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 In this paper, a new robust predictive control method for induction motors (IMs) is 

discussed. Linear matrix inequalities (LMIs) are employed, and feedback and observer 

matrices are designed in the presence of disturbances. To improve accuracy, a nonlinear 

motor model with parameter uncertainties and perturbations is used. With this nonlinear 

model, rotor speed is treated as one of the state variables and can be directly controlled 

using the proposed method. Additionally, uncertainty is incorporated to compensate for 

modeling errors or parameter mismatches. Finally, the effect of load torque is considered 

as a disturbance input to the system. Simulations and experimental results are presented 

at the end. 
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I. Introduction 

Industrial applications of AC motors have significantly 

increased in recent decades due to the development of new 

control methods, such as Field-Oriented Control (FOC) and 

Direct Torque Control (DTC). These methods enable easy 

and efficient control of AC motors. FOC is based on the 

differential equations of the machine and, through the use of 

PI controllers, provides good steady-state behavior. 

However, the heavy computational load results in a weak 

dynamic response [1]. In contrast, DTC offers fast and 

dynamic performance. Nevertheless, issues such as high 

torque ripple and variable switching frequency prevent DTC 

from being considered a comprehensive method [2]. A new 

switching table for Permanent Magnet Synchronous Motors 

(PMSM) to reduce torque ripple is proposed in [3], but it is 

not applicable to Induction Motors (IMs). 

Model Predictive Torque Control (MPTC) uses a system 

model to predict torque in the next step and select the optimal 

input vector accordingly. In this method, a cost function is 

formed to minimize torque and flux errors, and optimization 

is based on this function to improve the system's output 

characteristics [4]. The main issue with predictive control is 

its dependence on parameter variations in the system model 

[5]. Since the predictions made by PTC are based on the 

system model, any inaccuracies or errors in the model lead 

to incorrect predictions. Therefore, it is necessary to correct 

parameter variations in PTC to achieve optimal results. 

Linear Matrix Inequalities (LMI) is a classical control 

method that converts nonlinear equations into linear matrix 

inequalities. Using this method, important parameters can be 

easily represented as positive or negative definite matrices. 

Additionally, input or output constraints can be easily 

applied to LMI, and system stability can be checked 

effortlessly [6]. 

To address system parameter variations, [7] introduces an 

adaptive resistance estimation method for Direct Torque 

Control (DTC), while [8] suggests a new tuning method 

based on winding temperature monitoring. The authors of [9] 

propose an online model reference adaptive estimation 

method that uses a neural network to improve uncertain 

parameters. [10] extends a tube-based model predictive 

control approach to manage nonlinear systems with 

unstructured uncertainties. [11] introduces a robust model 

predictive control for discrete systems with bounded 

disturbances. However, the results of this method depend on 

the linearity of the system and cannot be easily extended to 

nonlinear systems. A new robust output-feedback model 

predictive control method is proposed in [12], which 

presents a stability result for a class of square, open-loop 

stable systems with hard constraints and model uncertainty. 

The application of linear matrix inequalities in control is 

discussed in [6] and [13]. Here, LMI is used for robust 

control for the first time, and an LMI-based observer is 

introduced in [14]. The polytopic model is employed to 

reduce the impact of uncertainties. [15] improves this 

method to reduce computational efforts and extend the 

number of feasible initial states. [16] and [17] present new 

offline methods for LMI-based control. Specifically, [16] 

focuses on designing offline LMI control, while [17] extends 

this method to design feedback matrices and observers. 

In this paper, a new LMI-based robust method is proposed 

for predictive control of an induction motor (IM). The key 

ideas of this paper are as follows: 

 Using the LMI method for robust control of IMs. 

 Using a nonlinear model to achieve better control of speed 

as one of the state variables and designing cost 

functions based on it. 

 Implementing robust predictive control in the presence of 

both uncertainty and disturbance. 

 Incorporating the effect of load torque as an input 

disturbance and designing new feedback and observer 

matrices based on it. 

 Ensuring stability despite disturbances and uncertainties 

for the closed-loop system. 

The results demonstrate that this method can reduce the 

effects of uncertainties and disturbances on torque load and 

rotor speed. First, the nonlinear equations of the IM with 

torque disturbance are presented and linearized. Then, linear 

matrix inequalities are briefly explained, and a new feedback 

matrix and observer are designed based on them. The 

stability theorem is also proven. Additionally, an improved 

predictive control method is described. Finally, simulation 

and experimental results validate the effectiveness of this 

method, and the conclusion is provided at the end. 

  

II. Modelling of IM 

In this section, a description of the nonlinear model of the 

induction motor (IM) is presented, followed by a discussion 

of its linearization. 

 

a) Nonlinear Model 

Equations of IM in the vector mode are as follows: 

𝑑𝑖𝑠⃗⃗ 

𝑑𝑡
= (𝑎1 − 𝑗𝑏1𝜔𝑚)�⃗⃗� 𝑠 + (𝑗𝜔𝑚 − 𝑎2)𝑖𝑠⃗⃗ + 𝑏1𝑣 𝑠 

  
𝑑𝜔𝑚
𝑑𝑡

=
1

𝐽
(
3

2
𝑝𝐼𝑚(�⃗⃗� 𝑠 × 𝑖𝑠⃗⃗ ) − 𝑇𝑙) 

 

(𝑎1 =
1

𝛿𝐿𝑠𝐿𝑟
 𝑎2 =

𝑅𝑠
𝛿𝐿𝑠

+
𝑅𝑟
𝛿𝐿𝑟

  𝑏1 =
1

𝛿𝐿𝑠
   𝑏2 = 

1

𝛿𝐿𝑟
) 

(1) 

 

(2) 

 

Where �⃗⃗� 𝑠 , 𝑖𝑠⃗⃗   are the stator flux and current 

respectively, 𝜔𝑚 is the rotor speed, 𝑅𝑠 , 𝑣 𝑠 denotes the stator 
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resistor and voltage, 𝑅𝑟 is the rotor resistor, 𝐿𝑠 , 𝐿𝑟  are the 

stator and rotor inductances respectively, 𝑝 is the number of 

pair poles and 𝑇𝑙  represents load torque. After separating the 

real from the imaginary parts, this equation takes the 

following form.  
𝑑𝛹𝑠𝑑

𝑑𝑡
= −𝑅𝑠𝑖𝑠𝑑 + 𝑣𝑠𝑑 ,  

(3) 

