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Abstract–In the context of emerging technologies like the Internet of Things (IoT) and home automation, 

researchers are increasingly exploring the use of Wireless Sensor Networks (WSNs). One of the primary functions of 

these sensors is coverage, which refers to how effectively they can monitor targets within a given environment. In many 

applications, it is essential that each target is covered by at least one sensor; this is known as "Simple Coverage." In 

other cases, multiple sensors may be required to cover a single target, a situation referred to as "Multiple Coverage." 

When the number of sensors covering a target can vary, it is termed "Q-coverage." When there are not enough sensors 

in an environment, achieving balanced coverage becomes critical. To address this challenge, current research presents a 

hybrid algorithm that combines genetic algorithms and Tabu Search as a promising solution for monitoring targets in 

such under-provisioned environments. To evaluate the effectiveness of this proposed algorithm, several experiments 

were conducted, and the results were compared with those obtained from a genetic algorithm introduced in recent 

studies. 
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1. Introduction 
 

Wireless sensor networks (WSNs) consist of a series of 

sensor nodes specifically designed to collect, process, and 

transmit information from their surrounding environment. 

These networks are used in various fields, including 

environmental monitoring, security, agriculture, industry, 

and the military. In directional sensor networks, each sensor 

node has a limited field of view and can only gather 

information from a specific direction. This limitation 

presents significant challenges in the design and 

management of these networks. A critical concept in 

designing such networks is coverage, which plays an 

essential role in their overall performance and efficiency 

[1].Coverage in directional sensor networks can be 

categorized into three main types: Target Coverage, Area 

Coverage, and Barrier Coverage. Target Coverage focuses 

on covering specific targets within the environment. The 

primary goal is to achieve complete coverage of these 

targets using the fewest number of sensors. This type of 

coverage is commonly applied in security and the 

monitoring of sensitive locations, such as gates, military 

bases, and critical infrastructure. Area Coverage aims to 

ensure that an entire region is adequately covered by 

distributing sensors so that no point within the area remains 

uncovered. This type of coverage is utilized in 

environmental monitoring, smart agriculture, and urban 

surveillance. Barrier Coverage seeks to establish a sensory 

barrier that prevents objects or individuals from crossing a 

designated boundary. This coverage is particularly relevant 

in applications like border security, safeguarding critical 

infrastructure, managing vital areas, and creating sensory 

barriers around essential locations such as power plants, 

chemical storage facilities, or weapon depots [2].  

Despite their wide range of applications, Wireless 

Sensor Networks (WSNs) have significant limitations. The 

sensor nodes are small and powered by tiny batteries, which 

means the lifespan of a sensor network is heavily dependent 

on how long these nodes last. A major challenge is to 

extend the network's overall lifespan. WSNs are often 

deployed in hard-to-reach areas, such as hazardous 

chemical sites or hostile military zones. In some scenarios, 

like forest monitoring, the operational environment can be 

vast, making it difficult to search for, recharge, or replace 

batteries. There are several methods for deploying sensors 

in an environment, with two common approaches being 

predetermined placement and random deployment. In 

predetermined placement, the positions of the sensors are 

decided in advance. In random deployment, a relatively 

large number of sensors are scattered throughout the 

environment without predetermined positions. This 

randomness can lead to some sensors being placed in 

unfavorable locations, such as in water or behind obstacles, 

which renders them ineffective. Additional challenges 

include potential sensor damage, consumption by animals, 

and other factors. Because some targets may remain 

uncovered due to these issues, it is essential to deploy extra 

sensors to ensure coverage, depending on the specific type 

of network. Coverage can be divided into two categories: 

simple coverage and multi-coverage, based on the number 

of sensors required to cover each target. In simple coverage, 

each target requires coverage from at least one sensor. A 

failure or lack of coverage for some targets does not 

significantly impact the overall network performance. In 

contrast, multi-coverage requires that each target be 
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covered by a greater number of sensors. When all targets 

must have coverage from a fixed number of sensors (like k), 

this is referred to as k-coverage. Since not all targets hold 

equal importance, and covering them all with the same 

number of sensors could increase network overhead, 

another coverage type is defined where the coverage 

requirements vary for different targets; this is known as Q-

coverage [4]. 

 

2. Related Works 

 

Directional sensor networks play a significant role in 

improving monitoring and data management with their 

unique capabilities. Applying these networks helps resource 

optimization, security enhancement, and service quality 

improvement in various domains. Extensive research has 

been conducted on simple and multi-coverage. In simple 

coverage, researchers have proposed several methods to 

maximize target coverage using the minimum number of 

active sensors. One of the earliest studies [6] offered a 

model for "Maximum Coverage with Minimum Sensors". 

