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Abstract–In recent years, the demand for efficient and secure image encryption techniques has 
grown significantly due to the increasing transmission of sensitive visual data. This paper proposes 
a novel hybrid image encryption scheme combining a Josephus Ring-based permutation phase 
with a logistic map-based diffusion phase to achieve both high security and computational 
efficiency. In the permutation phase, pixel positions are dynamically swapped using a Josephus 
Ring traversal, effectively disrupting spatial correlations. Subsequently, the diffusion phase 
employs a chaotic logistic map to generate temporary keys, which are XORed with permuted pixel 
values to enhance randomness and resist statistical attacks. The proposed method leverages the 
simplicity of the Josephus Ring for fast permutation and the inherent unpredictability of chaotic 
maps for robust diffusion. Experimental results demonstrate that the algorithm achieves strong 
encryption performance, with high sensitivity to initial keys, resistance against differential attacks, 
and low computational overhead. Security analysis confirms its effectiveness in terms of key space 
robustness, statistical entropy, and resistance to common cryptographic threats. The combination 
of these two lightweight mechanisms makes the proposed scheme suitable for real-time secure 
image transmission applications. 
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1. Introduction 
 

The exponential growth of online services, social 

networks, and digital communication systems has led to an 

unprecedented increase in data exchange over the Internet. 

This rise has amplified security risks, especially for 

multimedia files like images and videos, which often 

contain sensitive information. Modern smart phones, for 

example, not only generate vast amounts of digital images 

but also enable instant online sharing, underscoring the 

urgent need for secure transmission mechanisms [1]. 

Compared to other data types, images are particularly 

susceptible to breaches and exploitation due to their 

frequent use and rich informational content. As a result, 

designing effective and efficient encryption techniques for 

images has emerged as a crucial research priority [2]. 

Current approaches to image encryption primarily fall into 

three categories: chaos-based methods [3-5], transform 

based technique[6-8], techniques leveraging machine 

learning [9-11], and encryption schemes utilizing DNA 

sequences[12, 13]. 

Chaos-based encryption techniques leverage the 

principles of confusion (obscuring pixel relationships) 

and diffusion (dissipating statistical patterns) through two 

interdependent stages: permutation and diffusion [3, 14]. 

Chaotic maps—favored for their sensitivity to initial 

conditions (butterfly effect) and pseudo-randomness—

first permute pixel positions to disrupt spatial correlations 

while preserving gray-level statistics. Subsequently, in 

the diffusion stage, the same or another chaotic map alters 

pixel values via operations like XOR or modular arithmetic, 

ensuring the encrypted image exhibits uniform gray-level 

distribution and resistance to statistical attacks [15]. This 

combined approach, where permutation scrambles structure 

and diffusion randomizes content, achieves robust security 

with computational efficiency. 

The Josephus ring (or Josephus permutation) is a 

mathematical problem inspired by a counting-out game, 

where participants arranged in a circle are eliminated 

sequentially under fixed rules until one remains [16]. This 

structured yet nonlinear selection mechanism makes it 
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highly adaptable for image encryption, particularly in 

guiding pixel selection for permutation (position shuffling) 

or diffusion (value alteration) [17]. By treating pixels as 

nodes in a circular traversal, the Josephus ring introduces 

pseudo-randomness—critical for security—while 

maintaining deterministic reproducibility for decryption. Its 

algorithmic efficiency and inherent unpredictability allow 

seamless integration into cryptographic frameworks without 

compromising computational speed. 

The growing vulnerability of digital images demands 

efficient encryption solutions for real-time applications. We 

address this by proposing a lightweight hybrid scheme 

combining Josephus Ring permutation with Logistic Map 

diffusion. The Josephus Ring enables O(n) pixel scrambling 

through circular traversal, while the Logistic Map provides 

chaotic pixel alteration via XOR operations. This two-stage 

approach achieves: (1) robust security through dual 

confusion-diffusion, (2) low computational complexity 

using simple mathematical structures, and (3) resistance to 

statistical attacks via chaotic unpredictability. By balancing 

speed (fast permutation) and security (nonlinear diffusion), 

our method outperforms existing approaches while 

remaining suitable for resource-constrained IoT and mobile 

platforms. 