𝑑𝛹𝑠𝑞

𝑑𝑡
= −𝑅𝑠𝑖𝑠𝑞 + 𝑣𝑠𝑞  

 

(4) 

𝑑𝑖𝑠𝑑
𝑑𝑡

= 𝑎1𝛹𝑠𝑑 + 𝑏1𝜔𝑚𝛹𝑠𝑞 − 𝑎2𝑖𝑠𝑑

− 𝜔𝑚𝑖𝑠𝑞+𝑏1𝑣𝑠𝑑  

 

(5) 

𝑑𝑖𝑠𝑞

𝑑𝑡
= −𝑏1𝜔𝑚𝛹𝑠𝑑 + 𝑎1𝛹𝑠𝑞 +𝜔𝑚𝑖𝑠𝑑 − 𝑎2𝑖𝑠𝑞

+ 𝑏1𝑣𝑠𝑞  

 

(6) 

𝑑𝜔𝑚
𝑑𝑡

=
1

𝐽
(
3

2
𝑝(𝛹𝑠𝑑𝑖𝑠𝑞 −𝛹𝑠𝑞𝑖𝑠𝑑) − 𝑇𝑙) 

 

(7) 

 

And finally, this model can be rewritten as state equations: 

{
  
 

  
 

�̇�1 = −𝑅𝑠𝑥3 + 𝑣𝑠𝑑
�̇�2 = −𝑅𝑠𝑥4 + 𝑣𝑠𝑞

�̇�3 = 𝑎1𝑥1 − (𝑏1𝑥2 + 𝑥4)𝑥5 − 𝑎2𝑥3+𝑏1𝑣𝑠𝑑
�̇�4 = (−𝑏1𝑥1 + 𝑥3)𝑥5 + 𝑎1𝑥2 − 𝑎2𝑥4 + 𝑏1𝑣𝑠𝑞

�̇�5 =
1

𝐽
(
3

2
𝑝(𝑥1𝑥4 − 𝑥2𝑥3) − 𝑇𝑙)

 
 

(8) 

where 𝑥1 = 𝛹𝑠𝑑   𝑥2 = 𝛹𝑠𝑞   𝑥3 = 𝑖𝑠𝑑   𝑥4 = 𝑖𝑠𝑞    𝑥5 =

𝜔𝑚. 

 

b) Linearized Model 

For linearization, we must first obtain the equilibrium 

point by �̇� = 0 [16]: 

 

{
  
 

  
 

−𝑅𝑠�̅�3 + �̅�𝑠𝑑 = 0
−𝑅𝑠�̅�4 + �̅�𝑠𝑞 = 0

𝑎1�̅�1 − (𝑏1�̅�2 + �̅�4)�̅�5 − 𝑎2�̅�3+𝑏1�̅�𝑠𝑑 = 0

(−𝑏1�̅�1 + �̅�3)�̅�5 + 𝑎1�̅�2 − 𝑎2�̅�4 + 𝑏1�̅�𝑠𝑞 = 0

1

𝐽
(
3

2
𝑝(�̅�1𝑥4 − �̅�2�̅�3) − �̅�𝑙) = 0

 
 

(9) 

Values �̅�1 �̅�2… �̅�5 are equilibrium points obtained from 

the values �̅�𝑠𝑑  �̅�𝑠𝑞  �̅�𝑙 . For convenience, this relationship can 

be expressed in a matrix form: 

 

    𝐾(�̅�5)�̅� = 𝐺�̅�  

(3) 

[

0 0 −𝑅𝑠 0
0 0 0 −𝑅𝑠
𝑎1 𝑏1�̅�5 −𝑎2 −�̅�5

−𝑏1�̅�5 𝑎1 �̅�5 −𝑎2

] [

 �̅�1
 �̅�2
 �̅�3
 �̅�4

]

= [

−1 0
0 −1
−𝑏1 0
0 −𝑏1

] [
�̅�𝑠𝑑
�̅�𝑠𝑞
] 

 

(4) 

�̅� = 𝐾−1(�̅�5)𝐺�̅�  

(5) 

�̅�𝑙 =
3

2
𝑝(�̅�1𝑥4 − �̅�2�̅�3) 

 

(6) 

The equilibrium points chosen are �̅�𝑠𝑑  �̅�𝑠𝑞 �̅�5. These 

values are chosen so that the system is asymptotically stable. 

Using Taylor explanation of the nonlinear equations and 

considering the linear parts, the main system around the 

equilibrium point can be stated as follows. 

�̇̃� = 𝐴�̌�(𝑡) + 𝐵�̌�(𝑡) + 𝐵𝑤�̌�(𝑡)  

(7) 

𝐴 = [
𝜕𝑓𝑖
𝜕𝑥𝑗

]
1≤𝑖≤5
1≤𝑗≤5

  

(8) 

𝐴

=

[
 
 
 
 
0 0 −𝑅𝑠 0 0
0 0 0 −𝑅𝑠 0
𝑎1 −𝑏1�̅�5 −𝑎2 −�̅�5 −(𝑏1�̅�2 + �̅�4)

𝑏1�̅�5 𝑎1 �̅�5 −𝑎2 −𝑏1�̅�1 + �̅�3
𝜇�̅�4 −𝜇�̅�3 −𝜇�̅�2 𝜇�̅�1 0 ]

 
 
 
 

,

𝐵 =

[
 
 
 
 
1 0
0 1
𝑏1 0
0 𝑏1
0 0 ]

 
 
 
 

  𝐵𝑤 =

[
 
 
 
 
 
0
0
0
0

−
1

𝐽]
 
 
 
 
 

 

 

(9) 

Where 𝜇 =
3𝑝

2𝐽
 �̌�(𝑡) = 𝑢(𝑡) − �̅�  �̌�(𝑡) = 𝑥(𝑡) −

�̅�  �̌�(𝑡) = 𝑤(𝑡) − �̅�, 𝑢(𝑡) = [𝑣𝑠𝑑 𝑣𝑠𝑞]𝑇 𝑤(𝑡) =

𝑇𝑙   𝑋 = [𝛹𝑠𝑑 𝛹𝑠𝑞 𝑖𝑠𝑑 𝑖𝑠𝑞 𝜔𝑚]𝑇 .  

Remark 1: Owing to space constraints, the 

discretizing procedure is omitted in this paper. 

Therefore, these state matrices are used as an IM 

model after discretization. 

 

 

 

III. Cost function design 

Several parameters can be used to define a cost function. 

