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Abstract: 
In this study, a plasmonic biosensor with a kreschmann 

configuration is evaluated by changing the sensing 

medium's refractive index from 1.330 to 1.335, which 

includes BK7, gold/silver, silicon, nickel, hexagonal boron 

nitride, black phosphorus/transition-metal dichalcogenides 

and sensing medium layers. The sensitivity, figure of merit, 

quality factor and detection accuracy are the biosensor 

performance characteristics and are checked at the 633 nm 

wavelength. The effects of gold and silver layers on the 

transition-metal dichalcogenides and black phosphorus 

layers are investigated separately and their performance 

parameters have been calculated numerically. Since the 

highest sensitivity is related to the Ag metal with the BP 

layer, the minimum reflectance and sensitivity as a function 

of the thickness and number of layers for this structure are 

examined. The sensitivity of the proposed biosensor (504 

deg.RIU-1) is approximately 1.5 times higher than the 

highest sensitivity reported in comparable studies. 
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Sensitivity enhancement of a bimetallic surface plasmon resonance biosensor … 

1. INTRODUCTION 

Plasmonics plays a significant role in the design of biosensors [1] and 

photovoltaic cells [2]. Surface plasmon resonance (SPR) biosensors can detect 

biomaterials, making them valuable for medical diagnostics [3] and food safety 

[4] applications. These biosensors can identify analytes with minimal changes in 

their refractive index (RI) [5], achieving high accuracy [6] and sensitivity [7] in 

real-time [8]. Additionally, they are cost-effective [9] and do not require 

professional personnel for operation [10]. 

The sensing medium's (SM) RI changes leads to the resonance angle shifts [11]. 

In SPR sensors that utilize multilayer structures, the Kretschmann [12] and Otto 

[13] configurations are commonly employed. A thin air gap separates the metal 

layer from the prism in the Otto configuration, while in the Kretschmann 

geometry, the prism and the metal layer are in direct contact. Due to the coupling 

of transverse magnetic (TM) waves or p-polarized incident light with the free 

electrons on the metal surface, surface plasmons are excited at the metal-dielectric 

interface [13,14]. Silver (Ag) [15], gold (Au) [16], copper (Cu) [17], aluminum 

(Al) [18], and nickel (Ni) [19] are recognized as materials with plasmonic 

properties that can enhance surface plasmon signals in sensors [20]. 

Conventional sensors sensitivity, comprising a prism, metal layer, and SM [21], 

achieve a peak reported value of 116 deg RIU-1 [22], which is due to the weak 

adhesion of the metal layer to the SM [23] resulting in very low sensitivity [24]. 

Recently, to enhance the sensitivity of these sensors, two-dimensional (2D) 

nanomaterials such as black phosphorus (BP) [25], graphen (Gr) [5], Mxene [22], 

transition-metal dichalcogenides (TMDCs) [26], and hexagonal boron nitride (h-

BN) [27] are used between the metal layer and the SM. Also, using an 

antireflection layer like MgF2 enhances light absorption in the biosensor, 

increasing sensitivity [28]. The general form of TMDCs is MX2 where M 

represents a metal of transition such as Tungsten (W) and Molybdenum (Mo), and 

X shows materials of chalcogen like Sulphur (S) and Selenium (Se) [29]. These 

materials are molybdenum disulfide (MoS2), tungsten disulfide (WS2) 

molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). 

The use of 2D nanomaterials in SPR sensors, biosensors, and solar cells has 

grown recently. For instance, Panda et al. designed a plasmonic biosensor for 

malaria pathogen detection, utilizing a CaF2 prism, titanium oxide, Ag, platinum 

diselenide, WS2, and SM layers, achieving a maximum sensitivity of 240.10 deg. 

