. 2. The SEM of the ISP

3.2. Microwave absorption performance

The spongy structure of ISP possesses a high content of pores. Since ISP possess a special structure and a large specific surface due to their porous character, the ISP would enhance microwave absorbency by the larger microwave interaction area. There are two parameters of flat microwave absorbing composites for controlling microwave absorbing frequency. One is the weight percentage of absorbencies, and the other is the thickness of microwave absorbing materials. Particularly, in comparison with previous research on microwave absorbing, this study tuned the compositions and the thickness of samples to control the absorbing peaks at X-band.

According to the transmission line theory, the RL values can be calculated by the following equations [41,42].

$$RL \text{ (dB)} = 20 \log \left| \frac{Z_{in} - Z_0}{Z_{in} + Z_0} \right| \quad (1)$$

$$Z_{in} = Z_0 = \sqrt{\frac{\mu_r}{\epsilon_r}} \tanh \left[j \left(\frac{2 \pi f d}{c} \sqrt{\mu_r \epsilon_r} \right) \right] \quad (2)$$

where Z_0 is the impedance of free space, Z_{in} is the input impedance of the absorber, f is the working frequency, d is the thickness of the absorber, c is the velocity of light, μ_r and ϵ_r complex permeability and complex permittivity of the absorber material respectively.

Fig. 3 shows the reflection loss curves of four groups of ISP composites with different weight percentage values in the frequency range of 8-12 GHz. From Fig. 3 it can be seen that the addition of ISP makes the composites have EM microwave absorption properties. Among them, the composites with ISP content of 20 wt% have the best microwave-absorbing effect, and the minimum reflection loss of -7.4 dB at 10.7 GHz is achieved at a thickness of 2 mm. In addition, the reflection loss curves of the composites are mainly concentrated in the low-frequency range of 6~9 GHz, which indicates that the loss absorption of EM microwaves by the composites mainly occurs at the low frequency, and the experimentally prepared ISP/epoxy composites have a better advantage of low-frequency EM microwave absorption performance. It is important to note that the composite can be used directly to make the required structural absorbers rather than just as a coating material.