Owing to the importance of control issues, stator current an

d flux, and rotor speed were selected. Hence, cost function i

s defined as follows: 

𝐽(𝑘) =
|𝛹𝑠

∗ − �̂�𝑠
 (𝑘 + 1)|

𝛹𝑠
∗2

+
|𝑖𝑠
∗ − 𝑖̂𝑠

 (𝑘 + 1)|

𝑖𝑠
∗2

+
|𝜔𝑚

∗ − �̂�𝑚
 (𝑘 + 1)|

𝜔𝑚
∗ 2

 

 

(10) 

where 𝛹𝑠
∗, 𝑖𝑠

∗ and 𝜔𝑚
∗  are nominal values of the stator flu
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x and current and rotor speed. Besides, �̂�𝑠
 (𝑘 + 1) 𝐼𝑠

 (𝑘 + 1) 

𝑎𝑛𝑑 �̂�𝑚
 (𝑘 + 1) are the predicted values of these parameter

s at the next  time-sampling. Thus, cost function is expresse

d in standard quadratic form: 

𝐽∞(𝑘) =∑(𝑥𝑇(𝑘 + 𝑖|𝑘)𝑄1𝑥(𝑘 + 𝑖|𝑘)

∞

𝑖=0

+ 𝑢𝑇(𝑘 + 𝑖|𝑘)𝑅𝑢(𝑘 + 𝑖|𝑘)) 

 

(18) 

Where: 

𝑥(𝑘) = [�̃�𝑠𝑑
 �̃�𝑠𝑞

 𝐼𝑠𝑑
 𝐼𝑠𝑞

 �̃�𝑚]
𝑇
 𝑢(𝑘) =

[𝑣𝑠𝑑 𝑣𝑠𝑞]𝑇, 

𝑄1 =

[
 
 
 
 
𝑞11 0 0 0 0
0 𝑞22 0 0 0
0 0 𝑞33 0 0
0 0 0 𝑞44 0
0 0 0 0 𝑞55]

 
 
 
 

> 0 

𝑅 = [
𝑟11 0
0 𝑟11

] > 0 

(𝑞11 =
1

𝛹𝑠𝑑
∗ 2   𝑞22 =

1

𝛹𝑠𝑞
∗ 2
  𝑞33 =

1

𝐼𝑠𝑑
∗ 2   𝑞44 =

1

𝐼𝑠𝑞
∗ 2  𝑞55

=
1

𝜔𝑚
∗ 2
  𝑟11 = 𝑟22 = 1) 

Where �̃�𝑠𝑑
 = 𝛹𝑠𝑑

∗ − �̂�𝑠𝑑
 (𝑘 + 1)  �̃�𝑠𝑞

 = 𝛹𝑠𝑞
∗ − �̂�𝑠𝑞

 (𝑘 +

1),𝐼𝑠𝑑
 = 𝐼𝑠𝑑

∗ − 𝐼𝑠𝑑
 (𝑘 + 1)  𝐼𝑠𝑞

 = 𝐼𝑠𝑞
∗ − 𝐼𝑠𝑞

 (𝑘 + 1), �̃�𝑚 =

𝜔𝑚
∗ − �̂�𝑚

 (𝑘 + 1). It is assumed that the nominal current, flu

x and speed are constant although it is simple to rewrite the 

equation to follow a special curve. 

 

IV. Linear Matrix inequalities 

This section gives a brief introduction to LMIs and their a

pplication to optimization problems [6]. A linear matrix ineq

uality is a matrix equation as follows: 

𝐹(𝑥) = 𝐹0 +∑𝑥𝑖𝐹𝑖 > 0

𝑙

𝑖=0

 
 

(19) 

where 𝑥1 , 𝑥2 , … , 𝑥𝑙 are decision variables and 𝐹𝑖  represen

ts real and symmetric matrices. Moreover, 𝐹(𝑥) > 0 means 

F(x) is positive definite. Usually, optimization problem lead

s to minimizing a cost function due to 𝐹(𝑥) > 0. In fact, co

nvex nonlinear inequalities can be converted into an LMI w

ith Schur lemma, or nonlinear equations can be transformed 

into linear matrix inequalities with this compliment. 

 

Lemma 1: Schur Complement [5]and[6]: For a given sym

metric matrix 𝑀 = [
𝐴 𝐵
𝐵𝑇 𝐷

], where 𝐴 = 𝐴𝑇, 𝐵 = 𝐶𝑇  and 𝐷

= 𝐷𝑇, the condition 𝑀 < 0  is equivalent to 𝐷 < 0 , 𝐴 − 𝐵

𝐷−1𝐵𝑇 < 0. 

LMI is often used to solve problems that variables are de

cision-making matrix. In these cases, the problem is not clea

rly understood in terms of LMI, and only unknown matrixes 

are expressed as variables for consideration. 

The LMI can be used to perform robust analysis in the pr

esence of uncertainty. In this case, the problem of controllin

g flux and torque in the IM changes to minimize the cost fu

nction J. Among the various options, the cost of the form is 

considered. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝐽∞(𝑘)  

(11) 

𝐽∞(𝑘) = ∑(𝑥𝑇(𝑘 + 𝑖|𝑘)𝑄1𝑥(𝑘 + 𝑖|𝑘)

∞

𝑖=0

+ 𝑢𝑇(𝑘 + 𝑖|𝑘)𝑅𝑢(𝑘 + 𝑖|𝑘)) 

 

where 𝑄1, 𝑅  are weighing matrixes introduced in the pre

vious section (𝑄1 > 0, 𝑅 > 0). To complete the discussion, a 

model for IMs with polytopic uncertainties are explained, a

nd then the design of the feedback matrix and the observer a

re discussed. 

