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      Autism is a neurological condition that influences brain function and behavior, often becoming evident in 

early childhood and lasting into adulthood. It is characterized by challenges in social interaction, 

communication, and behavior, as well as decreased attention to the surrounding environment. Early 

identification and diagnosis of autism can play a crucial role in addressing its impacts and enhancing social 

and communication abilities. Various tools, like questionnaires and neurological techniques, are used for this 

purpose. One such technique is electroencephalography (EEG), which records the brain's electrical activity 

through sensors positioned on the scalp. This paper presents a method for identifying autism using EEG data. 

The process starts by pinpointing active brain sources through localization techniques, followed by the 

application of a dual Kalman filter to assess their activity. Features are subsequently derived from EEG signals 

using multivariate autoregressive moving average (MVARMA) and multivariate integrated autoregressive 

(ARIMA) models. Principal component analysis (PCA) is employed to identify essential features, and a K-

nearest neighbor (KNN) classifier is utilized to classify individuals as either autistic or neurotypical. The 

proposed approach achieves higher accuracy and superior classification performance compared to existing 

methods, highlighting its effectiveness in identifying autism. 

 
 

 

 

 

 

 

I. INTRODUCTION 

Autism is an intricate neurodevelopmental 

condition with diverse manifestations and 

impacts. Individuals with autism often face 

challenges in expressing emotions, socializing, 

and adapting to new situations. Common signs 

include difficulty speaking, limited attention to 

surroundings, reduced emotional expression, 

and challenges in facially conveying feelings. 

These traits are particularly noticeable in 

children diagnosed with autism [1-3]. The 

condition typically emerges in early childhood 

or adolescence, with many adults on the autism 

spectrum also experiencing epilepsy or seizures 

at some point. This co-occurrence underscores 

the need for early diagnosis, comprehensive 
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care, and tailored interventions for individuals 

with autism [4-7]. Evidence indicates a rising 

prevalence of autism diagnoses. A 2009 study 

by the Centers for Disease Control and 

Prevention (CDC) highlighted a consistent 

increase in cases. In the United States, autism 

prevalence rose from fewer than 3 per 10,000 

children in the 1970s to over 30 per 10,000 by 

the 1990s. By 2012, the CDC revealed that 

autism was diagnosed in 1 out of every 88 

children, including 1 in 54 boys. This increase 

highlights the critical need for early detection 

and intervention to enhance outcomes for 

individuals with autism [3, 7]. 

Various diagnostic methods aim to detect 

autism spectrum disorder (ASD) early, 

ensuring timely support and care. Each 

approach has strengths and limitations. 

Behavioral observation, for instance, involves 

closely monitoring a child’s interactions, 

communication, and play. However, it is 

subject to observer bias and varying 

interpretations, leading to potential 

inconsistencies in diagnosis [8-10]. 

Standardized assessments such as the Autism 

Diagnostic Interview-Revised (ADI-R) and the 

Autism Diagnostic Observation Schedule 

(ADOS) have been developed to assess autism 

symptoms and severity[11, 12]. While these 

tools are valuable, reliance on self-reports or 

caregiver input can introduce biases and fail to 

capture the full range of behaviors. To 

overcome these challenges, researchers employ 

neuroimaging methods, such as functional 

magnetic resonance imaging (fMRI) and 

electroenc ephalography (EEG), to study brain 

function and connectivity in those with autism. 

These methods offer insights into the neural 

underpinnings of autism and may help identify 

biomarkers for diagnosis [12-15]. EEG, in 

particular, is a non-invasive and cost-effective 

method that captures the brain’s electrical 

function through scalp electrodes. It is 

especially useful for studying brain rhythms 

and connectivity patterns associated with 

autism[15, 16]. EEG’s ability to capture rapid 

changes in brain activity makes it an invaluable 

tool for identifying and understanding autism. 

By leveraging EEG data, researchers can 

facilitate early diagnosis, develop tailored 

interventions, and improve treatment outcomes. 

Identifying autism through EEG signals has 

become a key area of interest in neuroscience, 

with numerous studies investigating novel 

approaches. Many of these studies have applied 

machine learning algorithms to EEG data, 

resulting in impressive accuracy in 

differentiating individuals with autism from 

those without the condition. [17-23]. Advanced 

deep learning techniques have also been 

suggested to extract crucial features from EEG 

signals, demonstrating encouraging outcomes 

in the identification of autism [24-27]. For 

example, Schwartz et al. examined specific 

frequency bands of EEG, identifying unique 

patterns associated with autism [28, 29]. 