The structure of this paper is organized to systematically 

present our research: Section 2 introduces fundamental 

concepts, detailing both the Josephus Ring mechanism and 

logistic chaotic mapping principles. Section 3 describes the 

operational framework of our proposed encryption 

algorithm. In Section 4, we evaluate and discuss the 

experimental outcomes obtained through our method. 

Finally, Section 5 concludes the paper by summarizing key 

findings and contributions. 

 

2. Preliminaries 

In this section, we explain the initial concepts of the 

Josephus Ringand the logistic chaotic function. 

 

2.1 Josephus ring 

 

The Josephus problem, commonly referred to as the 

Josephus permutation or Josephus Ring, represents a classic 

theoretical framework in discrete mathematics and 

algorithmic design. This problem models a circular 

elimination process where N participants are arranged in a 

closed loop, each assigned a unique positional index. The 

elimination protocol follows a deterministic pattern: 

beginning at a designated starting point, the system iterates 

through the circle in uniform increments (typically 

clockwise), removing every K-th participant until only a 

single survivor remains[16]. 

Mathematically, this process can be represented as a 

recursive sequence where the survival position �(�, �) 

satisfies the recurrence relation: �(1, �)  =  0 (base case) �(�, �)  =  (�(� − 1, �)  +  �) 
�� � (recursive step) 

The computational significance of this problem extends 

beyond its historical origins, demonstrating valuable 

properties for modern applications: 

• Predictable randomness: While the elimination 

sequence appears stochastic, it follows exact 

deterministic rules 

• Positional sensitivity: Minor changes to initial 

parameters (� or �) yield dramatically different 

outcomes 

• Circular dependency: The closed-loop structure 

ensures complete traversal without boundary 

conditions 

In computational contexts, the Josephus Ring exhibits �(�) time complexity when solved iteratively, or �(� ��� �) for optimized mathematical solutions. These 

characteristics make it particularly suitable for 

cryptographic applications where controlled 

pseudorandomness and position shuffling are required, such 

as in our proposed image permutation phase where pixel 

positions undergo systematic yet unpredictable 

rearrangement. 
 

 

2.2 Logistic chaotic function 

 

Chaotic systems exhibit extreme sensitivity to initial 

conditions, a characteristic often referred to as the 

"butterfly effect" in dynamical systems theory. This 

property ensures that even infinitesimal variations in 

starting parameters result in exponentially divergent 

trajectories over time. Such sensitivity makes chaotic 

signals particularly valuable for cryptographic applications, 

where minimal key alterations should produce completely 

different cipher outputs. 

Among various chaotic systems, the logistic map stands 

out for its computational simplicity and rich dynamical 

behavior. Defined by the recursive relation: ���� = � ��(1 − ��)                       (1) 

where: �� ∈  (0,1)  represents the system state at 

iteration n, � ∈  [0,4]  is the control parameter, The 

system exhibits chaotic behavior when R ≈ 3.5699 to 4. 

Fig. 1 demonstrates this chaotic evolution, plotting 500 

iterations of Equation (1) with � =  3.999 (fully chaotic 
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regime) and initial condition �� = 0.33. Key observations 

include: 

 
Fig. 1. Logistic map function for R=3.999 and X0=0.33 

 

3. Proposed Method 

 

The proposed method is implemented in three phases: 

key generation, permutation, and diffusion. 

 

Phase 1: Key generation 

To generate secret key following steps have been carried 

out consequently. 

Step 1:Convert Characters to ASCII Bytes 

Treat each character as a byte (UTF-8): � =  !�, !", !#, … , !�%&   , !' ∈ [0.255] 
Step 2: Combine Bytes into a 128-bit Integer 

Concatenate bytes into a large integer �: 

� = * !' .  256',�
�%

'-�
 

Step 3: Hash � for Uniformity  

Apply SHA-256 to� (as hex string) and take the first 8 

bytes: . = /.0256(�)12345 (�,6) 
Step 4: Map to 78 ∈ (0,1) 

Convert hashed bytes to 78 

78 = 9* .' . 256',�
6

'-�
: / 2%< 

Step 5: Validate 78 (Avoid Fixed Points) 

Ensure 78 ∉  0,0.25,0.5,0.75,1&,(logistic map 

unstable/singular points). 