 

a) Motor LTV model with disturbance 

There are several ways to display the uncertainties in a sy

stem. One of these involves displaying a system with polyty

pic uncertainties as a linear time-varying (LTV) system. Thi

s model is defined as follows: 

𝑥(𝑘 + 1) = 𝐴(𝑘) 𝑥(𝑘) + 𝐵(𝑘) 𝑢(𝑘) 

𝑦(𝑘) = 𝐶 𝑥(𝑘), 

 

(12) 

 

[𝐴(𝑘)  𝐵(𝑘)]  ∈  Ω 

Ω = 𝐶𝑜 {[𝐴1  𝐵1] [𝐴2  𝐵2] … [𝐴𝐿  𝐵𝐿]} 

 

Co represents a convex hull, meaning that there are

𝜆1 𝜆2…  𝜆𝐿, which is why their sum is equal to 1 and:  

[𝐴  𝐵] =∑𝜆𝑖[𝐴𝑖  𝐵𝑖]

𝐿

𝑖=1

 
 

(13) 

 

Based on uncertainties intended for rotor and stator resist

ance, this model can be used as a model of IM: 

 

𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝑢(𝑘) + 𝐵𝑤𝑤(𝑘) 

𝑦(𝑘) = 𝐶 𝑥(𝑘), 

 

(14) 

 

(
𝑅𝑠𝑚𝑖𝑛 ≤ 𝑅𝑠 ≤ 𝑅𝑠𝑚𝑎𝑥
𝑅𝑟𝑚𝑖𝑛 ≤ 𝑅𝑟 ≤ 𝑅𝑟𝑚𝑎𝑥

) 

Remark 2:  There are several methods in the literature to 

determine disturbances more precisely [16],[17].The effect o

f load torque is often not measurable; therefore, it is added a

s a disturbance variable to the system in this paper. 

 

b) Design feedback matrix 

According to the system model and the disturbance inten

ded, feedback matrix 𝑢(𝑘) = 𝐹𝑥(𝑘) is obtained from the fo

llowing theorem. 
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Theorem 1: If 𝑥(𝑘|𝑘) is the measured value of state vari

ables x at the sampling time k and we assume uncertainties 

Ω to be polytopic, then the minimization problem based on t

he robust performance intended by the cost function yield th

e following feedback matrix:  

 

𝐹 = 𝑌𝑄(𝑘)−1  

(15) 

where 𝛾, 𝑄, 𝑌 are obtained from LMIs below: 

[
1 𝑥(𝑘|𝑘)𝑇

𝑥(𝑘|𝑘) 𝑄(𝑘)
] ≥ 0  𝑄(𝑘) > 0 

 

(16) 

[
 
 
 
 
 𝑄 𝑄𝐶𝑇 𝑄𝑄1

1/2 𝑌𝑇𝑅1/2 𝑄𝐴𝑗
𝑇 + 𝑌𝑇𝐵𝑗

𝑇

𝐶𝑄 𝛾2I 0 0 0

𝑄1
1/2𝑄 0 𝛾I 0 0

𝑅1/2𝑌 0 0 𝛾I 0

𝐴𝑗𝑄 + 𝐵𝑗𝑌 0 0 0 𝑄 − 𝐵𝑤𝛾𝐵𝑤
𝑇 ]
 
 
 
 
 

≥ 0  𝑗 = 1…4 

 

(17) 

 

Proof: To obtain an upper limit for the cost function in s

ampling time k the following Lyapunov function is defined:  

𝑉(𝑥) = 𝑥𝑇𝑃(𝑘)𝑥, 𝑃(𝑘) > 0  

(18) 

We suppose that 𝑉(𝑥) satisfies this equation: 

𝑉(𝑥(𝑘 + 𝑖 + 1|𝑘)) − 𝑉(𝑥(𝑘 + 𝑖|𝑘))

≤ −[𝑥(𝑘 + 𝑖|𝑘)𝑇𝑄1𝑥(𝑘 + 𝑖|𝑘)

+ 𝑢(𝑘 + 𝑖|𝑘)𝑇𝑅𝑢(𝑘 + 𝑖|𝑘)] 

 

(28) 

 

Adding () from 𝑖 = 0  to  𝑖 = ∞   and considering 𝑥

(∞|𝑘) = 0 leads to: 

max 𝐽∞(𝑘) ≤ 𝑉(𝑥(𝑘|𝑘)) ≤ 𝛾  

(29) 

This equation determines an upper bound for 𝐽∞(𝑘). We r

ewrite the 𝑉(𝑥(𝑘|𝑘)) ≤ 𝛾 as below: 

𝑥(𝑘)𝑇𝑃(𝑘)𝑥(𝑘) ≤ 𝛾  

(19) 

With substitution 𝑃 = 𝛾𝑄(𝑘)−1, the equation will be as f

ollows: 

1 − 𝑥(𝑘)𝑇𝑄(𝑘)−1𝑥(𝑘) ≥ 0  

(20) 

Finally, the Schur compliment, (20) leads to. 

[
1 𝑥(𝑘|𝑘)𝑇

𝑥(𝑘|𝑘) 𝑄(𝑘)
] ≥ 0  𝑄(𝑘) > 0  

To prove the second part, we substitute 𝑢

(𝑘 + 𝑖|𝑘) = 𝐹𝑥(𝑘 + 𝑖|𝑘) in () and simplify first side:  

𝑉(𝑥(𝑘 + 𝑖 + 1|𝑘)) − 𝑉(𝑥(𝐾 + 𝑖|𝑘))

= (𝑥(𝑘 + 𝑖|𝑘)𝑇(𝐴 + 𝐵𝐹)𝑇

+ 𝑤(𝑘 + 𝑖|𝑘)𝑇𝐵𝑤
𝑇)𝑃((𝐴

+ 𝐵𝐹)𝑥(𝑘 + 𝑖|𝑘)

+ 𝐵𝑤𝑤(𝑘 + 𝑖|𝑘))

− 𝑥(𝑘 + 𝑖|𝑘)𝑇𝑃(𝑘)𝑥(𝑘 + 𝑖|𝑘) 

 

(21) 

The second side equals to: 

[𝑥(𝑘 + 𝑖|𝑘)𝑇𝑄1𝑥(𝑘 + 𝑖|𝑘)

+ 𝑢(𝑘 + 𝑖|𝑘)𝑇𝑅𝑢(𝑘 + 𝑖|𝑘)]

= 𝑥(𝑘)𝑇𝑄1𝑥(𝑘)

+ (𝐹𝑥(𝑘))
𝑇
𝑅(𝐹𝑥(𝑘))

= 𝑥(𝑘 + 𝑖|𝑘)𝑇(𝑄1
+ 𝐹𝑇𝑅𝐹)𝑥(𝑘 + 𝑖|𝑘) 

 

(22) 

Substituting (21) and (22) in () leads to: 

(𝑥(𝑘 + 𝑖|𝑘)𝑇(𝐴 + 𝐵𝐹)𝑇

+ 𝑤(𝑘 + 𝑖|𝑘)𝑇𝐵𝑤
𝑇)𝑃((𝐴

+ 𝐵𝐹)𝑥(𝑘 + 𝑖|𝑘)

