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Abstract 

In this paper, the free vibration behaviour of the circular sandwich plates with two functionally graded face sheets on the Pasternak elastic 

foudation is investigated in a clamped boundary condition based on a high order sandwich plate theory. By considering the inplane stresses 

of the core the theory is modified and the obtained equation is more accurate. The material properties of the functionally graded face sheets 

and the homogeneous core are assumed to be temperature- dependent. The functionally graded materials vary continuosly through the 

thickness according to a power - law distribution. The governing equations of the motion are derived by using Hamilton’s principle and a 

Glaerkin method is used to solve the equations. To verify the results of the present method, they are compared with the finite element 

results which obtained by Abaqus software and for special cases with the results in some literatures which a good agreement is found 

between them. 
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Introduction 

Due to the high flexural stiffness to weight ratio, 

sandwich structures have a wide application in the 

modern industries such aerospace, transportation, naval 

and construction structures.  Sandwiches include two thin 

and stiff faces that cover a thick and lightweight core 

which usually is flexible. The separation of face sheets by 

a soft core increases the bending rigidity of the plate at an 

expenses of small weight [1]. Application of classical 

composite material in high temperature environments 

cause to the failure, delamination and thermal stress 

concentration. Japanese researchers proposed functionally 

graded materials (FGMs) to overcome these problem. 

FGMs are microscopic inhomogeneous materials which 

gradually graded from a metal surface to a ceramic one 

[2]. Investigation on these materials have been increased 

by material researchers. Mollarazi et al. studied the 

vibration behaviour of FGM cylinder. The materials were 

functionally graded in the radial direction from a silicon 

carbide to stainless steel [3]. Dai et al. studied the 

Thermoelastic responses of FG hollow cylinder by using a 

power law rule to model the material properties variation 

[4]. Sofiyev investigated the vibration and stability of 

clamped conical shells. Power law rule and exponential 

rule were used to model the FGM variation [5]. Kim et al. 

analyzed the nonlinear behaviour of the FGM plates and 

shells. By using a sigmoid function, the material 

properties were modelled [6]. Dai et al. studied the low 

velocity impact effects on the nonlinear responses of the 

FG circular plates [7]. 

Plates on the elastic foundations have been widely 

adopted by many researchers to model the interaction 

between elastic media and plates for various engineering 

plate problems. Tahouneh and Yas investigated the 3-D 

free vibration of thick FG annular sector plate on a 

Pasternak foundation [8]. Singh and Harsha analyzed the 

nonlinear dynamic of FG sandwich plate on Pasternak 

foundation under thermal environment [9]. Gao et el. 

Studied the stability of composite orthotropic plate on 

elastic foundation under thermal environment [10]. 

Keleshteri et al. studied nonlinear bending of FG-CNTRC 

annular plates with variable thickness on elastic 

foundation [11]. 

There are different approaches to investigate the 

mechanical behaviour of plates such as shear deformation 

plate theory, 3D elastic theory, energy and finite element 

method [12]. By applying a finite element approach, 

Prakash and Ganapathi studied the mechanical behaviour 

of FG circular plates [13]. Civalek by using FSDT, 

investigated the static responses of thick composite plates 

[14]. Cohen studied the buckling of the laminated plate 

based on a transverse shear deformation theory [15]. In 

these theories the core height is constant, but in fact the 

thickness of the sandwich plates are variable. So, the core 

should be considered as a flexible layer that compressed 

transversely. In the classical theories, the localized effects 

in the core can’t be calculated, so to consider these 

effects, Frostig et al. presented a high order theory [16]. 

Malekzadeh et al. studied the dynamic responses of the 

composite sandwich panels based on an improved high 

order sandwich plate theory [17]. Mantari et al. utilised a 

HSDT to find the frequencies of functionally graded 

plates located on elastic foundation [18]. Rahmani et al. 

studied the nonlinear buckling of different types of porous 

FG sandwich beams with temperature-dependent material 
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based on a high order theory of the sandwich beam. [19]. 

With a high order theory Salami et al. inspected the 

bending in rather thick faces sandwich beams with a soft 

core which satisfied the stress compatibility condition at 

interface [20]. Frostig et al. investigated the nonlinear 

wrinkling of a functionally graded core sandwich panel by 

employing a modified high order theory [21]. 

A review in literature shows there are limited articles that 

consider the dependency of the material to the 

temperature for both faces and core in studying of the 

mechanical behaviour. Shahrjerdi et al. analyzed the 

vibration characteristics of temperature-dependent solar 

FG plates by applying the second-order shear deformation 

theory [22]. Frostig and Thomsen numerically 

investigated the vibration of sandwich plates consisted the 

core that its material was temperature dependent [23]. 