Innovative methods that merge EEG analysis 

with graph theory, pioneered by Jurriaan and 

Precenzano et al., offer new insights into autism 

detection [30]. Tawhid et al. applied time-

frequency analysis to reveal the dynamic 

patterns of the EEG associated with autism[31]. 

Additionally, Landowska integrated EEG with 

physiological data, such as heart rate and skin 

conductance, enhancing diagnostic 

accuracy[32]. Qaysar explored advanced signal 

processing methods such as wavelet transforms 

and independent component analysis, 

uncovering distinctive EEG patterns associated 

with autism [33]. Collectively, these methods 

highlight global efforts to enhance autism 

detection through EEG analysis, contributing to 

the development of more accurate diagnostic 

tools.  

Research has also highlighted unusual patterns 

of connectivity in the brains of people with 

autism. Studies indicate heightened local 

connectivity and diminished long-range 

connections in individuals with autism[34-39]. 

Wass et al. discovered enhanced connectivity in 

frontal and short-range neural pathways, 

whereas Coben et al. noted increased frontal 

coherence and reduced coherence in posterior 

temporal regions[36]. Granger causality 

analyses revealed weakened connectivity 

between distant brain areas, particularly in the 

prefrontal cortex, anterior cingulate, and 

inferior parietal regions[37]. Coben et al. 
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further confirmed this reduced connectivity 

during tasks involving emotional 

processing[40], Similarly, Minshew and 

Williams reported increased frontal coherence 

but diminished connectivity between anterior 

and posterior temporal regions in autism[41]. 

Using dynamic causal modeling on fMRI data, 

Wataru Sato et al. identified decreased activity 

in the visual regions of the brain in children 

with autism [42].  

This study introduces an innovative method that 

applies multivariate autoregressive moving 

average (MVARMA) and multivariate 

autoregressive integrated moving average 

(MVARIMA) models to detect autism. Key 

features are derived from the model parameters, 

highlighting the statistical properties of 

important ARMA and ARIMA parameters. The 

methodology begins with source localization to 

isolate active brain regions from EEG signals, 

then utilizes a dual Kalman filter to estimate the 

activities and interactions of these sources. 

EEG signals are mapped from sensor space to 

source space, where MVARMA and 

MVARIMA models are used to analyze these 

time series, incorporating past signal and source 

activity data. Assessing source dynamics, 

which represent temporal variations in brain 

activity, is a crucial and challenging step. 

Traditional methods like dynamic causal 

modeling (DCM) use linear or nonlinear 

frameworks for neural connections calculation, 

assuming nonlinear relationships between 

neural dynamics[43-45]. Moreover, dual 

Kalman filter methods are commonly employed 

to estimate dynamic source activity[46, 47]. 

Dual Kalman filter techniques are also 

employed for this purpose. For example, A.H. 

Omidvarnia employed dual Kalman filters on 

newborn EEG data[48], while Eduardo Giraldo 

introduced a comparable method for estimating 

source activity. Rajabioun et al. utilized a dual 

Kalman filter technique to investigate effective 

connectivity in EEG data from individuals with 

autism, revealing distinct differences between 

autistic and neurotypical subjects [47]. These 

advanced techniques demonstrate significant 

progress in analyzing brain dynamics and 

improving autism diagnosis through EEG. 

 

II.  MATERIALS AND METHODS 

 

 

This study proposes a technique for 

distinguishing individuals with autism from 

neurotypical participants. This classification is 

crucial for halting the disorder's progression 

and enhancing the quality of life for affected 

individuals. The detailed diagram of the method 

is illustrated in Figure 1. 

 

 

Fig. 1 The proposed method's flowchart is structured around features derived from MVAR parameters, with source 

activity as the input and EEG signals as the output time series. 

 

The first step involves acquiring or preparing 

EEG signals. The signal that are used in this 

paper was sourced from a publicly available 

dataset [49]. The dataset comprises EEG 

recordings obtained with the Biosemi 

ActiveTwo system from 28 participants 

diagnosed with autism spectrum conditions and 

28 neurotypical individuals, ranging in age 
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from 18 to 68 years. The data was collected 

during a 150-second resting state with eyes 

closed. Ethical approval for the study, including 

data collection and sharing, was provided by the 

Health Research Authority under IRAS ID 

212171[49]. 