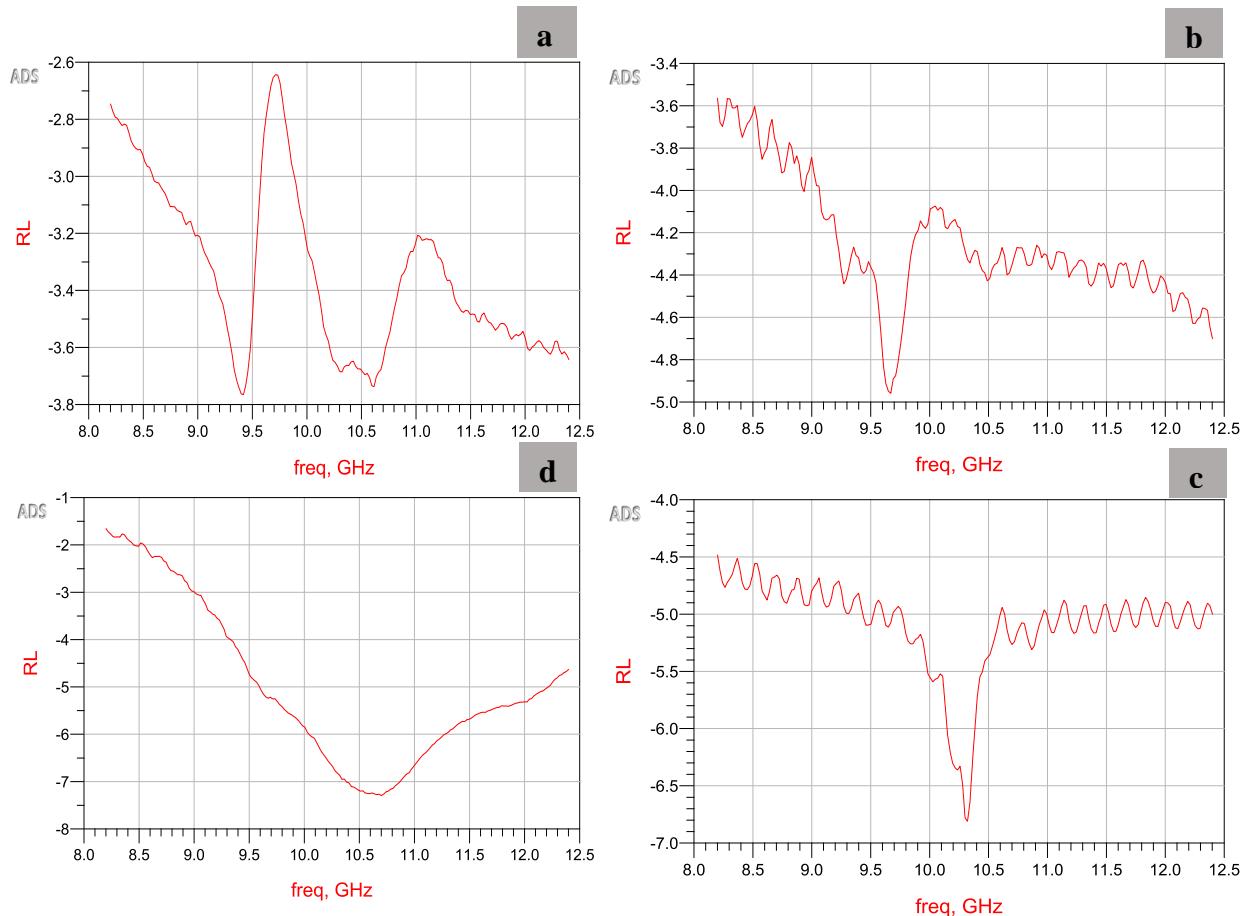


Fig. 3. Reflection loss curves of ISP/epoxy composites: (a) 5 wt%, (b) 10 wt%, (c) 15 wt%, (d) 20 wt%.

Normally EM microwaves are partially reflected when they are incident on the surface of a material. In order to make the EM microwaves better incident on the inside of the material instead of reflecting on the surface, good impedance matching is required; however, good impedance matching will, to a certain extent, make the material's ability to attenuate the EM microwaves lower. Therefore, the attenuation and impedance matching of EM microwaves need to be coordinated during practical application.

The attenuation constant (α), representing the internal attenuation ability of the materials, can be calculated by the following equation [43]

$$\alpha = \sqrt{2\pi f c} \times \sqrt{(\mu''\epsilon'' - \mu'\epsilon') + \sqrt{(\mu''\epsilon'' - \mu'\epsilon')^2 + (\mu''\epsilon'' + \mu'\epsilon')^2}} \quad (3)$$