Pandey and Pradyumna by utilising the layer-wise theory 

explored the frequency responses of the FG sandwich 

plates made of the temperature dependent materials [24].  

An important kind of sandwich structures that used in 

high temperature surroundings is the FG circular 

sandwich plate. Many researchers have explored the 

vibration behaviour of the circular sandwich plates. Sherif 

discussed the frequencies characteristics of the clamped 

circular sandwich plates by applying the FSDT. The core 

was viscoelastic and shear stress and rotary inertia were 

considered [25]. Chan II Park derived the frequency 

equations of the uniform thickness circular plate with 

clamped boundary condition [26]. By exerting a 3D 

elasticity procedure Nie and Zhong investigated the 

frequencies characteristic of the FG circular plates in 

various boundary conditions [27]. Ebrahimi et al. studied 

the vibration characteristics of FG circular plate which 

merged with two piezoelectric layers in different 

boundary condition [28]. Lal and Rani investigated the 

free vibrations of circular sandwich plates in different 

boundary conditions by utilising the FSDT [29]. 

As a result of review in the accessible literatures, it's 

found that there is no studying on the vibration of circular 

sandwich plates on the Pasternak elastic foundation by 

using a modified high order sandwich plate theory and 

considering the temperature dependent material for both 

faces and core. In this study, by applying a high order 

theory which modified by considering the flexibility of 

the core in the thickness direction and in-plane stresses of 

the core, vibration behaviour of circular sandwich plates 

are investigated in the uniform temperature distributions. 

Sandwiches consist of two FG faces which cover a 

homogeneous core. FG material properties are 

temperature and location dependent which graded in 

according to power law rule. The homogeneous materials 

are temperature dependent, too. Unlike the most papers, 

high order stresses and thermal stress resultants, in plane 

stresses and thermal stresses of the core and face sheets 

are considered at the same time. Boundary condition is 

clamped and equations are derived based on the 

Hamilton's energy principle. To obtain the frequencies, a 

Galerkin method is applied.  

 

Formulation 

In order to investigate the vibration behaviour of clamped 

functionally graded circular sandwich plates and obtain 

the governing equations of the motion, Hamilton's energy 

principle is applied which consists of the variation of the 

kinetic and strain energy. The main equation is as follow 

[30]: 

The variation of kinetic and the strain energy are δK and 

δU, respectively; t is the time coordinate that varies 

between the times t1 and t2;   is the variation operator. 

The variation of the kinetic energy is calculated as 

follows: 
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(2) 

where (∙∙) indicates the second derivative with respect to 

time; The density is "ρ" which in the functionally graded 

layers is the function of the displacement and the 

temperature, and in the homogeneous layer is just a 

function of the temperature; The top and bottom face 

sheets and the core, are indicated with "t", "b" and "c", 

respectively.  

To model the properties of the FGMs which usually 

include ceramic and metal and vary gradually in the 

thickness direction, a power law rule is applied. 
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Where N is the power law index; P is the material 

properties such as young module, Poisson's ratio, density. 

Since these sandwich structures are applied in high 

temperature conditions, it is necessary to consider that the 

FGMs and homogeneous materials are temperature 

dependent. This dependency is expressed as a nonlinear 

function of temperature as follows [31]. 

 1 2 3

0 1 1 2 31P C C T C T C T C T
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(5) 

Where "C"s are unique coefficients of temperature for 

each material; and T=T0+ΔT, which T0 is the room 

temperature. 

Inspired by Kirchhoff’s assumptions, a classical theory of 

plates in polar coordinate, is employed to model the 

displacement fields of the face-sheets as [32]: 
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where "0" denotes values with correspondence to the 

central plane of the layers. "u" and "υ" are the in-plane 

deformations in the "r" and "θ" directions and "w" is the 

transverse deflections of the faces. Also, the kinematic 

relations of the core are considered as polynomial pattern 

with the unknown coefficients, uk and νk (k= 0,1,2,3), for 

the in-plane and wl (l = 0,1,2) for vertical displacement 

components which obtained by the variational principle 

[31]:  
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In this theory, the compatibility conditions assume that 

the faces are sticked to the core completely and the 

interface displacements between the core and the face 

sheets can be obtained as follows: 
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The variation of the total strain energy includes all 

mechanical and thermal stresses and linear and nonlinear 

strains of the layers of the sandwich plates that make the 

mechanical and thermal energy [20]. In addition, the 

compatibility conditions at the interfaces of the core and 

the face-sheets are the constraints and attended in the 

Hamilton’s principle in terms of six Lagrange multipliers. 

