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Abstract 

The application of control theory to fractional-order systems has 

demonstrated superior performance in aspects such as system 

stability, observability, and controllability. Although extensive 

research has been conducted on multi-agent systems based on 

integer-order dynamics, it has been shown that in certain 

scenarios, ensuring system stability using integer-order models 

becomes problematic. In such cases, fractional-order modeling 

provides a more reliable alternative. This paper presents a 

comprehensive review of recent advances in event-triggered 

control strategies for fractional-order multi-agent systems. 

Event-triggered mechanisms are categorized into static and 

dynamic schemes, based on the nature of the system's dynamic 

dependencies. Accordingly, the study focuses on key challenges 

such as the Zeno phenomenon, performance degradation due to 

increased triggering thresholds, and communication resource 

constraints. To address these challenges, dynamic and adaptive 

event-triggered control mechanisms are proposed and 

discussed. 
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Highlights 

• A review of event-based control for fractional-order multi-agent systems is presented. 

• Types of event-based control in systems are classified according to the nature of dependency. 

• The importance of event-based control, especially for multi-agent systems, is examined. 
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1. Introduction 

In previous studies, the design of control algorithms has often been based on the assumption of continuous access 

to communication resources, so that the optimization of multi-agent systems has mainly focused on reducing 

tracking error or improving stability. However, recent research shows that in operational environments, especially 

in large-scale networks with distributed sensors and actuators, the requirements of intelligent management of 

resources such as bandwidth and energy are as critical as the system dynamics themselves. Control approaches 

are usually designed based on unlimited communication resources, and therefore the exchange of information in 

control loops is carried out periodically with the startup time of sensors and actuators. Recently, the investigation 

of event-based control strategies has been considered due to their potential applications in various fields. In the 

field of control of multi-agent systems, due to the large number of devices, it is very practical and necessary to 

make the best use of computational, communication, sampling and data transfer resources or control updates. An 

event-driven control system is a sampling data system in which sampling times are determined by events generated 

by the system state. Event-driven control requires sampling based on the minimum requirement to maintain 

desired control performance. Despite the advantages of event-driven control, implementing event-driven control 

for systems is not without challenges. Issues such as input saturation, fault occurrence, and controller design 

complexity can compromise performance and stability [1-7]. 

 

2. Innovation and contributions 
In this review article, event-based control for fractional-order multi-agent systems is briefly discussed, and the 

evolutionary path of proposed control approaches in recent years is examined. First, a background of the 

application of event-based control is presented, and then, in continuation of the review of previous research, event-

based approaches in integer-order and fractional-order multi-agent systems are examined. Also, the advantages 

and disadvantages of the approaches used are stated. In summary, the highlights of this study are: 

- An examination of event-based control for fractional-order multi-agent systems is presented. 

- Types of event-based control in systems are classified according to the nature of dependency. 

- The importance of event-based control, especially for multi-agent systems, is examined. 

 

3. Materials and Methods 

Event-based control plays a fundamental role in reducing resource consumption and reducing operator 

depreciation. Each event structure consists of two parts: an error function and a threshold function. Based on the 

type of event threshold function, it is classified into two categories: static and dynamic. In terms of the nature of 

the dependence or non-dependence of the event structure on the system dynamics, event-based control can be 

classified into two categories: static event-based control and dynamic event-based control [8-13]. 

Zeno phenomenon is one of the challenges of event-based control. This phenomenon occurs when the system is 

out of equilibrium and the number of controller updates increases indefinitely. In such a case, an infinite number 

of events occur in a very short time interval, and in this case, event-based control becomes inefficient. Therefore, 

during the controller design, it must be proven analytically that Zeno phenomenon does not occur [14-16]. 

Since most of the studies initially used a fixed event structure, these structures are simple to design but less 

efficient in dealing with dynamic system changes. On the other hand, with the reduction in resource usage, it is 

not far from the fact that the overall performance of the control system will decrease to some extent, because less 

data is transmitted from the controller to the actuator. To address the challenge of reducing system performance 

with increasing threshold parameter, researchers have been looking for a way to reduce the number of events 

without sacrificing too much control performance, one solution being to increase the threshold function for the 

startup condition by adding a non-negative auxiliary dynamic variable. In fact, the difference between static and 

dynamic event-based control is in the event structure of each. Static event-based control is based on a fixed error 

threshold or a decreasing exponential function [17-19]. 