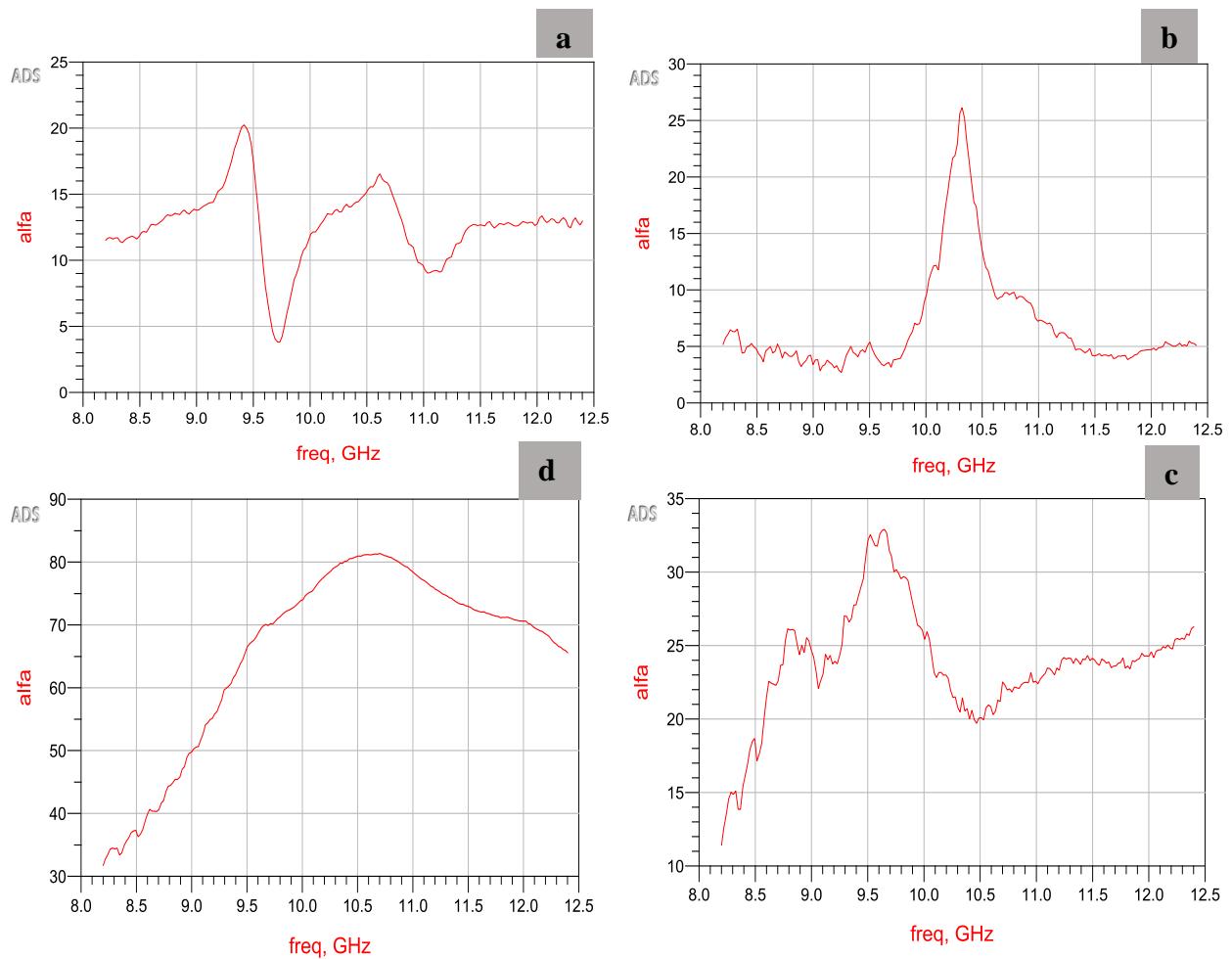


Fig. 4. The attenuation constant (α) of ISP/epoxy composites: (a) 5 wt%, (b) 10 wt%, (c) 15 wt%, (d) 20 wt%.

Fig. 4 demonstrates the composite attenuation coefficient showing normal variation with frequency. The trends of the peak values of the attenuation coefficients of the four groups of composites with different ISP contents are basically the same, among which the peak values of the attenuation constants of the composite with 20 wt% ISP content are significantly higher than those of the other groups, indicating that their microwave-absorbing performances are more superior than that of the other groups, which corresponds to that of the composites with the best microwave-absorbing performances in the composite with the 20 wt% ISP content in Fig. 3. Good impedance matching is very important for microwave-absorbing materials; the more consistent the characteristic impedance of the material composite, the closer the synergistic effect is to the free-space characteristic impedance, the more EM microwaves will penetrate into the microwave-absorbing material, and the better the microwave-absorbing performance will be [44].

4. Conclusion

The studied material shows microwave absorption properties in the frequency range of 8–12 GHz. The resulting R.L. and absorption values were -7.4 dB and 80% for ISP/epoxy composite with the 20 wt%. respectively. The production of composites with sponge iron powder is very cost-effective due to its low price. Due to ISP's spongy structure and porous characteristics, the powders can be used as a microwave absorbent. Thus, the composites consisting of ISP could be applied as microwave-absorbing materials.

References

- [1] Huo K, Yang S, Zong J, Chu J, Wang Y, Cao M, Research progress on spherical carbon-based electromagnetic wave absorbing composites. *Carbon*. 2023; 213: 118193.
- [2] Zhao H, Wang F, Cui L, Xu X, Han X, Du Y, Composition Optimization and Microstructure Design in MOFs-Derived Magnetic Carbon-Based Microwave Absorbers. *Nano-Micro Letters*. 2021; 13: 208.
- [3] He M, Hu J, Yan H, Zhong X, Zhang Y, Liu P, Kong J, Gu J, Shape Anisotropic Chain-Like CoNi/Polydimethylsiloxane Composite Films with Excellent Low-Frequency Microwave Absorption and High Thermal Conductivity. *Advanced Functional Materials*. 2025; 35: 2414910.
- [4] Zhang Y, Kong J, Gu J, New generation electromagnetic materials: harvesting instead of dissipation solo. *Science Bulletin*. 2022; 67: 1413.
- [5] Lv H, Yao Y, Li S, Wu G, Zhao B, Zhou X, Dupont R. L, Kara U. I, Zhou Y, Xi S, Liu B, Che R, Zhang J, Xu H, Adera S, Wu R, Wang X, Staggered circular nanoporous graphene converts electromagnetic waves into electricity. *Nature Communications*. 2023; 14: 1982.
- [6] Jia Z, Zhang X, Gu Z, Wu G, MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber. *Advanced Composites and Hybrid Materials*. 2023; 28: 6.

[7] Yin P, Wu G, Tang Y, Liu S, Zhang Y, Bu G, Dai J, Zhao Y, Liu Y, Structure regulation in N-doping biconical carbon frame decorated with CoFe₂O₄ and (Fe, Ni) for broadband microwave absorption. *Chemical Engineering Journal*. 2022; 446: 136975.