This model was formulated using an Integer Linear 

Programming (ILP), and two greedy algorithms were 

developed to solve the problem: A centralized and a 

distributed algorithm. These algorithms were very 

optimized in terms of computational efficiency. Some 

research has been conducted to extend the network's 

lifespan in simple coverage. In research [7,8], some 

methods are proposed, including sensor scheduling and 

sensors' range adjustment. In research [7], two greedy 

algorithms were designed to make coverage sets that 

provide coverage in various steps. This study specifically 

emphasizes critical targets, which are those targets covered 

by consuming less energy. In [8], the problem of 

"Maximum Network Lifetime with Adjustable Ranges" 

(MNLAR) was investigated, and sensors were selected in 

terms of direction and range to create a coverage set. 

Research has also been conducted, focusing on multi-

objective optimization, and we can imply research [2]. This 

study [2] uses an algorithm based on NSGA-II. Focusing on 

multi-objective optimization, this algorithm tries to 

simultaneously improve parameters such as the number of 

sensors and coverage quality. 

In k-coverage, each target must be covered by a 

minimum of k sensors. Research has proposed methods to 

optimize k-coverage and extend network lifetime. Research 

[9] proposed a heuristic method focusing on reducing 

energy consumption. By preventing activation of 

unnecessary sensors, battery life and network lifespan will 

be increased. Study [10] investigated the k-coverage 

problem and two algorithms based on automated learning 

with the relevant rules. These rules prevented the selection 

of multiple directions for each sensor in a coverage set. 

Where the number of sensors is insufficient for a complete 

coverage of targets, it is called an under-provisioned 

environment, and some methods have been proposed for a 

balanced network coverage. In research [11], in addition to 

extending integer linear programming (ILP) for the simple 

coverage, a centralized greedy algorithm was designed to 

create balanced coverage in the network. Study [12] 

proposed an algorithm based on automated learning for 

selecting the minimum number of sensors for each 

coverage set and maintaining balanced coverage amongst 

targets. In sensor networks, heuristic algorithms are used to 

achieve an optimal method. In study [13], two genetics-

based algorithms were designed to be applicable in over-

provisioned and under-provisioned environments. These 

algorithms aimed to achieve balanced coverage in line with 

the Balance Index (BI). Q-coverage refers to a state where 

the coverage requirements of targets vary. Research in this 

area is highly complex because different targets may 

require different numbers of sensors. Study [14] suggests 

that the Q-coverage problem is of NP-complete type. Linear 

programming techniques were used to solve this problem. 

In research [15], a greedy algorithm was proposed to create 

non-overlapping coverage sets in which sensors with 

batteries of longer lifespan are of higher priority. In study 

[16], a genetic-based algorithm was designed to extend 

network lifetime and optimize resource consumption. In 

research [17], using IQP formulae and balanced index (BI), 

we attempted to provide a balanced coverage in the 

networks for targets. Additionally, greedy algorithms were 

designed to solve large-scale problems. 

In study [4], the authors proposed two genetics-based 

algorithms to solve the Q-coverage problem in directional 

sensor networks (DSNs). This research has one important 

goal: Proposing approaches for covering targets under 

various conditions and optimizing network lifetime. The 

most significant works in [4] include examining target 

coverage in the over-provisioned and under-provisioned 

environments. Two target-based algorithms were developed. 

The first algorithm aims to cover all targets with the 

minimum number of active sensors, and the second 

algorithm is designed for under-provisioned environments 

to provide balanced coverage for different targets based on 

their coverage requirements. The authors developed a 

model for the chromosome that manages the varying 

coverage requirements of targets. This model allows the 

genetic algorithm to adapt to changes in coverage 

requirements.  

The proposed algorithms are compared to algorithms of 

previous research using five indices. These five indices 

include Coverage Balanced Index (QBI), Coverage Quality 

(CQ), Distance Index (DI), Power Consumption (PC), and 

Number of Active Sensors (AS). Assessment is carried out 

using various criteria under various conditions (like change 

in the number of sensors, number of targets, and scope of 

sensor coverage).  

 

3. Network Model and Problem Expression 

Immersion of sensors in water, natural obstacles 

between sensors and targets, or early battery depletion are 

possible and may result in some targets not being properly 

covered. In such cases, each target must be covered with 
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multiple sensors. Not all targets are equally important. For 

example, in a museum or gallery, not all objects may be 

important, and some may require coverage by more sensors. 