After preprocessing, the filtered EEG signals 

undergo a source localization procedure to 

identify and estimate the active brain regions or 

sources. This step simplifies the complexity of 

the data by selecting a finite set of active 

sources and mapping their spatial coordinates. 

The objective of source localization is to 

minimize a specific function, ultimately 

pinpointing active brain regions. 

Raw EEG signals are preprocessed to remove 

noise and artifacts. This process begins with a 

bandpass Butterworth filter applied to restrict 

frequencies to the range of 0.5–100 Hz, 

reducing unwanted noise. Independent 

component analysis (ICA) is then performed to 

isolate components linked to brain activity. 

Non-brain-related components, such as those 

associated with eye blinks, electromyography 

(EMG), 50 Hz powerline interference, and 

auditory artifacts, are identified and removed, 

leaving a clean signal. For detailed 

methodologies on artifact removal and brain-

component identification, refer to [50-52]. 

𝐹 = ‖𝑉𝐾 − 𝐺𝐽𝐾‖ + 𝛼‖𝐽𝐾‖                       (1) 

where 𝑉𝐾(𝑚 × 1)  is the recorded signal 

recorded at the Kth sample, 𝐽𝐾(3𝑛 × 1) denotes 

the brain's source activity for the Kth sample and 

G(𝑚 × 3𝑛)  is the leadfield matrix, which is 

computed through forward problem-solving 

methods[53, 54]. This function is divided into 

two primary components: one accounts for 

error estimation, while the other manages noise 

reduction and smooths abrupt changes in source 

activities. The balance between these 

components is controlled by a parameter,  α, 

which is determined using algorithms such as 

Tikhonov regularization or the L-curve method 

[55]. 

Several strategies are available to minimize 

Equation 1, with one widely used method being 

sLORETA. This approach is particularly 

effective due to its ability to achieve zero 

localization error [55, 56]. In sLORETA, the 

explicit solution can be obtained using the 

given values of G and 𝑉𝐾: 

𝐽𝐾̂ = 𝑇. 𝑉𝐾                                                 (2) 

 

The approximated brain source activity, 

denoted as 𝐽𝐾̂(3𝑛 × 1), can be derived using 

the transformation matrix T(3𝑛 × 𝑚), which 

links the recorded EEG signals ( 𝑉𝐾 ) to the 

estimated source activities. In sLORETA, TT is 

calculated as follows: 

𝑇 = 𝐺𝑇𝐻[𝐻𝐺𝐺𝑇𝐻 + 𝛼𝐻]+                       (3) 

where [ ]+  denotes the pseudoinverse of the 

matrix, and HH is the regularization matrix 

used to ensure smoothness. HH is defined as: 

 

𝐻 = 𝐼 − 11𝑇/1𝑇1                                   (4)                                                     

In this equation, I denotes a unit matrix, and 1 

refers to a column vector of ones with 

dimensions (m×1). These components are 

essential for selecting active regions. The 

source activity estimation method (Eq. 2) is 

applied to time-varying EEG signals to detect 

active brain regions. For each sample, the 

estimation identifies specific sources as active. 

Regions with the highest probability of activity 

across samples are selected, representing areas 

of significant neural engagement. 

Once the active sources are identified, a model 

of linear variations is applied to capture their 

temporal dynamics. The model is expressed as: 

𝐽𝐾 = 𝐹𝐾𝐽𝐾−1 + 𝜂𝐾                                    (5) 

where 𝜂𝐾  represents state noise, and 𝐹𝐾  is the 

relationship matrix at the Kth sample, 

characterizing dependencies between active 

regions and their self-relation over time. The 

connection between these sources and the EEG 

signals is established through the leadfield 

matrix, which is calculated using forward 
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modeling techniques. This relationship can be 

summarized as follows: 

{
𝐽𝐾 = 𝐹𝐾𝐽𝐾−1 + 𝜂𝐾 

                                            
𝑉𝐾 = 𝐺𝐽𝐾 + 𝜀𝐾

                          (6) 

                                                                 