[8] Sun L, Zhu Q, Jia Z, Guo Z, Zhao W, Wu G, CrN attached multi-component carbon nanotube composites with superior electromagnetic wave absorption performance. *Carbon*. 2023; 208: 1.

[9] Wang J, Zheng Q, Cao W, Zhai H, Cao M, Heterodimensional hybrids assembled with multiple-dimensional copper selenide hollow microspheres and graphene oxide nanosheets for electromagnetic energy conversion and electrochemical energy storage. *Advanced Composites and Hybrid Materials*. 2024; 7: 14.

[10] Zhong X, He M, Zhang C, Guo Y, Hu J, Gu J, Heterostructured BN@Co-C@C Endowing Polyester Composites Excellent Thermal Conductivity and Microwave Absorption at C Band. *Advanced Functional Materials*. 2024; 34: 2313544.

[11] Jiang Z, Si H, Li Y, Li D, Chen H, Gong C, Zhang J, Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. *Nano Research*. 2022; 15: 8546.

[12] Zhao H, Xu X, Wang Y, Fan D, Liu D, Lin K, Xu P, Han X, Du Y, Heterogeneous Interface Induced the Formation of Hierarchically Hollow Carbon Microcubes against Electromagnetic Pollution. *Small*. 2020; 16: 2003407.

[13] Jiang Z, Gao Y, Pan Z, Zhang M, Guo J, Zhang J, Gong C, Pomegranate-like ATO/SiO₂ microspheres for efficient microwave absorption in wide temperature spectrum. *Journal of Materials Science & Technology*. 2024; 174: 195-203.

[14] Zhao J, Wang B, Liu T, Luo L, Wang Y, Zheng X, Wang L, Su Y, Guo J, Fu H, Chen D, Study of in situ formed quasicrystals in Al-Mn based alloys fabricated by SLM. *Journal of Alloys and Compounds*. 2022; 909: 164847.

[15] Yang J, Chen Y, Yan X, Liao X, Wang H, Liu CH, Wu H, Zhou Y, Gao H, Xia Y, Zhang H, Li X, Wang T, Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. *Composites Science and Technology*. 2023; 240: 110093.

[16] Lyu L, Wang F, Zhang X, Qiao J, Liu Ch, Liu J, CuNi alloy/ carbon foam nanohybrids as high-performance electromagnetic wave absorbers. *Carbon*. 2021; 172: 488-496.

[17] Li W. H, Liang H. J, Hou X. K, Gu Zh. Y, Zhao X. X, Guo J. Z, Yang Xu, Wu X. L, Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery. *Journal of Energy Chemistry*. 2020; 50: 416-423.

[18] Ren Y, Xu L, Sun Y, Li X, Shen Zh, Li H, Liu J, Study on oxidation behavior during process of recycling carbon fibers from CFRP by pyrolysis. *Journal of Environmental Management*. 2023; 347: 119103.

[19] Ren Y, Yan T, Huang Zh, Zhou Q, Hua K, Li X, Du Y, Jia Q, Zhang L, Zhang H, Wang H, Cryogenic wear behaviors of a metastable Ti-based bulk metallic glass composite. *Journal of Materials Science & Technology*. 2023; 134: 33-41.

[20] Ma J, Cai H, Zou J, Lin J, Li J, Huang Y, Zhang Sh, Yuan B, Sodium hydroxide-enhanced acetaminophen elimination in heat/peroxymonosulfate system: Production of singlet oxygen and hydroxyl radical. *Chemical Engineering Journal*. 2022; 429: 132438.

[21] Zhang F, Xu D, Zhang D, Ma L, Wang J, Huang Y, Chen M, Qian H, Li X, A durable and photothermal superhydrophobic coating with entwinned CNTs-SiO₂ hybrids for anti-icing applications. *Chemical Engineering Journal*. 2021; 423: 130238.

[22] Koo W. T, Jang J. S, Kim I. D, Metal-Organic Frameworks for Chemiresistive Sensors. *Chem*. 2019; 5: 1938-1963.

[23] Shan Zh, Cheng S, Wu F, Pan X, Li W, Dong W, Xie A, Zhang G, Electrically conductive Two-dimensional Metal-Organic frameworks for superior electromagnetic wave absorption. *Chemical Engineering Journal*. 2022; 446: 137409.

[24] Miao P, Liu J, He M, Leng X, Li Y, Bio-based non-isocyanate polyurethane with closed-loop recyclability and its potential application. *Chemical Engineering Journal*. 2023; 475: 146398.