RIU-1 [30]. Similarly, Kumar et al. analyzed a biosensor for carcinoembryonic 

antigen (CEA) detection, composed of a prism of BK7, titanium, Ag, MoS2, Gr, 

and SM layers, reporting a peak sensitivity of 144.72 deg. RIU-1 [31]. Daher et al. 

investigated a BAK1 prism-based structure with Ag, bismuth ferrite, BP, and SM 
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layers, yielding a 358 deg. RIU-1 sensitivity [32]. Furthermore, Kalpana et al. 

presented an SPR sensor for colorectal detection, incorporating a CaF2 prism, Ag, 

MXene, h-BN, BP, and SM layers, and achieving a 315 deg. RIU-1 sensitivity 

[27]. 

This study investigates a biosensor of SPR with a prism of BK7 and layers of 

Ag, Si, Ni, h-BN, BP, and SM. We also explore substituting Au for Ag and 

TMDCs for BP. Ag offers a cost-effective alternative to Au with comparable 

accuracy [33]. A narrower full width at half maximum (FWHM) in the reflectance 

curve shows superior sensor performance. Incorporating a high refractive index 

Si layer (BK7/Ag/Si/SM) enhances sensitivity compared to the conventional 

BK7/Ag/SM sensor [11]. The h-BN layer's high-temperature stability and 

chemical resistance make it suitable for SPR sensors. BP, with its 0.53 nm 

thickness and desirable bio-recognition element (BRE) properties [27], 

effectively captures biomolecules [34] due to its high surface-to-volume ratio 

[35], bandgap of tunable [24], and low thermal conductivity [36], which further 

increases sensitivity. 

The biosensor's performance, comprising sensitivity (S), detection accuracy 

(DA), quality factor (QF), and figure of merit (FOM), was evaluated using 

attenuated total reflection (ATR) at the visible 633 nm wavelength (TM-polarized 

Helium-Neon laser). 

2. DESIGN AND MODELING 

Figure 1 depicts a biosensor of SPR with seven layers designed in a Kretschmann 

geometry.  

 
 

The coupling of light to the surface plasmon polaritons (SPPs) occurs through 

the BK7 prism, and its RI is given by [37,38]. 
 

Fig. 1. The proposed SPR biosensor 
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nBK7 = (
𝛼1 𝜆2

𝜆2 −  𝛽1

+  
𝛼2 𝜆2

𝜆2 −  𝛽2

+  
𝛼3 𝜆2

𝜆2 −  𝛽3

+ 1)
1
2                                                          (1) 

where 𝜆 is the incident light wavelength, and 𝛼1 = 1.03961212, 𝛼2 = 

0.231792344, 𝛼3 = 1.0104694, 𝛽1 = 0.00600069867, 𝛽2 = 0.0200179144, and 𝛽3 

= 103.560653.  

The RI of the metal layers is presented by the Drude‒Lorentz model as follows 

[39]: 
 

nmetal  = ( 1 −  
𝜆2 ∗ 𝜆𝑐

𝜆𝑝
2  (𝜆𝑐 +  𝜆 ∗ 𝑖)

)
1
2                                                                                     (2)  

 

The parameters of wavelength of plasma (𝜆𝑝) and wavelength of collision (𝜆𝑐) 

for Ag, Au and Ni are listed in Table 1. 

 
Table1. 𝜆𝑝 and 𝜆𝑐 for Ag, Au and Ni at the wavelength of 633 nm 

 

𝜆𝑐(𝑚) 𝜆𝑝(𝑚) Metal 

1.7614 ×  10−5 1.4541 ×  10−7 Ag 

8.9342 ×  10−6 1.6826 ×  10−7 Au 

2.8409 ×  10−5 2.5381 ×  10−7 Ni 

The RI of the Si and SM are 3.9160 and 𝑛 = 1.33, respectively. Table 2 lists the 

RI and monolayer thickness of the 2D materials used in the biosensor. 