Where 𝜂𝐾  represents measurement noise. Both 

𝐽𝐾 (a source activity over time) and  

𝐹𝐾  (spatiotemporal relationship matrix) are 

estimated using a dual Kalman filter, as detailed 

in [57, 58]. After source activity (𝐽𝐾) changes 

calculation, a multivariate autoregressive 

moving average (ARMA) model is fitted to 

recorded signals. This model relates 𝑉𝐾  to its 

past values and the estimated source activity 

J, expressed as: 

 

𝑉𝐾 = ∑ 𝑎𝑖𝑉𝐾−𝑖
𝑝
𝑖=1 +  ∑ 𝑏𝑖𝐽𝐾−𝑖

𝑞
𝑖=0            (7)      

                             

where 𝑎𝑖, 𝑏𝑖  are parameter matrices, with 

𝑎𝑖 (m×p), and 𝑏𝑖  (n×(q+1)), corresponding to 

the dimensions of V (m) and J (n). 

To address the nonstationary nature of EEG 

signals, an autoregressive integrated moving 

average (ARIMA) model is also utilized. The 

ARIMA(p,d,q) model is defined as: 

 

𝑉𝐾 = ∑ 𝑎𝑖𝑉𝐾−𝑖
𝑝
𝑖=1 +  ∑ 𝑏𝑖𝐽𝐾−𝑖

𝑞
𝑖=0 +

∑ 𝑐𝑖`(1 − 𝑍)𝑑𝑌𝑖
𝑑
𝑖=1                                   (8)  

              

Here, Z is the delay operator, and the difference 

operator is defined as: 

(1 − 𝑍)𝑌𝑖 = 𝑌𝑖 − 𝑌𝑖−1 

(1 − 𝑍)2𝑌𝑖 = 𝑌𝑖 − 2𝑌𝑖−1

+ 𝑌𝑖−2                                           
                                                                  (9)  

… 

 

These models provide a robust framework for 

analyzing EEG data by leveraging both 

stationary and nonstationary signal 

characteristics, enabling more accurate 

assessments of brain dynamics. 

In this part of the discussion, the activities from 

the sources act as the model's input, whereas the 

resultant EEG signals represent the output. The 

objective is to model each EEG sample by 

utilizing its delayed versions and the associated 

source activities. To accomplish this, matrices 

associated with the ARMA and ARIMA 

models—referred to as ‘a’, ‘b’, and ‘c’—are 

calculated for every sample. The dimensions of 

these matrices are determined by the respective 

orders of the models. 

Next, various characteristics are derived from 

these model parameters to assist with 

classification. To simplify the process, the 

parameters are divided into two distinct classes, 

with features extracted from each: 

•  Class 1: Parameters with low variability, 

indicated by a standard deviation of less than 

20% of the average value. The mean values of 

these parameters are utilized to form the feature 

vectors. 

•  Class 2: Parameters that display a higher 

degree of variability compared to those in Class 

1. For this class, the following statistical 

metrics are selected for the feature vector: 

• Average signal value 

• Standard deviation of the signal 

• Signal kurtosis 

• Signal skewness 

• Signal entropy 

Subsequently, horizontal and natural visibility 

graphs are created from each time series array, 

and several features are then extracted from 

them. Further details on visibility graphs can be 

found in [60, 62, 63]. Key features include: 

• Average value of the graph nodes 
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• Standard deviation of the graph nodes 

• Mean length of the shortest path from each 

node to all other nodes 

After constructing the feature vectors, 

dimensionality reduction techniques are 

employed to reduce complexity and enhance 

classification accuracy. PCA, or principle 

component analysis, is employed as an 

effective method for reducing the 

dimensionality of the feature vectors. PCA 

converts a collection of potentially interrelated, 

high-dimensional features into a new set of 

independent variables, referred to as principal 

components. This process preserves the most 

important information from the original 

features while minimizing their dimensionality. 

PCA begins with the normalization of each 

feature, centering it by subtracting its mean. 

Next, a correlation matrix is created from these 

normalized features, followed by the 

computation of eigenvalues. The eigenvectors 

associated with the largest eigenvalues are then 

chosen to form a transformation matrix. This 

matrix transforms the original feature vector 

into a lower-dimensional space, effectively 

reducing its dimensions while retaining 

essential information. 