[25] Jiao Y, Li J, Xie A, Wu F, Zhang K, Dong W, Zhu X, Confined polymerization strategy to construct polypyrrole/zeolitic imidazolate frameworks (PPy/ZIFs) nanocomposites for tunable electrical conductivity and excellent electromagnetic absorption. *Composites Science and Technology*. 2019; 174: 232-240.

[26] Wang Y, Zhang W, Wu X, Luo Ch, Wang Q, Li J, Hu L, Conducting polymer coated metal-organic framework nanoparticles: Facile synthesis and enhanced electromagnetic absorption properties. *Synthetic Metals*. 2017; 228: 18-24.

[27] Ahmadijokani F, Molavi H, Rezakazemi M, Tajahmadi Sh, Bahi A, Ko F, Aminabhavi T, Li J, Arjmand M, UiO-66 metal-organic frameworks in water treatment: A critical review. *Progress in Materials Science*. 2022; 125: 100904.

[28] Wang P, Cheng L, Zhang L, One-dimensional carbon/SiC nanocomposites with tunable dielectric and broadband electromagnetic wave absorption properties. *Carbon*. 2017; 125: 207-220.

[29] Wang P, Cheng L, Zhang Y, Zhang L, Flexible SiC/Si3N4 composite nanofibers with in situ embedded graphite for highly efficient electromagnetic wave absorption. *Applied Materials & Interfaces*. 2017; 9: 28844-28858.

[30] Kumar A, Agarwala V, Singh D, Effect of particle size of BaFe12O19 on the microwave absorption characteristics in X-band. *Progress In Electromagnetics Research*. 2013; 29: 223-236.

[31] Zhang B, Li J, Sun J, Zhang S, Zhai H, Du Z, Nanometer silicon carbide powder synthesis and its dielectric behavior in the GHz range. *Journal of the European Ceramic Society*. 2002; 22: 93-99.

[32] Kumar A, Agarwala V, Singh D, Microwave absorbing behavior of metal dispersed TiO₂ nanocomposites. *Advanced Powder Technology*. 2014; 25: 483-489.

[33] Feng Y, Qiu T, Enhancement of electromagnetic and microwave absorbing properties of gas atomized Fe-50 wt.% Ni alloy by shape modification. *Journal of Magnetism and Magnetic Materials*. 2012; 324: 2528-2533.

[34] Kurian P, Prema K, HAnantharamaniyer MR, Suma MN, Joseph M, Permittivity Characteristics in the X- and S-Band Frequencies of Microwave Absorbers Based on Rubber Ferrite Composites. *Journal of Elastomers & Plastics*. 2008; 40: 341-346.

[35] Jou CJG, Hsieh SC, Lee CL, Lin C, Huang HW. Combining zero-valent iron nanoparticles with microwave energy to treat chlorobenzene. *Journal of the Taiwan Institute of Chemical Engineers*. 2010; 41: 216-220.

[36] Zhang B, Feng Y, Xiong J, Yang Y, Lu YH. Microwave-absorbing properties of deaggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz. *IEEE Transactions on Magnetics*. 2006; 42: 1778-1781.

[37] Welbone WW, Fia B. US Patent 1983; No. 4, 414,021.

[38] Tailhades P, Gameville SOD, Carles V, Pinsaguel, Rousset A, Agne RS. US Patent 2002; No. 6, 464,750.

[39] Ronald AG. Development history of Fe/KClO₄ heat powders at Sandia and related aging issues for thermal batteries. In: Sandia Report SAND; 2001.

[40] Handoko E, Marpaung M. A, Jalil Z, Rahwanto A, et al, Microwave absorption studies in X-band of magnetized barium hexaferrite. *Journal of Physics*. 2024; 2866: 12025.

[41] Wang G, Gao Z, Wan G, Lin S, Yang P, Qin Y, High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergisti c microwave absorbers. *Nano Research*. 2014; 7: 704-716.

[42] Wei S, Wang X, Zhang B, Yu M, Zheng Y, Wang Y, Liu J, Preparation of hierarchical core-shell C@NiCo₂O₄@Fe₃O₄ composites for enhanced microwave absorption performance. *Chemical Engineering Journal*. 2017; 314: 477-487.

[43] Yang E, Qi X, Xie R, Bai Z, Jiang Y, Qin S, Zhong W, Du Y, Core@shell@shell structured carbon-based magnetic ternary nanohybrids: Synthesis and their enhanced microwave absorption properties. *Applied Surface Science*. 2018; 441: 780-790.

[44] Xue W, Yang G, Bi S, Zhang J, Hou Z, Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO₂/ZIF-8@ZIF-67 for electromagnetic wave Absorption. *Carbon*. 2021; 173: 521-527.