+ 𝐵𝑤𝑤(𝑘 + 𝑖|𝑘))

− 𝑥(𝑘 + 𝑖|𝑘)𝑇𝑃(𝑘)𝑥(𝑘 + 𝑖|𝑘)

≤ −𝑥(𝑘 + 𝑖|𝑘)𝑇(𝑄1
+ 𝐹𝑇𝑅𝐹)𝑥(𝑘 + 𝑖|𝑘) 

 

(23) 

  

which equals to: 

𝑉 [
𝑥(𝑘 + 𝑖|𝑘)𝑇

𝑤(𝑘 + 𝑖|𝑘)𝑇
] [
(
(𝐴 + 𝐵𝐹)𝑇𝑃(𝐴 + 𝐵𝐹) − 𝑃

+𝑄1 + 𝐹
𝑇𝑅𝐹

) (𝐴 + 𝐵𝐹)𝑇𝑃𝐵𝑤

𝐵𝑤
𝑇𝑃(𝐴 + 𝐵𝐹) 𝐵𝑤

𝑇𝑃𝐵𝑤

] [
𝑥(𝑘 + 𝑖|𝑘)

𝑤(𝑘 + 𝑖|𝑘)
]

≤ 0 

 

(24) 

 

From 𝐻∞ condition or 
‖𝑦‖2

‖𝑤‖2
≤ γ we get: 

𝑦(𝑘)𝑇𝑦(𝑘) ≤ γ 𝑤(𝑘)𝑇𝑤(𝑘)  

(25) 

Or: 

𝑥(𝑘)𝑇
𝐶𝑇𝐶

γI
𝑥(𝑘)− 𝑤(𝑘)𝑇𝑤(𝑘) ≤ 0 

 

(26) 

Adding (26) to (24) leads to:  

[
𝑥(𝑘 + 𝑖|𝑘)𝑇

𝑤(𝑘 + 𝑖|𝑘)𝑇
]

[
 
 
 
 
(

(𝐴 + 𝐵𝐹)𝑇𝑃(𝐴 + 𝐵𝐹) − 𝑃

+𝑄1 + 𝐹
𝑇𝑅𝐹 +

𝐶𝑇𝐶

γI

) (𝐴 + 𝐵𝐹)𝑇𝑃𝐵𝑤

𝐵𝑤
𝑇𝑃(𝐴 + 𝐵𝐹) 𝐵𝑤

𝑇𝑃𝐵𝑤 − 1 ]
 
 
 
 

[
𝑥(𝑘 + 𝑖|𝑘)

𝑤(𝑘 + 𝑖|𝑘)
]

≤ 0 

 

(38) 

This equation will be true only: 

[
 
 
 
 
(

(𝐴 + 𝐵𝐹)𝑇𝑃(𝐴 + 𝐵𝐹) − 𝑃

+𝑄1 + 𝐹
𝑇𝑅𝐹 +

𝐶𝑇𝐶

γI

) (𝐴 + 𝐵𝐹)𝑇𝑃𝐵𝑤

𝐵𝑤
𝑇𝑃(𝐴 + 𝐵𝐹) 𝐵𝑤

𝑇𝑃𝐵𝑤 − 1 ]
 
 
 
 

≤ 0 

 

(39) 

With substitution 𝑃 = 𝛾𝑄(𝑘)−1 and 𝐹 = 𝑌𝑄(𝑘)−1in (), w

e have: 

[
 
 
 
 
(

𝛾𝑄(𝑘)−1 − (𝐴 + 𝐵𝑌𝑄(𝑘)−1)𝑇𝛾𝑄(𝑘)−1(𝐴 + 𝐵𝑌𝑄(𝑘)−1)

−𝑄1 − (𝑌𝑄(𝑘)
−1)𝑇𝑅𝑌𝑄(𝑘)−1 −

𝐶𝑇𝐶

γI

) −(𝐴 + 𝐵𝑌𝑄(𝑘)−1)𝑇𝛾𝑄(𝑘)−1𝐵𝑤

−𝐵𝑤
𝑇𝛾𝑄(𝑘)−1(𝐴 + 𝐵𝑌𝑄(𝑘)−1) 1 − 𝐵𝑤

𝑇𝛾𝑄(𝑘)−1𝐵𝑤 ]
 
 
 
 

≥ 0 

 

(27) 

Now, after multiplying 𝑄(𝑘) from both sides and after so

me simplification we have: 
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[
 
 
 
 
 
 
 

(

  
 

𝑄 − 𝑄
𝑄1
γI
𝑄 − 𝑌𝑇

𝑅

γI
𝑌

−(𝑄𝐴𝑇 + 𝑌𝑇𝐵𝑇)𝑄−1(𝐴𝑄 + 𝐵𝑌)

−𝑄
𝐶𝑇𝐶

𝛾2𝐼
𝑄

)

  
 

−(𝑄𝐴𝑇 + 𝑌𝑇𝐵𝑇)𝑄−1𝐵𝑤𝑄

−𝑄𝐵𝑤
𝑇𝑄−1(𝐴𝑄 + 𝐵𝑌)

𝑄𝑄

γI
− 𝑄𝐵𝑤

𝑇

𝑄−1𝐵𝑤𝑄 ]
 
 
 
 
 
 
 

≥ 0 

 

(28) 

 

With the Schur compliment the equation changes to: 

𝑄 − 𝑄𝑄1
1/2(𝛾𝐼)−1𝑄1

1/2𝑄 − 𝑌𝑇𝑅1/2(𝛾𝐼)−1𝑅1/2𝑌

− 𝑄𝐶𝑇(𝛾2𝐼)−1𝐶𝑄

− (𝑄𝐴𝑇 + 𝑌𝑇𝐵𝑇) (𝑄−1

+ 𝑄−1𝐵𝑤 (
1

𝛾𝐼
−𝐵𝑤

𝑇𝑄−1𝐵𝑤)
−1

𝐵𝑤
𝑇𝑄−1) (𝐴𝑄

+ 𝐵𝑌) ≥ 0 

 

(29) 

Using the Sherman-Morrison matrix inverse equation, we 

get: 

𝑄 − 𝑄𝑄1
1/2(𝛾𝐼)−1𝑄1

1/2𝑄 − 𝑌𝑇𝑅1/2(𝛾𝐼)−1𝑅1/2𝑌

− 𝑄𝐶𝑇(𝛾2𝐼)−1𝐶𝑄

− (𝑄𝐴𝑇

+ 𝑌𝑇𝐵𝑇)(𝑄 − 𝐵𝑤𝛾𝐵𝑤
𝑇)
−1
(𝐴𝑄

+ 𝐵𝑌) ≥ 0 

 