Finally, a Support Vector Machine (SVM) is 

employed to classify and distinguish depressive 

subjects from normal individuals. SVM is 

chosen for its excellent performance in 

classifying high-dimensional feature spaces. It 

works by finding a hyperplane that maximizes 

the margin between classes, focusing on the 

nearest data points known as support vectors. 

While this is a brief overview, more detailed 

information on SVM mechanisms and 

optimization techniques can be found in the 

relevant literature. SVM is a widely used 

classifier, renowned for its robustness in 

managing complex classification tasks. 

III. SIMULATION AND RESULTS 

 

This part describes the application of the 

suggested approach to EEG data obtained from 

both individuals with autism and neurotypical 

participants. The procedure involved multiple 

stages, starting with the retrieval and recording 

of EEG signals from a reliable source. Next, the 

signals underwent preprocessing, which 

included the application of a bandpass filter 

designed to retain frequencies within the range 

of 0.5 to 30 Hz. Following this, ICA is applied 

to the signals to extract independent 

components, aiming to remove those unrelated 

to brain function, like blinking, EMG or ECG 

interference, 50Hz noise, and auditory brain 

responses. Detailed descriptions of the methods 

used to identify and remove these artifacts can 

be found in [50-52]. After preprocessing, the 

signals were processed using 

sLORETA(standardized low-resolution 

electromagnetic tomography) to extract the 

underlying brain sources with zero localization 

error [55, 56]. The regularization parameter for 

sLORETA was established through the use of 

the Tikhonov regularization technique [54]. 

Afterward, active sources were identified 

during the EEG recording process, and the most 

significant ones were selected based on their 

overall performance throughout the dataset. 

The number of EEG channels determined the 

selection of sources, after which a multivariate 

autoregressive (MVAR) model was applied to 

examine the identified active sources. This 

process led to the development of a state-space 

model that captures the interactions between the 

EEG channels and these sources. A dual 

Kalman filter was employed to simultaneously 

estimate dynamic source activity and compute 

the relationship matrix. Additionally, an 

autoregressive moving average (ARMA) or 

autoregressive integrated moving average 

(ARIMA) model was utilized to establish a 

connection between the source activity as input 

and the EEG channel recordings as output. 

Following this, statistical and graph-based 

features were extracted from the parameters 

estimated by the ARMA or ARIMA model. 

Principal Component Analysis (PCA) was then 

applied to reduce the dimensionality of these 

features, compressing the feature vector to 15 

components. In the final step, a Support Vector 

Machine (SVM) was trained using the reduced 

feature set, allowing for classification based on 

the SVM model. To assess the classification 

performance, multiple simulations were carried 

out to examine the impact of different 
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parameter variations. Additionally, various 

performance metrics were defined to validate 

the classification outcomes. 

𝐴𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                        

(Eq. 10) 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                               

(Eq. 11) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                            (12)                                  

 

Firstly, the classification was conducted by 

altering the ARMA model’s order. Different 

orders of models were tested for both the 

ARMA and ARIMA models (as described in 

Equation 7), and the results for each 

configuration are presented in Table 1. 

 

Table 1. The proposed method evaluated the accuracy, sensitivity, and specificity of EEG classification between autistic 

and control groups, utilizing different orders of the ARMA and ARIMA models. 

 ARMA(2,2) ARMA(4,2) ARMA(4,3) ARMA(5,4) ARMA(6,5) 

Accuracy 0.9107 0.9286 0.9464 0.9821 0.9464 

Sensitivity 0.9286 0.9643 0.9643 1 0.9643 

Specificity 0.8929 0.8929 0.9286 0.9643 0.9286 

 ARIMA(2,1,2) ARIMA(4,2,2) ARIMA(4,2,3) ARIMA(4,3,4) ARIMA(6,4,5) 

Accuracy 0.9286 0.9821 0.9821 1 0.9464 

Sensitivity 0.9643 0.9643 1 1 0.9643 

Specificity 0.9286 0.9286 0.9643 1 0.9286 

The data presented in Table 1 show that the 

ARMA(5,4) model exceeds the performance of 

all other models. Previous research has 

suggested several methods for determining 

model order, one of which is the Akaike 

Information Criterion (AIC) approach[59, 60]. 