By considering the effects in-plane stresses of the core in 

this formulation, is as follows: 
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"
ζrr" , "ζθθ"  and "ηrθ"  display the normal and shear 

stresses; "εrr" , "εθθ"  and "γrθ" are the linear normal and 

shear strains of the layers; "ζrr
T
" and "ζθθ

T
" express the 

thermal stresses and "drr"  and "dθθ" are the non-linear 

strains in the faces; "ζzz
c
"  and "εzz

c
" present the lateral 

normal stress and strain in the core; "ηrz
c
", "ηθz

c
", "γrz

c
"and 

"γθz
c
" declare the shear stresses and shear strains in the 

thickness direction of the core; "λr","λθ" and "λz" are the 

Lagrange multipliers at the face sheet-core interfaces. 

The potential energy of establishment of plate on the 

Pasternak elastic foundation can be calculated as follows: 
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Also, the variation of this energy δ   is as follows: 
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Where    is the Winkler elastic coefficient of Pasternak 

foundation;    is the shear elastic coefficient of Pasternak 

foundation. Total potential energy of the plate is sum of 

the variation of the strain energy of plate and variation of 

the potential energy of the elastic foundation. 

p fδU δU δU   (17) 

Considering small deflection, the linear and nonlinear 

strain components for the faces can be declared as follows 

[33]: 
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The"    " expresses derivation with respect to i. The strain 

of the core can be defined as [34]: 
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In this model by substituting the expressions of the Eq. (2) 

and Eq. (14) according to the kinematic relations of the 

layers and using the interfaces relations, and after some 

algebraic operations the twenty three equations of motion 

are obtained, which included twenty three unknowns: six 

displacement unknowns for both face sheets in Eqs. (21)-

(25), eleven displacement unknowns for the core in Eqs. 

(26)-(36), and six Lagrange multipliers in Eqs. (37)-(42). 
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Stress resultants, moment resultants, thermal stress and 

moment resultants and inertia terms of the faces, and high 

order stress resultants of the core have been presented in 

references [35-36]. 

Finally, by substituting the high order stress resultants in 

the equations of the face sheets and the core in terms of 

the displacement components, the governing equations of 

motion are derived in terms of the twenty three 

unknowns. However, for a clamped circular sandwich 

plate, a Galerkin method solution could be established. 

Clamped circular sandwich plate 

In order to solve the equations of the free vibration of the 

clamped FG circular sandwich plate, a Galerkin method 

with twenty three trigonometric shape functions, which 

satisfy the boundary conditions, is established. The shape 

functions can be expressed as: 

0    ,  ( , )i t

j uju C rsin r e j t b      
(44) 

 0   i t

j wjw C cos r r sin r a e          
(45) 

     , 0,1,2,3i t

k uku C rsin r e k  
 

(46) 

             0,1,2i t

l wlw C cos r r sin r a e l          
(47) 

   
rj

i t

rj C rsin r e 


   
   

(48) 

 0 0       ,  0,1,2,3j k j k     
 

(49) 

   
zj

i t

zj C cos r r sin r a e 


       
   

(50) 

where "Cuj،Cwj،Cuk ،Cwl, Cλrj and Cλzj" are fifteen unknown constants and λ=π/2a((2n-1)) that "n" is the wave number. 

Since the plate is axisymmetric, eight equations are 

eliminated and the number of the equations are reduced to 

fifteen. On the other hand, these fifteen equations are not 

independent and by a procedure the number of them are 

reduced. Lagrange constants can be isolated as the faces 

constants. It's seen that based on the compatibility 

conditions the unknown constants of the faces are 

dependent to the core constants. At last by some 

operations the number of the equations are reduced to 

seven in terms of the core unknown constants. The seven 

equations can be written in the 7*7 matrix form which 

include the mass, "M", and stiffness, "K", matrices in 

accordant to the Eq. (51) to obtain the constant Eigen 

values which equals to Eigen frequencies, ωm , for every 

wave number, m. 

(   2

n   )      (51) 

In Eq. (51), Fn is the Eigen vector which determines the 

seven unknown constants of the core. For simplicity, the 

fundamental frequency parameter defined that is non-

dimensional as: 
2

0

0

a

h E


 

 

(52) 

where "a" is the radius of circular sandwich plate; "h" is 

the total thickness of sandwich plate; ρ0 is density equal to 

1kg/m
3
 and E0 is the young module equal to 1 GPa. 

Verification and Numerical results 

To validate the approach of this work, the present results 

in a special case are compared with results of [13, 35] and 

FEM results of Abaqus software for a clamped isotropic 

circular plate with properties: E=380 (GPa),   

      
  

   ,       and 
 

 
     as shown in Table 1. 