(30) 

Introducing this matrix: 

𝐹11 = 𝑄,           𝐹12
= [𝑄𝐶𝑇 𝑄𝑄1

1/2 𝑌𝑇𝑅1/2 𝑄𝐴𝑇 + 𝑌𝑇𝐵𝑇] 

𝐹21 =

[
 
 
 

𝐶𝑄

𝑄1
1/2𝑄

𝑅1/2𝑌
𝐴𝑄 + 𝐵𝑌]

 
 
 

  𝐹22 =

[
 
 
 
𝛾2𝐼 0 0 0
0 𝛾𝐼 0 0
0 0 𝛾I 0

0 0 0 𝑄 − 𝐵𝑤𝛾𝐵𝑤
𝑇]
 
 
 

 

Finally, using the Schur compliment, we have: 

[
 
 
 
 
 𝑄 𝑄𝐶𝑇 𝑄𝑄1

1/2 𝑌𝑇𝑅1/2 𝑄𝐴𝑗
𝑇 + 𝑌𝑇𝐵𝑗

𝑇

𝐶𝑄 𝛾2I 0 0 0

𝑄1
1/2𝑄 0 𝛾I 0 0

𝑅1/2𝑌 0 0 𝛾I 0

𝐴𝑗𝑄 + 𝐵𝑗𝑌 0 0 0 𝑄 − 𝐵𝑤𝛾𝐵𝑤
𝑇 ]
 
 
 
 
 

≥ 0 

 

 □ 

 

V. Observer design and stability theorem 

Owing to the difficulties and costs of measuring the moto

r's flux and speed, it is better to use an observer to estimate t

heir values. Observer design can be made as follows [16] an

d [17]. The motor model with the observer is as follows: 

�̂�(𝑘 + 1) = 𝐴(𝑘)�̂�(𝑘) + 𝐵(𝑘)𝑢(𝑘) + 𝐵𝑤𝑤(𝑘)

+ 𝐿𝑝(𝑦(𝑘) − 𝐶�̂�(𝑘)) 

= (𝐴(𝑘) − 𝐿𝑝𝐶)�̂�(𝑘) + 𝐿𝑝𝐶𝑥(𝑘) + 𝐵(𝑘)𝑢(𝑘)

+ 𝐵𝑤𝑤(𝑘) 

 

    𝑒(𝑘 + 1) = 𝑥(𝑘 + 1) − �̂�(𝑘 + 1) = (𝐴0 −

𝐿𝑝𝐶)(𝑥(𝑘) − �̂�(𝑘)) + 𝑓(𝑥(𝑘)𝑢(𝑘)) 

 

(31) 

 

 

Where 𝑓(𝑥(𝑘), 𝑢(𝑘), 𝑤(𝑘)) = (𝐴(𝑘) − 𝐴0)𝑥(𝑘) + (𝐵

(𝑘) − 𝐵0)𝑢(𝑘) + 𝐵𝑤𝑤(𝑘).  𝐴0 , 𝐵0 are the values of the stat

e matrix at steady state. The only nominal error is checked a

t the designing stage, but these statements are not considere

d. Besides, the relationship between the observer and the sta

te feedback is investigated in a separate theorem. The conve

rgence speed of the dynamic error 𝑒(𝑘 + 1) can be reduced 

by the rate of 0 < 𝜌 < 1 so that there is 𝑃 > 0 to satisfy the 

following relationship: 

 

𝜌2𝑒𝑇(𝑘)𝑃𝑒(𝑘) ≥ 𝑒𝑇(𝑘 + 1)𝑃𝑒(𝑘 + 1)  

(32) 

Simplifying and substituting 𝐿𝑝 = 𝑄
−1𝑌 leads to the LMI 

below: 

[
𝑄𝜌2 𝑄𝐴0 − 𝑌𝐶

𝐴0
𝑇𝑄 − 𝐶𝑇𝑌𝑇 𝑄

] ≥ 0 
 

(33) 

 

 

Proof: Substitute 𝑒(𝑘 + 1) = (𝐴0 − 𝐿𝑝𝐶)(𝑥(𝑘) −

𝑥(𝑘)) in (32) : 

𝑒𝑇(𝑘) (𝜌2𝑃 − (𝐴0 − 𝐿𝑝𝐶)
𝑇
𝑃(𝐴0 − 𝐿𝑝𝐶)) 𝑒(𝑘)

≥ 0, 

 

(34) 

This equation will be true only: 

(𝜌2𝑃 − (𝐴0 − 𝐿𝑝𝐶)
𝑇
𝑃(𝐴0 − 𝐿𝑝𝐶)) ≥ 0  

(48) 

Replacing 𝐿𝑝 = 𝑄−1𝑌 and 𝑃 = 𝑄−1 leads to:  

𝑄𝜌2 − (𝐴0
𝑇𝑄 − 𝐶𝑇𝑌𝑇)𝑄−1(𝑄𝐴0 − 𝑌𝐶) ≥ 0  

(49) 

With the Schur compliment, the above equation changes t

o the following: 

 

[
𝑄𝜌2 𝑄𝐴0 − 𝑌𝐶

𝐴0
𝑇𝑄 − 𝐶𝑇𝑌𝑇 𝑄

] ≥ 0 

     □ 

In order to investigate the stability of the closed loop syst

em in this part, we assume that feedback matrix 𝐹(𝑘) is perf

ormed offline for the sake of simplicity and does not relate t

o 𝑥(𝑘). Re-rewriting state equations results in: 

𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝐹(𝑘)�̂�(𝑘)

+ 𝐵𝑤𝑤(𝑘) 

 

(35) 

�̂�(𝑘 + 1) = 𝐴0�̂�(𝑘) + 𝐵0𝑢(𝑘)

+ 𝐿𝑝(𝑦(𝑘) − 𝐶�̂�(𝑘))

= (𝐴0 + 𝐵0𝐹(𝑘) − 𝐿𝑝𝐶)�̂�(𝑘)

+ 𝐿𝑝𝐶𝑥(𝑘) 

 

(36) 

The augmented closed loop system will be as follows: 
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𝜒(𝑘 + 1) = 𝐴𝑝𝑜𝑙𝑦(𝑘)𝜒(𝑘) + 𝐵𝑤𝑤(𝑘)  

(37) 