By applying this method, the optimal ARMA 

model order was identified as ARMA(5,5), 

which closely resembles the ARMA(5,4) model 

that demonstrated superior performance in this 

study. For the ARIMA model, both 

ARIMA(4,2,3) and ARIMA(4,3,4) provided 

superior results compared to the other 

configurations. This indicates that the ARIMA 

model delivers more accurate results than the 

ARMA model when using the same order, 

highlighting its advantage in handling 

nonstationary signals due to the inclusion of 

differencing operations. 

In the second simulation, the effect of two 

feature types is analyzed. First, classification is 

performed using only statistical features, 

followed by classification using features 

extracted from visibility graphs. Next, 

classification is performed by combining both 

statistical and visibility graph features. Figure 2 

displays the classification accuracies for the 

models ARMA(4,3), ARMA(5,4), 

ARIMA(4,2,3), and ARIMA(4,3,4). 
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Fig. 2  The classification accuracy using the proposed method is evaluated based on different feature sets (statistical, 

visibility graph, and a combination of both). The classification is performed using various models, including 

ARMA(4,3), ARMA(5,4), ARIMA(4,2,3), and ARIMA(4,3,4). 

In the second simulation, classifiers that were 

trained with features derived from visibility 

graphs showed higher accuracy compared to 

those trained solely with statistical features. 

This enhancement can be credited to the 

additional structural information captured by 

visibility graphs. As seen in Figure 2, the 

ARIMA(4,3,4) model outperforms other 

models, such as ARMA(4,3), ARMA(5,4), and 

ARIMA(4,2,3), highlighting its ability to better 

capture the inherent patterns and dynamics 

within the data, resulting in improved 

classification accuracy. 

In the third simulation, the impact of decreasing 

the feature count through PCA is explored. 

While the previous simulations reduced the 

feature set to 15, this simulation evaluates 

various feature set sizes (5, 10, 15, 20, 30, and 

50) and examines the corresponding 

classification accuracy and simulation time. 

Table 2 presents the results of this simulation, 

which was conducted using the ARMA(5,4) 

and ARIMA(4,3,4) models. 

Table 2. The results show the accuracy and simulation time of the proposed method with different numbers of features 

reduced by PCA, using the ARMA(5,4) and ARIMA(4,3,4) models. 

 5 10 15 20 30 50 

Accuracy 

(ARMA(5,4)) 

0.8929 0.9464 0.9821 0.9821 1 1 

Simulation time 

(ARMA(5,4)) 

In sec 

762 983 1463 2873 3182 8982 

Accuracy 

(ARMA(5,4)) 

0.9286 0.9821 1 1 1 1 

Simulation time 

(ARIMA(4,3,4)) 

In sec 

1282 1676 3593 4282 7083 10012 
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The findings in Table 2 indicate that a larger 

feature set for SVM training enhances accuracy 

but also extends the simulation time, 

highlighting an increased computational 

burden. Notably, after selecting 15 features, 

further increases in the number of features do 

not yield significant improvements in accuracy, 

though the computational cost keeps 

increasing. Thus, it is recommended to 

strategically determine the reduced feature 

count through PCA, with 15 features providing 

an optimal balance between computational 

efficiency and accuracy.  

Lastly, the performance of the proposed method 

was compared to other methods used for 

recognizing autistic individuals. The proposed 

method, along with approaches from previous 

studies, was tested on the same dataset, and 

their classification accuracies are shown in 

Table 3. 

 

Table 3. Comparison of Classification Accuracy for Autism Recognition Using Various Methods from Previous 
Studies 

 Method 

No.1(48)  

Method No.2 

(20) 

Method 

No.3(24) 

Method 

No.4 (32) 

Proposed 

method 

ARMA(5,4) 

Proposed 

method 

ARIMA(4,3,4) 

Accuracy 0.8929 0.9464 0.9464 0.9643 0.9821 1 

 

The results from Table 3 show that the method 

which are proposed by this paper outperforms 

other methods in terms of classification 

accuracy. Specifically, using ARIMA(4,3,4) 

improves the classification performance. 

However, it is essential to recognize that this 

method demands more computational time than 

the ARMA(5,4) approach. ARMA models are 

typically favored when minimizing simulation 

time is a priority. 

IV. DISCUSSION 

This research introduces an innovative 

approach to identifying individuals with autism 

by utilizing EEG signals and features extracted 

from multivariate autoregressive moving 

average (MVARMA) and multivariate 

integrated autoregressive (ARIMA) models. 