Monitoring all targets with a fixed number of sensors is not 

a wise approach as it increases network overhead and 

additional costs, which render it not cost-effective. 

Therefore, different targets should be covered by a varying 

number of sensors. To better understand the network model 

used in this research, Table 1 introduces the parameters 

used for the proposed algorithms. 

 

 
Table 1: Parameters Used for the Proposed Algorithm 

Definition  Symbol 

Number of sensors n 

Number of Targets  m 

Number of Sectors in Each Sensor w 

Sensor No. i in Network 1≤i≤n si 

Target No. k in Network 1≤k≤m tk 

Sensors Set {S1, S2, …, Sn} S 

Targets Set {t1, t2, …, tm} T 

Sector j of Sensor i di,j 

Coverage Required by Target t kt 

Coverage Obtained for Target t ρk 

A Set of All Sectors of Sensor 

D= {di,j|i= 1, …, n, j = 1, …, w} 

D 

 

 

3.1 Network Model 

A directional sensor network consists of m targets and n 

directional sensors used for sensor coverage. In this 

environment, both the targets and sensors are stationary and 

do not move. All targets are positioned at known locations 

on a two-dimensional plane, while the directional sensors 

are randomly distributed near the targets. 

 

3.2 Problem Statement 

Here is an official definition of the problem. 

Assumptions for the problem statement are as follows: 

• A series of targets that 

need to be covered by the network; T= {t1, t2 … tm} 

• Sensors with several 

sectors, and each could be active in a sector; S= {s1, 

s2 … sm} 

• K= {k1, k2 … km}, 

that is a set of numbers, where ki is the required cover 

for ti in the network; 

 

Problem: How can we find a coverage set that achieves 

non-uniform balanced coverage of targets with varying 

coverage requirements in an under-provisioned 

environment, in order to maximize balanced coverage 

within the network? 

 

Proposed Algorithm 

The proposed algorithm for solving the problem 

combines genetic algorithms with Tabu search, creating a 

hybrid approach. Traditional genetic algorithms are often 

not suitable for precise searches in complex hybrid spaces. 

However, hybrid algorithms, when combined with other 

techniques, enhance the efficiency of the search process. In 

this hybrid approach, the genetic algorithm first identifies 

the optimized region, and then a local optimizer, such as 

Tabu search, is employed to find the optimal solution. An 

HA-based algorithm has been developed to leverage the 

benefits of this combined strategy. By integrating genetic 

algorithms and Tabu search, this algorithm offers improved 

search capabilities [3]. 

 

3.3 An Overview of Genetic Algorithms 

In evolutionary algorithm research, the genetic 

algorithm is the most widely used method. The primary 

distinction between evolutionary algorithms and other types 

is that evolutionary algorithms are population-based. 

Typically, these algorithms start by creating and evolving 

an initial population. They utilize a search method to find 

near-optimal solutions within a reasonable timeframe to 

optimize problems. The genetic algorithm begins with a 

primary population of potential solutions, each represented 

as a chromosome. All possible solutions must be encoded 

using a specific coding system. Next, a set of reproduction 

operators needs to be defined, as these operators directly 

affect the chromosomes. Following this, the chromosomes 

undergo mutation and crossover operations. It is crucial to 

design both the coding structure and the operators carefully, 

as this design significantly impacts the performance of the 

genetic algorithm [18]. The selection process involves 

competition among individuals in the population and is 

based on a competency function. Each chromosome has a 

value related to the quality of the solution it represents. The 

objective of the genetic algorithm is to maximize the value 

of this competency function. If the goal is to minimize a 

target function, it can be adjusted to reflect a 

straightforward minimization process. Any cost function 

can be easily transformed into a competency function. Once 

the reproduction steps and competency function are defined, 

a genetic algorithm can be developed based on this 

fundamental structure [19]. 

 

3.4 Proposed Genetic-Based Algorithm 

Chromosome Structure 

The structure of chromosomes in a genetic algorithm is 

essential, and the first step is to figure out how to model 

and solve this structure. Each gene in the chromosome 

represents the sector number of a sensor, and each 

chromosome symbolizes a cover set. A two-dimensional 

matrix is employed to represent a chromosome; the number 

of rows indicates the maximum coverage required for the 

targets, while the number of columns signifies the number 

of targets within the network. The coverage requirement for 

each target is displayed by the number of non-empty rows 

beneath that target in the matrix. Some genes in the matrix 

may be empty since the coverage requirements for each 

target can differ. The values in a column correspond to the 
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sensor numbers that cover the target in a specific sector. 