(𝐴𝑝𝑜𝑙𝑦(𝑘) = [
𝐴(𝑘) 𝐵(𝑘)𝐹(𝑘)

𝐿𝑝𝐶 𝐴0 + 𝐵0𝐹(𝑘) − 𝐿𝑝𝐶
]) 

 

 

Theorem 2: The above closed loop system is stable if th

ere is 𝑄 > 0 for all Ω in such a way that: 

[

𝑄 𝑄𝐶𝑦
𝑇 𝑄𝐴𝑇𝑝𝑜𝑙𝑦

𝐶𝑦𝑄 γI 0

𝐴𝑝𝑜𝑙𝑦𝑄 0 𝑄 − 𝐵𝑤𝐵𝑤
𝑇

] ≥ 0 
 

(38) 

Where: 

𝐴𝑝𝑜𝑙𝑦(𝑘) = [
𝐴(𝑘) 𝐵(𝑘)𝐹(𝑘)

𝐿𝑝𝐶 𝐴0 + 𝐵0𝐹(𝑘) − 𝐿𝑝𝐶
] , 𝐶𝑦

= [
𝐶

0𝑛×𝑛
]   

 

(39) 

 

. 

Proof: To prove stability a Lyapunov function has to be f

ound in such a way that if 𝑃 > 0 then for 𝑉(𝜒) = 𝜒𝑇𝑃𝜒 we 

have �̇�(𝜒) < 0 or:  

𝑉(𝜒(𝑘 + 1)) − 𝑉(𝜒(𝑘)) < 0  

(40) 

 

Substitute (37) in (40): 

(𝐴𝑝𝑜𝑙𝑦(𝑘)𝜒(𝑘) + 𝐵𝑤𝑤(𝑘))
𝑇

𝑃 (𝐴𝑝𝑜𝑙𝑦(𝑘)𝜒(𝑘)

+ 𝐵𝑤𝑤(𝑘)) − 𝜒
𝑇𝑃𝜒 < 0 

 

(41) 

Or: 

  

(
𝜒𝑇(𝑘)

𝑤𝑇(𝑘)
) (
𝐴𝑇𝑝𝑜𝑙𝑦𝑃𝐴𝑝𝑜𝑙𝑦 − 𝑃 𝐴𝑇𝑝𝑜𝑙𝑦𝑃𝐵𝑤

𝐵𝑇𝑤𝑃𝐴𝑝𝑜𝑙𝑦 𝐵𝑇𝑤𝑃𝐵𝑤
) (
𝜒(𝑘)

𝑤(𝑘)
)

< 0 

 

(42) 

 

 

From 𝐻∞ condition or 
‖𝑦‖2

‖𝑤‖2
≤ γ we have 𝑦(𝑘)𝑇𝑦(𝑘) ≤

γ 𝑤(𝑘)𝑇𝑤(𝑘) 𝑜𝑟: 

𝜒(𝑘)𝑇
𝐶𝑦

𝑇𝐶𝑦

γI
𝜒(𝑘)− 𝑤(𝑘)𝑇𝑤(𝑘) ≤ 0 

 

(58) 

Adding (42) and () leads to:  

(
𝜒𝑇(𝑘)

𝑤𝑇(𝑘)
) (
𝐴𝑇𝑝𝑜𝑙𝑦𝑃𝐴𝑝𝑜𝑙𝑦 − 𝑃 +

𝐶𝑦
𝑇𝐶𝑦

γI
𝐴𝑇𝑝𝑜𝑙𝑦𝑃𝐵𝑤

𝐵𝑇𝑤𝑃𝐴𝑝𝑜𝑙𝑦 𝐵𝑇𝑤𝑃𝐵𝑤 − 1

)(
𝜒(𝑘)

𝑤(𝑘)
)

< 0 

 

(59) 

This will be true only: 

(
𝐴𝑇𝑝𝑜𝑙𝑦𝑃𝐴𝑝𝑜𝑙𝑦 − 𝑃 +

𝐶𝑦
𝑇𝐶𝑦

γI
𝐴𝑇𝑝𝑜𝑙𝑦𝑃𝐵𝑤

𝐵𝑇𝑤𝑃𝐴𝑝𝑜𝑙𝑦 𝐵𝑇𝑤𝑃𝐵𝑤 − 1

)

< 0 

 

(43) 

After replacing𝐿𝑝 = 𝑄
−1𝑌  and 𝑃 = 𝑄−1and some simpli

fication we have: 

(
𝑄 − 𝑄𝐴𝑇

𝑝𝑜𝑙𝑦
𝑄−1𝐴𝑝𝑜𝑙𝑦𝑄 − 𝑄

𝐶𝑦
𝑇𝐶𝑦

γI
𝑄 −𝑄𝐴𝑇

𝑝𝑜𝑙𝑦
𝑄−1𝐵𝑤𝑄

−𝑄𝐵𝑇𝑤𝑄
−1𝐴𝑝𝑜𝑙𝑦𝑄 𝑄𝑄 − 𝑄𝐵𝑇𝑤𝑄

−1𝐵𝑤𝑄

)

> 0 

 

(44) 

 

Now we apply the Schur compliment: 

𝑄 − 𝑄
𝐶𝑦

𝑇𝐶𝑦

γI
𝑄

− (𝑄𝐴𝑇
𝑝𝑜𝑙𝑦

) (𝑄−1

+ 𝑄−1𝐵𝑤(1 − 𝐵
𝑇
𝑤𝑄

−1𝐵𝑤)
−1𝐵𝑇𝑤𝑄

−1)(𝐴𝑝𝑜𝑙𝑦𝑄)

> 0 

 

(45) 

With the Sherman-Morrison matrix, the inverse equation l

eads to: 

𝑄 − 𝑄𝐶𝑦
𝑇(γI)−1𝐶𝑦𝑄

− (𝑄𝐴𝑇𝑝𝑜𝑙𝑦) (𝑄

− 𝐵𝑤𝐵𝑤
𝑇)
−1
(𝐴𝑝𝑜𝑙𝑦𝑄) > 0 

 

(46) 

Now, select this matrix to simplify: 

𝐹11 = 𝑄           𝐹12 = [𝑄𝐶𝑦
𝑇 𝑄𝐴𝑇𝑝𝑜𝑙𝑦] 

𝐹21 = [
𝐶𝑦𝑄

𝐴𝑝𝑜𝑙𝑦𝑄
]  𝐹22 = [

γI 0

0 𝑄 − 𝐵𝑤𝐵𝑤
𝑇] 

 

Finally, using the Schur compliment we have: 

[

𝑄 𝑄𝐶𝑦
𝑇 𝑄𝐴𝑇𝑝𝑜𝑙𝑦

𝐶𝑦𝑄 γI 0

𝐴𝑝𝑜𝑙𝑦𝑄 0 𝑄 − 𝐵𝑤𝐵𝑤
𝑇

] ≥ 0 

 

VI. Improved Predictive Control 

Predictive control methods have undergone significant de

velopments in recent years. The Predictive Torque Control (

PTC) algorithm is specifically designed for AC motors to co

ntrol electromagnetic torque. This method involves controlli

ng electromagnetic torque by adjusting the phase angle betw

een the stator and rotor fluxes, as well as the magnitude of t

he stator flux. A cost function is used to optimize the system

's future behavior, and based on this function a selected volt

age vector is applied at each sample time [5]. 