The approach consists of multiple essential 

steps, including source localization, source 

activity estimation using a dual Kalman filter, 

and parameter computation through 

MVARMA and ARIMA models. PCA is 

employed to identify key parameters, followed 

by classification using a K-nearest neighbor 

(KNN) classifier. The findings highlight 

improved classification accuracy over other 

methods, underscoring the effectiveness of this 

approach. The main objective is to use EEG 

signals to differentiate autistic participants from 

neurotypical individuals by estimating source 

activities and capturing the altered dynamics 

and connectivity between brain sources linked 

to autism. 

To evaluate the effectiveness of the method, a 

series of simulations was performed to examine 

the effects of various parameter adjustments. 

The results presented in Table 1 demonstrate 

that the ARMA(5,4) and ARIMA(4,3,4) 

models performed better than other 

configurations, with the Akaike method 

suggesting that the ARMA(5,5) model is 

comparable to the superior ARMA(5,4) model. 

In the case of the ARIMA model, both 

ARIMA(4,2,3) and ARIMA(4,3,4) showed 

improved performance, emphasizing the 

benefit of ARIMA in handling nonstationary 

signals through its differencing process. 

Additional simulations examined the effect of 

various features on classification accuracy, 

revealing that features derived from high 

visibility graphs (HVG) and non-visible graphs 

(NVG) play a crucial role in enhancing the 

results. Combining these graph-based features 

with statistical features led to better 
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performance. As numerous features increased 

computational load, PCA was used for feature 

dimensionality reduction. The findings 

suggested that reducing features improves 

accuracy but increases computation time, 

necessitating an optimal trade-off between 

computational efficiency and accuracy.  

Finally, the method's performance was 

compared with other approaches, 

demonstrating that ARIMA(4,3,4) offers 

superior results. In conclusion, this research 

introduces a robust approach for identifying 

autism using EEG signals and features 

extracted from MVARMA/ARIMA models. 

The approach shows promise for gaining deeper 

insights into brain dynamics and connectivity 

associated with autism, through analysis of 

parameter variations and feature selection.  

V. CONCLUSION 

This study addresses autism spectrum disorder, 

a multifaceted condition impacting people 

across their lifespan, characterized by unique 

patterns of interaction, behavior, and 

communication, coupled with limited attention 

to external stimuli. Early detection is essential 

for intervention and enhancing interpersonal 

and communicative abilities. There are several 

techniques available for identifying autism, 

with one being EEG (electroencephalogram), 

which monitors electrical brain activity through 

sensors placed on the scalp. EEG signals offer 

valuable insights into brain activity, helping to 

explore the neurological processes associated 

with autism. Our approach estimates the 

activity of brain sources and analyzes the 

connectivity between regions to uncover 

patterns and dynamics unique to autism. 

We present a method that leverages EEG 

signals and features extracted from MVARMA 

(Multivariate Autoregressive Moving Average) 

and ARIMA (Autoregressive Integrated 

Moving Average) models for autism 

classification. These models effectively capture 

dependencies in the data, statistical traits, and 

the nonstationarity often observed in brain 

activity associated with autism. Our method 

outperforms existing alternatives by accurately 

distinguishing autistic individuals from 

neurotypical participants. The method involves 

several essential stages: preprocessing the 

signals, localizing sources, modeling, 

extracting features, and performing 

classification. Through simulations and 

adjustments to parameters, we determine the 

ideal model configurations and features that 

optimize classification performance.  

The study emphasizes the significance of 

comprehending brain source dynamics and 

connectivity in relation to autism. By analyzing 

recorded signals and applying MVARMA and 

ARIMA models, the study uncovers brain 

activity patterns in individuals with autism. 

PCA is used for feature reduction, which 

enhances computational efficiency while 

preserving accuracy. Selecting between 

ARIMA and ARMA models requires a trade-

off between accuracy and simulation duration, 

with ARMA models being better suited for 

quicker simulations.  

In summary, this research introduces a 

powerful approach for accurate autism 

identification through EEG data, which can 

support early diagnosis and therapeutic 

measures. Future studies involving larger and 

more varied datasets will strengthen the 

method's reliability and broaden its 

applicability. Investigating the method's 

applicability to various demographic groups 

and age ranges is crucial. Advances in EEG 

technology offer the potential to enhance 

autism detection, paving the way for tailored 

interventions and improved outcomes for those 

affected by the condition. 
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