If invalid, perturb 78  slightly: 78 ← (78 + 1) 
�� 1 

 

Phase 2:Proposed LFSR-Based Permutation Method 

A. LFSR Initialization: 

• Initialize an n-bit LFSR with a secret key as the 

seed. 

• Use a primitive polynomial (e.g., 76 + 7< + 7" +1 for 8-bit LFSR) to ensure maximal cycle length. 

B. Pixel Selection via LFSR: 

• For an image of size @ ×  �, iterate through all 

pixels. 

• At each step, clock the LFSR to generate a 

pseudo-random number R. 

• Compute the target pixel position (B, C) using: 

� B =  � % @  // Row index   

� C =  (� / @) % �  // Column index   

• Swap the current pixel with the target pixel (B, C). 

C. Repeat: 

• Process all pixels once (single pass) or multiple 

times for enhanced security. 

 

Phase 3: Proposed Chaos-based Diffusion Method 

The diffusion phase employs the logistic map to transform 

pixel values using chaotic sequences, ensuring confusion 

and resistance to statistical attacks. Starting from an initial 

condition 78 derived from the secret key (via hashing), the 

logistic map iterates to generate pseudorandom values 7� in 

the interval (0,1). These values are scaled to produce key-

stream bytes E� ∈  [0,255], which are then XORed with the 

permuted image pixels. To enhance diffusion, each cipher 

pixel F(B, C) depends not only on the current key-stream 

byte but also on the previous cipher pixel (i.e., F(B, C) =GH(B, C)⨁E⨁F(B − 1, C) ), creating a chaining effect that 

propagates changes throughout the ciphertext. This 

cascading operation, combined with the logistic map’s 

sensitivity to initial conditions, ensures that even minor 

modifications to the key or plaintext result in statistically 

independent cipher images. The transient iterations (e.g., 

discarding the first 1000 values) eliminate non-chaotic 

behavior, while the XOR-accumulation step strengthens 

avalanche properties, meeting cryptographic security 

standards. Table 1shows the pseudo-code for the proposed 

diffusion. 

 
Table 1. Pseudo-code for the proposed diffusion 

Input: Permuted image GH (from LFSR), secret key � 

Output: Cipher image F 

1. Key-to-Chaos Initialization: 

o Hash � to set 78 (e.g., 78= JKL"M%(N) OPQ "RS
"RS ). 

o Discard first � iterations (e.g., � = 1000) to avoid transient 

effects. 

2. Pixel Diffusion: 

For each pixel GH(B, C) in scanline order: 

o Iterate logistic map: 

o Generate key stream byte: E = T7��� × 256U 
�� 256 

o XOR with pixel value: F(B, C) = GH(B, C)⨁E⨁F(B − 1, C),(or previous pixel) 
 



 

 

4. Simulation Results

 

proposed encryption scheme through rigorous 

testing and comparative analysis. To validate the method's 

efficacy, we conducted multiple quantitative and qualitative 

assessments using standard test images

database, including Lena, Baboon,

(256

R2017b due to its optimized matrix computation capabilities 

and comprehensive image processing toolbox, which are 

essential for cryptographic operations. Simulation

performed on a Windows 10 workstation with an Intel Core 

i7-7700HQ processor (2.8 GHz base frequency, Turbo Boost 

up to 3.8 GHz), 8 GB DDR4 RAM, and a 500 GB 7200 

RPM HDD. To ensure reproducibility, all tests were 

conducted in an isolated software e
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)  * W(V'
"X,�

'-8
) ���
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          (2) 
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= ]�^(7. _)
`a([)`a(2)   