 

For an induction motor (IM), selecting the appropriate vo

ltage vector allows for steering the torque and flux toward t

heir reference values. This voltage vector adjusts the stator f

lux amplitude and simultaneously alters the torque by modif

ying the angle between the stator and rotor flux [12]. 

Despite its advantages, this method has some drawbacks, 
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such as high computational requirements. The primary issue 

with predictive control methods is that the accuracy of the s

ystem model directly impacts torque and flux ripple. In met

hods like PTC or dead-beat control, inaccuracies in estimati

ng system parameters can lead to forced oscillations [4]. Th

is issue can be addressed using robust LMI-based control, a

s introduced in the previous section. 

One of the main improvements of this paper is predicting 

voltage vector at the next sampling time. We use the nearest 

value of 𝑣𝑠 based on the one obtained by the feedback matri

x. Fig.1 shows how we select this voltage vector. In this cas

e, 𝑣2 is selected and 𝑒𝑘 represents the voltage error (𝑣0 = 0)

. 

 
Fig.1. Voltage Vector selecting 

 
Fig.2 represents the block diagram of the control 

method. For performing a good prediction, the feedback 

matrix and observer were correct at every sample time 

while torque value in k+1 was predicted according to flux 

and current predictions. 

 
Fig.2. System Block Diagram 

 

VII. Simulation Results 

The proposed algorithm has been proved theoretically by 

Theorems 1 and 2, and experimentally by the simulation an

d hardware setup using the hardware-in-the-loop (HIS) met

hod. In this method, a TI DSP f28335 board is used to evalu

ate the motor and inverter model, and outputs are sent to a D

/A board using SCI protocol. Other parts are simulated in M

ATLAB. Fig.3 shows the block diagram and the real setup.  

 

Fig.3. Experimental set-up (a) block diagram (b) real set-up 

In this method, only a selected part of simulation is imple

mented in the DSP board and the results are sent back to the 

host PC. Therefore, all outputs could be shown in both the h

ost PC and the oscilloscope. Table 1 shows the motor param

eters. 

 

TABLE I The IM parameters 
 

Parameter Name Value Unit 

𝑹𝒓 𝟎. 𝟓𝟎𝟎 𝜴 

𝑹𝒔 𝟎. 𝟏𝟖𝟎 𝜴 

𝑳𝒓 𝟎. 𝟎𝟓𝟔 𝑯 

𝑳𝒔 𝟎. 𝟎𝟓𝟓𝟑 𝑯 

𝑳𝒎 𝟎. 𝟎𝟓𝟑𝟖 𝑯 

𝝎𝒏 𝟐𝟎𝟎 𝒓𝒑𝒎 

𝑻𝒏 𝟓 𝑵𝒎 

𝒇𝒔𝒏 50 𝑯𝒛 

𝑰𝒏 5 𝑨 

𝑽𝒏 220 𝑽 

 

To achieve optimum results, the new represented method 

is compared with [12] and root PTC. Besides, to examine th

e robustness of the method, 25% uncertainty is considered f

or stator and rotor resistance. Fig.4 shows the stator current, 

electric torque load, and the speed of the rotor and the stator 

flux without observer feedback at 200 rpm. Fig.5 shows the 

same test with robust observer feedback. It is obvious that f

eedback reduces torque oscillation. The total harmonic disto
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rtion (THD) of the stator flux and the current are reduced fr

om 55.37 to 35.12 for the flux and from 38.46 to 26.68 for t

he current. 

 

Fig.4. System Outputs without the observer (25% uncertainty, 

200 rmp) 

 

Fig.5. System Outputs with the robust observer (25% 

uncertainty, 200 rmp) 

The low-speed performance of the algorithm has been stu

died in Fig.6. At 50 rpm, torque oscillation increases and sp

eed predicted with more error. Fig.7 presents the effect of th

e robust feedback. The feedback has acceptable result at this 

speed. The THD of the stator flux changes from 67.89 to 35

.36 while the THD of the stator current is reduced from 42.2

4 to 36.71.  

 

Fig.6. System Outputs without the observer (25% uncertainty, 

50 rmp) 

 

Fig.7. System Outputs with the observer (25% uncertainty, 50 

rmp) 

Fig.8 represents the exported output from MATLAB. In t

his figure, the motor and inverter model is simulated in the 

TI DSP board. Using the HIS method, all the output can be e

xported to D/A or returned to the host PC. Fig.8 shows IM o

utputs in the host PC. Fig.9 shows this test at a lower speed. 

 

Fig.8. Process in the loop outputs exported to matlab (25% 

uncertainty, 200 rmp) 
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Fig.9. Process in the loop outputs exported to Matlab (25% 

uncertainty, 20 rmp) 

VIII. Conclusion 

    In this paper, a new method for designing an observer and 

feedback matrix for robust predictive control of induction m

otors (IMs) is presented. In this approach, load torque is trea

ted as an unknown disturbance. Additionally, a nonlinear IM 

model is utilized to enhance the accuracy of the modeling. 

     To validate this method, simulations and the HIS method 

are conducted and compared with root PTC methods. The re

sults demonstrate that using the nonlinear motor model for d

esigning the feedback matrix and observer improves the acc

uracy of the controller when compared to a linear model. Fu

rthermore, this approach addresses one of the main challeng

es of predictive control methods: parameter uncertainty. In c

omparison to the other methods considered, the robust LMI-

based observer reduces the Total Harmonic Distortion (THD

) of both stator flux and current. Finally, the results indicate 

that this method effectively handles unknown load torque. 
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