Figure 1 illustrates a chromosome with four targets to 

enhance understanding of the proposed model. 

 
Tar

get 

Number 

t1 t2 t3 t4 

 

Gen

es 

S2,3 S1,1 S2,1 S8,6 

S7,3 S2,3 S5,3 S1,3 

S9,2   S3,3 

S11,3    

 
Fig. 1. An example chromosome in the network  

 

A set of chromosomes is produced to make the primary 

population randomly.  

 

3.4.1 Chromosome Evaluation Function 

To identify the best chromosomes based on the 

problem's conditions, we utilize an evaluation function. By 

appropriately setting the function's parameters, we can 

obtain an optimal or near-optimal solution within the search 

space. The evaluation function does not necessarily aim to 

fulfill all coverage requirements; instead, coverage is 

assessed based on the prioritization of targets or through 

balanced coverage across targets. This function employs a 

parameter to evaluate the chromosomes and determine their 

relative superiority. Equation 1-4 illustrates the evaluation 

function used within the network, wherekt is the total 

number of sensors required to cover the target, t and m are 

the number of targets, and Øt is the total number of sensors 

currently covering target t. 

 

 
(1) 

3.4.2 Selection Operator 

To enhance selection and reproduction, this operator 

identifies suitable chromosomes from the population, 

allowing them to be reproduced more frequently than others. 

Various selection methods exist in genetic algorithms (GAs), 

including roulette wheel selection, rank selection, and 

tournament selection [20]. In this algorithm, we use roulette 

wheel selection, which means chromosomes that perform 

better have a higher likelihood of being chosen. 

3.4.3 Crossover Operator 

Different methods for crossover performance have been 

proposed, including single-point, two-point, and uniform 

crossover. In these methods, the offspring inherits some 

genes from one parent and the remaining genes from the 

other parent. The crossover operator is utilized to create 

new offspring by combining genetic information from both 

parents. This approach generates new solutions within the 

population [21]. First, two parents must be selected. 

 
 

Second Parent First Parent 

 
Fig. 2. Single-Point Operator Performance 

 

Next, a point is randomly selected, and two parent 

chromosomes transfer their genetic information to produce 

two offspring. After this phase, some offspring might have 

sensors in multiple sectors, which invalidates their 

chromosomes and requires correction. 

 

 

 
 

Second Parent First Parent  

 
Fig.3. Single-point crossover operator and second offering is correct 

 

3.4.4 Mutation Operator 

The mutation operation helps a genetic algorithm (GA) 

avoid getting stuck in local optima. A local optimum occurs 

when the algorithm searches for solutions within a limited 

area, without exploring the broader search space. The 

mutation operator introduces significant changes to the 

chromosome by randomly selecting a gene and altering its 

value [5].  

 

3.4.5 Stopping Condition 
One of the stopping conditions for the genetic algorithm 

is reaching a predetermined number of iterations. The 

stopping condition for the algorithm is the 

number of iterations specified in advance. 
 

3.5 An Overview of Tabu Search  

 

Tabu Search (TS) is an optimization algorithm first 

introduced by Glover in 1986 [22]. It employs a list of 

movements, known as Tabu points, to prevent revisiting 

these movements in subsequent searches. This approach 

enables the algorithm to move beyond local optimization 

and work towards achieving global optimization. The two 

main components of the Tabu Search algorithm are the 
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Tabu list and the aspiration criterion. The Tabu list tracks 

recent moves, thus avoiding their selection for as long as 

possible. The duration a move remains in the Tabu list is 

defined by a parameter called Tabu Tenure. If a move in the 

Tabu list could potentially lead to a better solution, it may 

still be selected based on the aspiration criterion, despite 

being in the list. Once a new move is chosen and added to 

the Tabu list, some previously listed moves may be 

removed [22]. In the proposed algorithm, a new function is 

introduced to enhance the quality of chromosomes, which 

can be applied to all chromosomes in the current population. 

Since evaluating all chromosomes is computationally 

expensive, extensive use across all potential solutions is 

impractical. This method effectively adjusts the 

convergence of Genetic Algorithms (GA), as Tabu Search 

typically enhances chromosomes. The steps for executing 

Tabu Search are as follows: 

1. Begin by creating an initial solution based on the 

defined problem conditions. Evaluate this solution to 

determine if it is the best option available.  

2. Prepare a list of allowed operations that are based on 

adjacent production methods.  

3. Execute both allowed and non-Tabu operations to 

determine the solution according to the target function.  

4. Select the best solution from those obtained in the 

previous step.  

