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Abstract  

 

Electromagnetic wave (EMW) absorbing materials working at gigahertz band have attracted 

increasing attention because of the increasing electromagnetic interference and radiation problems. 

Therefore, with development of wireless electronic devices, we need to have knowledge on some 

devices that should absorb harmful radiation. so today, absorbers are doubly necessary. In this 

study, iron spongy powder (ISP) used for microwave absorption. For the fabrication of composite 

samples, ISP and epoxy resin were used. In the composite compound, values of weight percentages 

5, 10, 15, and 20 % were selected. Scanning electron microscope (SEM) was used to analyze the 

microstructure ISP. The microwave reflection loss (R.L.) have been investigated using a Vector 

Network Analyzer (VNA) at the X-band (8–12 GHz). The thickness of the ISP/epoxy composites 

was 2 mm. Compared with the microwave absorption performance, the minimum R.L. value is -

7.4 dB with the 20 wt % at 10.7 GHz. It was concluded the increase in the weight percentage of 

sponge iron powder had an impact on improving microwave absorption performance. 

 
Key words: Composite, Microwave absorber Materials, Sponge Iron, Reflection Loss. 

 

1. Introduction 

Nowadays, with the fast progress of electronic techniques, excessive electromagnetic radiation 

in the microwave band leads to a large number of serious hazards, e.g. electromagnetic interference 

(EMI), electromagnetic leakage of classified information, and possible health problems for human 

beings, etc [1–6]. Electromagnetic contamination gradually becomes one of the non-negligible 

hazard factors to be addressed urgently. Among the many methods of electromagnetic protection, 

the design and preparation of electromagnetic-wave absorption materials (EWAMs) has been 

proven to be a very effective technique for eliminating such troubles induced by excessive 

microwave radiation [7–12]. Electromagnetic wave (EMW) absorption materials such as MXene 



[13], rare earth [14], and carbon materials [15–19] have attracted significant attention in recent 

years for their ability to efficiently convert incident microwaves into heat and other forms of 

energy [14,20,21]. Although conventional EMW absorption materials, including ferrites, 

ceramics, metal oxides [22], etc. exhibit excellent microwave absorption efficiency, they often 

suffer from high density and lack of tunability. Ideal EMW absorption materials should possess 

characteristics such as strong absorption capability, broad absorption range, thin thickness and low 

filling ratio, etc [23–25]. Moreover, given the widespread applications of EMW materials, the 

fabrication of microwave absorbers should also meet the requirements in the practical [26,27] or 

industrial realm, including accessible raw materials and facile preparation methods conducive to 

mass production [16]. The growing need for microwave absorbing materials requires effective and 

cost effective solutions for both defense and civilian fields. Microwave absorbing materials impart 

stealth features which increase the possibility of survivability of the military equipment in the 

advent of any war. Apart from instilling stealth features to the military equipment, microwave 

absorbing materials also plays a significant role in suppressing the problem of electromagnetic 

interference (EMI) problem in this technology-driven era. EMI not only disrupts the proper 

functioning of electronic gadgets by interfering with the electronic circuitry but also acts as a 

source for hazardous health implications to human and other biological systems from chronic 

exposures to microwave radiations [28,29]. In response to the need, much attention has been 

focused on tailoring the structural parameters of the microwave absorbers to achieve enhanced 

microwave absorbing properties. The importance of microwave absorbing materials has 

significantly drawn the keen attention of the searchers to develop new materials and techniques 

for achieving enhanced microwave absorption [30–33]. 

Iron powder and ferrite are magnetic materials are usually used as microwave absorbencies 

[34,35]. Previous research [36] reported that the thicknesses of microwave absorbing composites 

containing CIPs 0.3–0.6 volume content (77–92 wt %) were all 1 mm; such composites reached 

10 dB R.L. at S, C, X, and Ku bands. Although their thickness was only 1 mm, containing too 

much CIPs would make the composites inflexible, heavy, and easily-broken. 

Two US patents [37,38] and the Sandia report [39] showed that iron powders with spongy and 

porous structures were usually used in heating compositions for thermo-piles and electrical energy 

accumulators, such as electrical Ni–Cd cells or Ni–metal hydride cells. Since the spongy structure 



and porous characteristic, spongy iron powders (SIPs) possess high surface areas, which lead to 

plenty of interfacial polarization to weaken the energy of EM waves. In this study, the SIP were 

used to be bound with the epoxy for the preparation of microwave absorbing composites.  

 

2. Materials and Methods 

 

The iron powder was bound with epoxy to prepare microwave-absorbing composites. In total, 

four samples with dimensions of 0.9 × 2.4 in² were prepared. The microwave R.L. at the X-band 

was measured. 

The reflection loss (RL) and transmission loss (TL) were measured by using vector network 

analyzer (VNA) to study the microwave absorption properties in the frequency range of 8–12 GHz 

(X–band) as can be seen in figure 1 [40]. 