Table2. RI and monolayer thickness of the 2D nanomaterials 

 

Monolayer thickness 

(nm) 
RI  (λ=633 nm) 2D nanomaterials 

1 1.65 h-BN 

0.53 3.5+0.01i BP 

0.65 5.0805+1.1723i 2MoS 

0.70 4.6226+1.0063i 2MoSe 

0.80 4.8937+0.3124i 2WS 

0.70 4.5501+0.4332i 2WSe 

 

The intensity of reflected light is calculated using the transfer matrix method 

(TMM), as given by [37], 

Mij = (∏ 𝑀𝑘
𝑁−1
𝑘=2 )

𝑖𝑗
=  (

𝑀11 𝑀12

𝑀21 𝑀22
)                                                                                (3)  

Mk = [
𝑐𝑜𝑠 𝛽

𝑘
−(𝑖 𝑠𝑖𝑛 𝛽

𝑘
) 𝑞

𝑘
⁄

−𝑖𝑞
𝑘

𝑠𝑖𝑛 𝛽
𝑘

𝑐𝑜𝑠 𝛽
𝑘

]                                                                             (4)  
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q
k 

=  
(𝜀𝑘 −  𝑛1 

2 𝑠𝑖𝑛2𝜃1)
1

2⁄

𝜀𝑘

                                                                                                  (5)   

β
k  

=  
2𝜋𝑑𝑘

𝜆
(𝜀𝑘 −  𝑛1 

2 𝑠𝑖𝑛2𝜃1)
1

2⁄                                                                                         (6) 

In the above equations, 𝜃1, n1 , 𝜀𝑘, and 𝑑𝑘 are the incident angle, RI of the prism, 

permittivity and thickness of the k-th layer, respectively. 

The amplitude reflection coefficient is 𝑟𝑝: 

rp  =  
(𝑀11 + 𝑀12𝑞𝑁)𝑞1 − (𝑀21 + 𝑀22𝑞𝑁)

(𝑀11 + 𝑀12𝑞𝑁)𝑞1 + (𝑀21 + 𝑀22𝑞𝑁)
                                                                    (7) 

And the reflectance coefficient: 

Rp  =  |𝑟𝑝
2|                                                                                                                                   (8) 

Biosensor performance characteristics are 𝑆, 𝑅𝑚𝑖𝑛, DA, QF, and the FOM. The 

sensitivity (𝑆) is given by,  

𝑆 =
𝛥𝜃𝑆𝑃𝑅

𝛥𝑛
       (𝑑𝑒𝑔. 𝑅𝐼𝑈−1)                                                                                                    (9) 

where 𝛥𝜃𝑆𝑃𝑅 is the shift in the resonance angle, and  𝛥𝑛 = 0.005  is the RI 

change of the SM, respectively.  The resonance angle (𝜃𝑆𝑃𝑅) is the angle at which 

the dip appears in the reflectance spectrum. Additionally, the reflectance at the bottom 

of the dip, denoted as 𝑅𝑚𝑖𝑛, represents the minimum value of the reflectance.  𝐷𝐴, 𝑄𝐹, 

and the 𝐹𝑂𝑀 are defined as follows: 
 

 

𝐷𝐴 =  
1

𝐹𝑊𝐻𝑀
    (𝑑𝑒𝑔−1)                                                                                                      (10)  

𝑄𝐹 =  
𝑆

𝐹𝑊𝐻𝑀
     (𝑅𝐼𝑈−1)                                                                                                     (11)  

𝐹𝑂𝑀 = 𝑆 ×  
1 − 𝑅𝑚𝑖𝑛

𝐹𝑊𝐻𝑀
     (𝑅𝐼𝑈−1)                                                                                       (12) 

3. RESULTS AND DISCUSSION 

We studied an SPR biosensor comprising a prism of BK7, Ag/Au, Si, Ni, h-BN, 

BP/TMDCs, and SM layers. For these ten structures (two metals (Ag and Au) and 

five 2D material (BP, MoS2, MoSe2, Ws2, WSe2)), the effects of layer thickness 

(𝑑𝑙𝑎𝑦𝑒𝑟) and the number of layers (L) on the performance characteristics of the 

biosensor are analyzed. The three-layer structure consisting of Si, Ni, and h-BN 

is present in all ten examined configurations. 

Table 3 lists the optimal layer thicknesses for maximum biosensor sensitivity. 

For example, row one of the Table denotes that the optimal thicknesses and the 

number of layer for the Au/ Si/Ni/ h-BN/ BP structure are 16 nm/ 5 nm/ 39 nm/ 1 
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L/ 2L, respectively. The comparison of the rows in the table indicates that 

structures containing silver exhibit greater sensitivity than those that include gold. 