5. Update the Tabu list, which in the fast Tabu search 

algorithm involves adding the selected operation to the 

Tabu list and removing one or more operations from it. In 

this phase, also update the best solution found. 6. If the 

stopping criterion has not been met, return to step 4. 

 

4. Experiments 

To create a network scenario, various targets were 

randomly distributed within a 500m x 500m area. Several 

sensors, each with a sensing radius (r) and a sensing angle 

(π/ɜ2), were employed to monitor these targets. The 

coverage requirements for each target were established 

beforehand. To ensure more reliable results, each scenario 

was repeated ten times, and the average outcome was 

recorded as the algorithm's performance. In the experiments, 

the population size was set to 50, with crossover and 

mutation rates of 0.2 and 0.05, respectively. To accurately 

assess the algorithm's performance, a comparison was made 

with a recently proposed greedy algorithm (referenced as 

[4]). Performance evaluation utilized indices introduced in 

[4], which include the Distance Index (DI), Q-Balancing 

Index (QBI), and Active Sensor (AS).  

The Distance Index (DI) metric is defined in [4]. In 

equation 2, ��  represents the required coverage for target t, 

while Øt indicates the coverage achieved for that target. A 

higher DI value signifies better network coverage, with a 

maximum possible value of 1. 

 
                       (2) 

The QBI metric serves as an assessment function for 

chromosomes. A higher QBI value indicates better-balanced 

coverage. According to equation 3, the maximum value of 

this metric is 1, which is achieved when the required 

coverage is provided for all targets. 

 
                                (3) 

4.1 Coverage Quality (CQ) 

The CQ metric proposed in reference [27] is utilized in 

this research. An increase in the distance between targets 

and sensors leads to a decrease in the quality of coverage. 

Additionally, the distance between targets and sensors plays 

a significant role in determining the coverage quality within 

the environment. In a network, both the number of sensors 

and their distance from the targets influence the CQ value. 

This parameter, represented as cq, is calculated as follows: 

 
                                 (4) 

4.2 First Experiment 

Impact of Reducing the Number of Sensors on QBI 

 

When there are enough sensors in a network, all targets 

can meet their coverage requirements, which results in a 

QBI value of 1. In this experiment, we decreased the 

number of sensors from 150 to 50 to observe the impact on 

QBI. As the number of sensors decreases, it becomes more 

challenging to meet the coverage requirements for all 

targets, necessitating a balanced level of coverage based on 

the available sensors. As illustrated in Figure 4, the 

reduction in the number of sensors leads to a gradual 

decline in the QBI value. In both algorithms being 

compared, the proposed algorithm consistently achieves a 

higher QBI value than the GA algorithm, indicating that it 

effectively maintains a more balanced level of coverage. 
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Fig. 4. Effect of increasing the number of sensors on the Q-coverage 

balancing index 

 

4.3 Second Experiment 

In this experiment, we examine how increasing the 

number of targets affects the DI (coverage performance 

index). As the number of targets rises, the coverage 

requirements also increase. Consequently, the distance 

between the required coverage vector and the achieved 

coverage vector grows. As illustrated in Figure 5, with more 

targets, the curve deviates further from the normal value 

(DI=1). A comparison of the proposed GA-TS algorithm 

with the standard GA shows that the GA-TS curve remains 

closer to 1, indicating better performance in this aspect. 

 
Fig. 5. Effect of increasing the number of targets on the Distance 

Index 

 

4.4 Third Experiment 

Impact of Increasing the Sensing Range on CQ 

 

The third experiment aimed to evaluate the effect of 

changing the sensing range on the coverage quality (CQ). 

In this scenario, both the sensors and the targets are situated 

in a fixed environment. Increasing the sensing range of the 

sensors does not alter the distance between the targets and 

the sensors. However, a larger sensing range allows a single 

sensor to cover more targets. As demonstrated in Equation 

(5) and illustrated in Figure 6, the CQ value increases as the 

sensing range is increased. 

 
Fig. 6. Effect of increasing the sensing range on the coverage quality 

 

5. Conclusion  

Coverage in sensor networks is a key research area for 

many scholars. When the number of sensors in a network 

decreases, maintaining sufficient coverage becomes a 

significant challenge, especially considering the varying 

coverage requirements of different sensors. In such 

situations, one effective solution is to develop a method that 

balances the coverage needs of various targets, ensuring 

that these needs can be met with the available sensors. This 

research presents a method for achieving balanced coverage 

in the network, taking into account that each target may 

have different coverage requirements. The approach 

combines a genetic algorithm with a tabu search to optimize 

coverage. 
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