Because, the theory of present analysis is different from 

the [13, 37], a discrepancy is found in the results. Also, 

discontinues model is used in Abaqus model that causes a 

little discrepancy with present analysis. 

Table 1 

Comparison of fundamental frequency parameters of present, [13, 37] and Abaqus results 

m Present result [13] [37] ABAQUS 

1 10.232 10.213 10.216 10.217 

2 21.472 21.259 21.260 21.265 
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Now, another numerical problem will be discussed to 

more investigation the present approach. Consider a 

clamped FG circular sandwich plates as shown in Fig. 1.  

 
Fig 1. Schematic of FG circular sandwich plate on Pasternak foundation 

The face sheets interior planes and the core are made of 

the stainless steel and the outer planes of the faces are 

made of silicon nitride. The properties of these materials 

are available in [30]. Variation of the material properties 

in each FG layer is correspond to the modified power-law 

function.  

To validate the present method, numerical examples are 

simulated by Abaqus software, version 6.13. The 

continuum three dimensional and eight nodes hexagonal 

with the effect of thermal elements (C3D8T) are used to 

mesh the samples as shown in Fig. 2. In order to simulate 

the FG face-sheets and FG core in Abaqus, all FG layers 

are divided to 20 sub-layers and each sub layer has 

different properties according to the power law function. 

Also, the number of the elements in FEM are dependent 

to the convergence of the results. First 4000 elements are 

considered. By increasing the number of elements, it's 

seen that the variation of the results are high. But, after 

12000 elements, there is a convergence between the 

results. So, it's found that 12000 elements are proper and 

increasing the elements more than 12000, just increases 

the time of the solving and doesn't have any important 

effect on the results. Also, explicit solution is used to 

solve the problem. 

 

 
Fig 2. Finite element model for the clamped sandwich plate. 

In Table 2 fundamental frequency parameters of this 

approach are compared with the FEM results by Abaqus 

software in the temperature of the room and for different 

power law indices in the case of 1-1-1, 2-1-2 and 1-8-1 

sandwiches. It should be noted that in 1-8-1 sandwich, the 

core thickness is eight times of every face sheets thickness 

and the structure is symmetric. In these Tables, the 

discrepancies between the present results and FEM results 

are due to simulation method of FG layers in Abaqus 

software. There is a good agreement between the present 

study results and the FEM results obtained by Abaqus. 

Table 2 

Comparison of fundamental frequency parameters of the present method and Abaqus 
N Present method Abaqus Discrepancy  )%(  

1-8-1 

0 0.154492 0.151229 2.15 

0.2 0.153475 0.148296 3.49 

1 0.151232 0.140353 7.75 

1-1-1 

0 0.188672 0.180013 4.81 

0.2 0.183997 0.1705121 7.9 
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1 0.172924 0.160833 7.51 

2-1-2 

0 0.205392 0.192115 6.91 

0.2 0.199543 0.190031 5 

1 0.185699 0.173231 7.19 

In Table 3 fundamental frequency parameters of this 

approach are presented for different temperature and 

different Ksbar in the case of 1-1-1, 2-1-2 and 1-8-1 

sandwiches. 

Table 3 

Fundamental frequency parameters of the present method 

Ksbar 300 (k) 900 (k) 1300 (k) 

1-8-1 

0 0.154492 0.127166 0.120209 

10 0.154531 0.1272 0.120244 

50 0.154687 0.127335 0.120381 

100 0.154882 0.127502 0120553 

1-1-1 

0 0.188672 0.163126 0.14703 

10 0.188673 0.163127 0.147031 

50 0.188674 0.163130 0.1477032 

100 0.188675 0.163132 0.147033 

2-1-2 

0 0.205392 0.180315 0.162053 

10 0.205393 0.180316 0.162054 

50 0.205394 0.180317 0.162055 

100 0.205395 0.180318 0.162056 

The frequency of the structures are dependent to the 

temperature variation. The effect of the uniform 

temperature distribution on the fundamental frequency 

parameter is depicted in Fig. 3 for three types of clamped 

circular FG sandwich plates in different power law 

indices. As shown in the figures, while the temperature is 

increased in a constant power law index, the fundamental 

frequency parameter decreases. According to Eq. (5), 

temperature rising reduces the strength of the material. 

With increasing the temperature, modulus of metal and 

ceramic decrease, but due to the microstructural reasons, 

decreasing the module of metal is more. So, increasing the 

temperature reduces the mechanical properties that is one 

of the most important reason in decreasing the frequency 

in high temperature. Also in a constant temperature, the 

fundamental frequency is decreased in the larger power 

law indices. Because, with increasing the power-law 

index the properties of the layers are tending to metal and 

the strength of the structure is decreased. It is obvious that 

the values of the fundamental frequency parameters in 2-

1-2 sandwich are more than 1-1-1 one and the 1-8-1 

sandwich is lower than 1-1-1 one.  