Additionally, structures incorporating BP show higher sensitivity compared to 

TMDC structures. Among the TMDCs, the structures made of Tungsten provides 

greater sensitivity for the sensor. 

Table 3: The performance parameters (S, FOM, QF, DA & Rmin) of the designed 

structures with Ag/Au (column 1) and 2D nanomaterials of BP/TMDCs (column 3). 

 

𝑅𝑚𝑖𝑛 
DA 

)1-(deg. 

QF 
-(RIU

)1 

FOM 
-(RIU

)1 

S 

(deg.RIU-

1) 

Type and 

number of 

layers 

Si(nm)

/Ni(nm)/

h-BN(L) 

Type 
and 

thicknes

s (nm) 

0.0127 0.1655 81.44 80.40 492 BP: 2 5/39/1 Au: 16 

0.0149 0.1020 29.38 28.95 288 : 12MoS 5/38/1 Au: 10 

0.0092 0.1071 32.11 31.82 300 1 :2MoSe 5/39/1 Au: 10 
0.0418 0.1185 43.60 41.78 368 : 12WS 5/39/1 Au: 7 

0.0002 0.1239 47.31 47.31 382 : 12WSe 5/39/3 Au: 8 

0.0021 0.1672 84.24 84.06 504 BP: 2 5/36/2 Ag: 16 

0.0305 0.1041 30.18 29.26 290 : 12MoS 5/39/1 Ag: 10 

0.0091 0.1082 32.46 32.16 300 : 12MoSe 5/39/1 Ag: 10 

0.0003 0.1279 50.64 50.62 396 : 12WS 5/39/1 Ag: 10 
0.0005 0.1237 47.49 47.46 384 : 12WSe 5/39/3 Ag: 8 

 

Overall, Table 3 indicates that the optimized biosensor is the BK7/Ag/Si/Ni/ h-

BN/ BP structure with performance parameters; S (504 deg. RIU-1), FOM (84.06 

RIU-1), QF (84.24 RIU-1) and DA (0.1672 deg.-1). The corresponding optimal 

thicknesses and number of layers are Ag (16 nm), Si (5 nm), Ni (36 nm), h-BN (2 

layers), and BP (2 layers). Therefore, we focused on the BK7/Ag/Si/Ni/h-

BN/BP/SM structure and examined four layout scenarios; i) Ag/Si, ii) Ag/Si/Ni, 

iii) Ag/Si/Ni/h-BN and iv) Ag/Si/Ni/h-BN/BP. Figure 2 illustrates the SPR 

reflectance curve for these configurations. This figure shows that adding layers 

increases both the depth and angular shift of the reflectance dip, enhancing the 

sensor's operational parameters. Additionally, Table 4 presents the thickness and 

number of layers and performance parameters for these configurations. The table 

demonstrates that adding a Ni layer to the first structure, h-BN to the second, and 

BP to the third enhances sensitivity. The fourth structure's sensitivity (504 deg 

RIU-1) is 100% higher than the second structure's (250 deg RIU-1). 
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Fig. 2. The reflectance curve for (a) Ag/Si, (b) Ag/Si/Ni, (c) Ag/Si/Ni/h-BN, (d) 

Ag/Si/Ni/h-BN/BP structures 
. 

Table 4. The thickness, number of layers, and performance parameters for (i) Ag/Si, (ii) 

Ag/Si/Ni, (iii) Ag/Si/Ni/h-BN, (iv) Ag/Si/Ni/h-BN/BP structures 
 

 

Figure 3 presents the minimum reflectance (𝑅𝑚𝑖𝑛) and sensitivity (S) of the 

fourth structure (Ag/Si/Ni/h-BN/BP) as a function of layer thickness and the 

number of layers. In Figures 3(a)-(e), one parameter varies while the others 

remain constant, as taken from row 4 of Table 4. 

 

 

Structure 
Ag𝑑𝐴𝑔 

(nm) 

Si𝑑𝑆𝑖 

(nm) 

Ni𝑑𝑁𝑖 

(nm) 
h-BN BP 

S deg. 