 

 

Fig. 1. The experimental vector network in the frequency of 8–12 GHz. 

 

 

3. Results and Discussion 

 

3.1. Morphological and physical properties of the ISP 

 

Fig. 4. shows the SEM images of ISP, which was prepared in this study. They show that the 

structure of ISP is spongy, noodle-like, and porous. Therefore, it could be suspected that the ISP 

may have a large specific area.  

 



  

 

 

Fig. 2. The SEM of the ISP 

 

3.2. Microwave absorption performance 

 

The spongy structure of ISP possesses a high content of pores. Since ISP possess a special 

structure and a large specific surface due to their porous character, the ISP would enhance 

microwave absorbency by the larger microwave interaction area. There are two parameters of flat 

microwave absorbing composites for controlling microwave absorbing frequency. One is the 

weight percentage of absorbencies, and the other is the thickness of microwave absorbing 

materials. Particularly, in comparison with previous research on microwave absorbing, this study 

tuned the compositions and the thickness of samples to control the absorbing peaks at X-band. 

According to the transmission line theory, the RL values can be calculated by the following 

equations [41,42]. 

 

RL (dB)= 20 log |Zin−Z0

Zin+Z0
|                                                                                                                      (1)  

 

Zin = Z0 = √
μr 

Ɛr
 tanh [𝑗 (

2 π𝑓𝑑 

𝑐
√μr Ɛr)]                                                                                                         (2) 

 

where Z0 is the impedance of free space, Zin is the input impedance of the absorber, f is the 

working frequency, d is the thickness of the absorber, c is the velocity of light, μr and εr complex 

permeability and complex permittivity of the absorber material respectively. 



Fig. 3 shows the reflection loss curves of four groups of ISP composites with different weight 

percentage values in the frequency range of 8-12 GHz. From Fig. 3 it can be seen that the addition 

of ISP makes the composites have EM microwave absorption properties. Among them, the 

composites with ISP content of 20 wt% have the best microwave-absorbing effect, and the 

minimum reflection loss of -7.4 dB at 10.7 GHz is achieved at a thickness of 2 mm. In addition, 

the reflection loss curves of the composites are mainly concentrated in the low-frequency range of 

6~9 GHz, which indicates that the loss absorption of EM microwaves by the composites mainly 

occurs at the low frequency, and the experimentally prepared ISP/epoxy composites have a better 

advantage of low-frequency EM microwave absorption performance. It is important to note that 

the composite can be used directly to make the required structural absorbers rather than just as a 

coating material. 

 

 

  

 
 

 
Fig. 3. Reflection loss curves of ISP/epoxy composites: (a) 5 wt%, (b) 10 wt%, (c) 15 wt%, (d) 20 wt%. 
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c d 



Normally EM microwaves are partially reflected when they are incident on the surface of a 

material. In order to make the EM microwaves better incident on the inside of the material instead 

of reflecting on the surface, good impedance matching is required; however, good impedance 

matching will, to a certain extent, make the material's ability to attenuate the EM microwaves 

lower. Therefore, the attenuation and impedance matching of EM microwaves need to be 

coordinated during practical application. 

The attenuation constant (α), representing the internal attenuation ability of the materials, can 

be calculated by the following equation [43] 

 

  α= √2πfc × √(με −  με) + √(με − με )2  + (με + με )2                                                                                   (3)     

 

 

 

  

  

 
Fig. 4. The attenuation constant (α) of ISP/epoxy composites: (a) 5 wt%, (b) 10 wt%, (c) 15 wt%, (d) 20 wt%. 

a b 
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Fig. 4 demonstrates the composite attenuation coefficient showing normal variation with 

frequency. The trends of the peak values of the attenuation coefficients of the four groups of 

composites with different ISP contents are basically the same, among which the peak values of the 

attenuation constants of the composite with 20 wt% ISP content are significantly higher than those 

of the other groups, indicating that their microwave-absorbing performances are more superior 

than that of the other groups, which corresponds to that of the composites with the best microwave-

absorbing performances in the composite with the 20 wt% ISP content in Fig. 3. Good impedance 

matching is very important for microwave-absorbing materials; the more consistent the 

characteristic impedance of the material composite, the closer the synergistic effect is to the free-

space characteristic impedance, the more EM microwaves will penetrate into the microwave-

absorbing material, and the better the microwave-absorbing performance will be [44]. 

 

4. Conclusion 

 

The studied material shows microwave absorption properties in the frequency range of 8–12 

GHz. The resulting R.L. and absorption values were −7.4 dB and 80% for ISP/epoxy composite 

with the 20 wt%. respectively. The production of composites with sponge iron powder is very cost-

effective due to its low price. Due to ISP 's spongy structure and porous characteristics, the powders 

can be used as a microwave absorbent. Thus, the composites consisting of ISP could be applied as 

microwave-absorbing materials.  
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