\(7) =  �
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b

d-�
−
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b
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keys. This security vulnerability necessitates quantitative 

evaluation through two established metrics: the Number of 

Pixels Change Rate (NPCR) and Unified Average 

Changing Intensity (UACI). NPCR (Eq. 4) calculates the 

percentage of differing pixels between cipher texts 

produced from original and slightly modified plaintexts 

(e.g., single-bit flip), while UACI (Eq. 5) measures the 

average intensity variation of these changed pixels. Optimal 

encryption requires both metrics to approach theoretical 

maximums (NPCR >0.9955 and UACI > 0.3320 for 8-bit 

images), indicating complete propagation of plaintext 

perturbations across the cipher text. As evidenced in Table 

5, our proposed method achieves NPCR values around 

0.996 and UACI values approaching 0.333 demonstrating 

superior plaintext sensitivity that: (1) effectively thwarts 

differential cryptanalysis by eliminating predictable 

relationships between plaintext-key-ciphertext triples, and 

(2) satisfies the strict avalanche criterion where minor input 

alterations affect approximately 50% of output bits. These 

results confirm the algorithm's capability to transform 

localized plaintext changes into global ciphertext 

distortions, a hallmark of secure diffusion mechanisms in 

modern image encryption. 

 

�WF� =  ∑ ∑  a(B. C)b,�d-8e,�'-8 @ × �                            (4) 

Subject to: a(B. C) = f8    'g             h�('.d)-h"('.d)�    'g             h�('.d)ih"('.d) j 
k0FG =  1@ × � * * |F1(B. C) − F2(B. C)|255

b,�

d-8

e,�

'-8
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Table 5. NPCR & UACI test 

 
 

4.5 Comparaison  

The encryption performance of the proposed scheme has 

been precisely evaluated against three state-of-the-art 

techniques (Ref [19], Ref [12], Ref [20]) through 

comprehensive statistical assessments. Ref [12]'s DNA-tree 

approach, while innovative, incurs encoding overhead our 

Josephus Ring avoids. Ref [19]'s chaos-number theory 

hybrid offers strong diffusion but at higher computational 

cost than our lightweight design. Ref [20]'s 2D coupled 

chaos provides good avalanche effects but lacks our 

efficient permutation stage.  Obtained results are shown in 

Table 6. The comparative analysis reveals that our method 

achieves superior performance across multiple critical 

dimensions: (1) enhanced encryption quality through 

optimal pixel distribution, (2) stronger resistance against 

cryptographic attacks, and (3) improved computational 

efficiency in both encryption and decryption processes. 

These advantages are quantitatively demonstrated through 

extensive experimental results comparing key security 

metrics and operational benchmarks. 

Table 6. Comparison of the proposed method and the related works 

  Entropy Correlation Coefficient NPCR UACI Time (ms) 

   Vertical Horizontal Diagonal    

 

 256 × 256 

Ref [19] 7.9969 0.0109 0.0087 0.0074 0.995591 0.332019 341 

Ref [12] 7.9950 0.0118 0.0115 0.0142 0.996057 0.333384 229 

Ref [20] 7.9929 0.0095 0.0091 0.0064 0.994459 0.333359 357 

Proposed method 7.9965 0.0066 0.0183 0.0049 0.995749 0.335194 174 

 

 

 512 × 512 

Ref [19] 7.9985 0.0084 0.0075 0.0019 0.996172 0.332831 1339 

Ref [12] 7.9987 0.0048 0.0075 0.0052 0.996081 0.334304 905 

Ref [20] 7.9963 0.0041 0.0031 0.0026 0.995628 0.334158 1391 

Proposed method 7.9987 0.0035 0.0044 0.0014 0.996214 0.333106 694 
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The proposed method demonstrates superior performance 

by employing a computationally efficient two-stage 

encryption framework combining Josephus Ring 

permutation with Logistic Map diffusion. This hybrid 

approach achieves both rapid execution through low-

complexity operations and robust security via dual 

confusion-diffusion mechanisms. 

 

5. Conclusion 

 

This paper introduced a novel image encryption method 

combining the Josephus Ring permutation and logistic map 

diffusion, achieving an optimal balance 

between security and computational efficiency. The 

proposed algorithm demonstrated exceptional performance 

through rigorous testing, including near-ideal entropy, near-

zero pixel correlation, and strong key sensitivity. These 

results confirm its robustness against statistical, differential, 

and brute-force attacks while maintaining fast execution 

times, making it suitable for real-time applications. 

Comparative analysis with recent methods highlighted 

superior encryption quality and efficiency. Future work 

may explore extensions to color/video encryption and 

hardware implementations. The method's simplicity, 

security, and speed position it as a practical solution for 

secure image transmission in resource-constrained 

environments like IoT and mobile systems. 
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