RIU-1 

FOM 

RIU-1 

QF 

RIU-1 

DA 

deg.-1 𝑹𝒎𝒊𝒏 

i 50 5 - - - 204 62.11 64.06 0.3140 0.0304 

ii 20 5 39 - - 250 64.14 68.31 0.2733 0.0610 

iii 20 5 39 3 L - 328 71.88 72.84 0.2221 0.0133 

iv 16 5 36 2 L 2 L 504 84.06 84.24 0.1672 0.0021 
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Fig. 3: 𝑅𝑚𝑖𝑛 versus (a) the thickness of Ag layer, (b) the thickness of Si layer, (c) the 

thickness of Ni layer, (d) the number of h-BN layer, (e) the number of BP layer. 

The inset figures show the sensitivity 
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Figure 3 shows that the optimal performance, characterized by the highest 

sensitivity and lowest 𝑅𝑚𝑖𝑛, occurs with a 16 nm Ag layer (see Fig. 3(a)), a 5 nm 

Si layer (see Fig. 3(b)), and a 36 nm Ni layer (see Fig. 3(c)). As shown in Figures 

3(d) and 3(e), a structure with 2 h-BN layers and 2 BP layers yields the highest 

sensitivity.  

For the Ag/Si/Ni/h-BN/BP structure, we generalized the RI of the SM from 

1.330 to 1.345 and obtained the S, 𝑅𝑚𝑖𝑛, QF and DA, as illustrated in Figs. 4(a) 

and 4(b). This figure shows that these parameters exhibit nonmonotonic behaviors 

with the RI. As RI increases, S, QF, and DA initially increase, reach a maximum, 

and then decrease, while 𝑅𝑚𝑖𝑛 exhibits the opposite trend. 

Fig. 4. (a) Sensitivity and 𝑅𝑚𝑖𝑛, (b) QF and DA versus the sensing RI 

In Table 5, we compared the performance characteristics of our designed 

structures with previously reported studies. Our proposed SPR biosensors, 

incorporating gold (Au) and silver (Ag) layers along with black BP, exhibited 

sensitivities of 492 and 504 deg. RIU-1, respectively. These values are 

significantly higher than those reported in Refs. [11], [27], [32] and [40]. 

Table 5: performance characteristics comparison of our designed structures with 

previously published devices 

 
Ref. 𝑹𝒎𝒊𝒏 DA 

deg.-1 

QF 

RIU-1 

S 

deg.RIU-1 

SPR sensor configuration 

[11] - 0.1700 52 305 BK7/Ag/Si/Franckeite 
[27] - 0.1660 52.34 315 CaF2/Ag/MXene/h-BN/BP 

[32] - - - 358 /BP3BAK1/Ag/BiFeO 

[40] 0.480 0.3072 97.07 316 /Ni/MXene3CaF2/Ag/BaTiO 

This work 0.012 0.1655 81.44 492 BK7/Au/Si/Ni/h-BN/BP 

This work 0.002 0.1672 84.24 504 BK7/Ag/Si/Ni/h-BN/BP 
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4. CONCLUSION 

Our proposed biosensors included BK7, Ag/Au, Si, Ni, h-BN, BP/TMDCs (MoS2, 

MoSe2, WS2 and WSe2) and SM layers. The Si, Ni and h-BN are common in all 

structures. We investigated the effects of Au and Ag layers on the BP and TMDCs 

layers, separately. The highest sensitivities are 492 and 504 deg. RIU-1 

respectively, related to Au and Ag layers along with 2 BP layers. Since the best 

performance (S=504 deg. RIU-1, FOM=84.06 RIU-1, QF=84.24 RIU-1 and 

DA=0.1672 deg.-1) of the biosensor corresponds to the Ag layer with the BP layer, 

the thickness and number of layers in this structure were examined. The optimal 

thicknesses and layers are: Ag (16 nm), Si (5 nm), Ni (36 nm), h-BN (2 layers), 

and BP (2 layers). All proposed biosensors can be used in biomedical applications. 
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