 

 
1-8-1 
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1-1-1 

 
2-1-2 

Fig 3. Frequencies changing with temperature in various power law indices for different circular sandwich plates 

Frequencies changing with temperature in various 

Winkler elastic coefficient of Pasternak foundation for 1-

8-1, 1-1-1 and 2-1-2 sandwich plates are shown in Fig 4. 

It is obvious that by increasing the Kwbar, the 

fundamental frequencies increase. The frequency 

parameter in the case of 2-1-2 is highest. 

 
1-8-1 

 
1-1-1 
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2-1-2 

Fig 4. Frequencies changing with temperature in various Winkler elastic coefficient of Pasternak foundation for different circular sandwich 

plates 

Frequency changing with temperature in various shear 

elastic coefficient of Pasternak foundation for 1-8-1, 1-1-1 

and 2-1-2 sandwich plates are shown in Fig. 5. It is 

obvious by increasing the Ks, the fundamental 

frequencies increase. The frequency parameter in the case 

of 2-1-2 is highest. 

 
1-8-1 

 
1-1-1 

 
2-1-2 

Fig 5. Frequencies changing with temperature in various shear elastic coefficient of Pasternak foundation for different circular sandwich 

plates  



International Journal of analytical and Numerical Methods in Mechanical Design 

Vol 3., Issue 1 Winter & Spring, 2024, 37-50  

 

46 

Variation of the fundamental frequency with radius to 

thickness ratio for different power law index for different 

types of sandwiches are shown in the Fig. 6. With 

increasing the ratio, the strength of the structure 

decreases, so by increasing this ratio the fundamental 

frequency decrease. The frequency parameter in the case 

of 2-1-2 is highest. 

 
1-8-1 

 
1-1-1 

 
2-1-2 

Fig 6. Variation of the fundamental frequency with radius to thickness ratio for different power law index for different circular sandwich 

plates 

Variation of the fundamental frequency with radius to 

thickness ratio for different Winkler elastic coefficient for 

different types of sandwiches are shown in the Fig. 7. 

With increasing the ratio, the strength of the structure 

decreases, so by increasing this ratio the fundamental 

frequency decrease. With increasing the Winkler 

coefficient, the fundamental frequency increases. 
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1-8-1 

 
1-1-1 

 
2-1-2 

Fig 7. Variation of the fundamental frequency with radius to thickness ratio for different Winkler elastic coefficient for different circular 

sandwich plates 

Variation of the fundamental frequency with radius to 

thickness ratio for different shear elastic coefficient for 

different types of sandwiches are shown in the Fig 8. With 

increasing the shear coefficient, the fundamental 

frequency increases. 

 
1-8-1 
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1-1-1 

 
2-1-2 

Fig 8. Variation of the fundamental frequency with radius to thickness ratio for different shear elastic coefficient for different circular 

sandwich plates 

Conclusion 

Temperature dependent vibration behaviour of circular 

sandwich plates with FG face sheets on the Pasternak 

elastic foundation which is subjected to a uniform high 

temperature distribution were investigated based on the 

modified high order sandwich plate theory. Governing 

equations were derived based on the Hamilton's energy 

principle. Material properties of the FG layers were 

temperature and location dependent. Power law rule was 

employed to model the gradually variation of the 

properties in the FG layers. The homogeneous layer was 

temperature dependent, too. In plane and out of plane 

stresses of the core were considered at the same time. 

There are different methods to solve the equations which 

the Galerkin method is selected among them in a clamped 

boundary condition. In order to validate present approach, 

the numerical results which obtained by Abaqus software 

were compared to the results of this analytical approach 

and for a special case compared with some literature. 

Based on the results obtained by this approach and 

comparing with FEM results, there was a good agreement 

with them and the following conclusion can be drawn. 

1. With increasing the temperature in a constant 

power law index, the fundamental frequency 

parameter decreases. 

2. While power law index is increased in a constant 

temperature, the fundamental frequency 

parameter decreases. 

3. By increasing the radius to thickness ratio, the 

fundamental frequency parameter decreases. 

4. With increasing the winkler coefficient, the 

fundamental frequency increases. 

5. With increasing the shear coefficient, the 

fundamental frequency increases. 

6. In the 2-1-2 sandwich, the fundamental 

frequency is the highest and in the 1-8-1 one is 

the lowest. 
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