Fractional calculus is a growing research area due to its many applications in various fields of science and 

engineering. Since the advent of fractional calculus tools, countless literatures have been written, which have also 

improved the efficiency of control loops due to the improvement of modeling and improving the efficiency of 

controllers. Due to the high accuracy of fractional-order modeling for systems, many applications of applied 

systems, such as social networks and a fleet of spacecraft, unmanned underwater vehicles moving in the depths 

of the sea, and unmanned aircraft flying in dust storms, rain, or snow, can be considered as fractional-order 

systems. Also, many approaches to control integer-order nonlinear systems have been generalized to fractional-

order nonlinear systems [20-23]. 

Multi-agent systems have attracted the attention of researchers in recent decades due to their wide applications in 

various sciences including applied mathematics, computer science and engineering. The collaborative control of 

these systems includes issues such as consensus, orchestration, containment, etc. Multi-agent systems with 

orchestration mode are systems in which agents are organized in a structured manner to achieve common goals. 

This configuration can be fixed or variable. Containment also means the control or restriction of agents by several 

leader agents to prevent undesirable and inconsistent behaviors. Consensus is also one of the important and vital 
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areas in the collaborative control of multi-agent systems, which is achieved when the follower agents agree on a 

common desired point by following the control rules and communicating with their neighbors. Leader-controlled 

consensus and leaderless consensus are two distinct approaches to achieving group consensus [24-32]. 

In recent years, the distributed event-based control approach for fractional-order multi-agent systems has attracted 

much attention from researchers and scholars in the control community due to its various advantages compared 

to the conventional time-based approach. Due to some limitations and technical challenges in controller design 

and stability analysis in fractional-order systems, the extension of event-based control protocols from integer-

order multi-agent systems to fractional-order multi-agent systems has been slow, and very few research results 

have been reported in this field so far. 

 

4. Results and Discussion 

Despite the significant growth of research in the field of event-based control, this approach still faces several 

fundamental challenges, which prevent its widespread and practical implementation in industrial and complex 

applications. The most important of these challenges are the lack of a comprehensive theoretical framework for 

analyzing stability and efficiency, especially in distributed nonlinear fractional-order multi-agent systems, with 

guaranteed stability in the presence of delay and noise, prevention of Zeno behavior, robust designs, and the lack 

of experimental results and key practical challenges such as time delays and operator defects remain as major 

obstacles. On the other hand, the lack of practical experiments and experimental results and practical scenarios 

indicate a significant gap between theory and application. These challenges indicate that despite theoretical 

advances, the field for further research towards the practical realization of this approach is still vast and vital. 

In summary, the research path based on the existing challenges can be stated as follows: 

- Development of dynamic event-based methods for complex fractional-order systems 

- Designs resistant to time delays and operator defects 

- Development of frameworks that can be implemented in industry 

- Increasing real-world experiences and practical tests to prove theoretical benefits in industrial conditions 

 

5. Conclusion 

By reviewing the research background in the field of event-based control of fractional-order multi-agent systems, 

it is observed that most of the existing studies have focused on simple linear or nonlinear systems, therefore, the 

design of event-based controllers for complex fractional-order nonlinear multi-agent systems can be investigated. 

Another limitation in previous research is the use of static event structures in most cases, which leads to 

unnecessary updates, and another gap in this regard is the lack of investigation of the effect of hardware defects 

such as locking defects or loss of efficiency defects in operators on the stability of fractional-order multi-agent 

systems has rarely been analyzed. Therefore, the investigation of dynamic event-based control for fractional-order 

multi-agent systems in the presence of operator defects can be considered. According to the research conducted, 

the application of dynamic event-based methods in fractional-order systems with complex structures, the 

expansion of implementation in industry, and robust design can be mentioned as challenges and future research 

directions. 
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