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Fog computing empowers resource-limited applications by bringing cloud computing close to the network 
periphery, effectively limiting latency, improving efficiency, and assuring better resource management. 

Security challenges, however, restrict widespread adoption in practice, necessitating cryptographic 

mechanisms with low computational overheads. One well-known approach for data sharing in a secure way is 

Ciphertext-Policy Attribute-Based Encryption (CP-ABE), which provides a way of access control based on 

attributes. However, the high execution time and storage requirements of CP-ABE, due to the diversity of 

attributes in secret keys and access structures, limit its practicality in resource-constrained environments. In 
response to these problems, this paper presents a hybrid semantic model consisting of an outsourced CP-ABE 

with attribute revocation and an optimized AES algorithm based on ensemble learning. The model employs 

classifiers such as GMDH, KNN, and SVM to identify attributes relevant to CP-ABE. Additionally, the 
Dragonfly optimization algorithm and ontology-based semantic techniques enhance the efficiency of feature 

selection.  With experimental analysis on five smart building datasets, the prediction performance of this model 

outperforms existing methods. The times of encryption, decryption, and attribute revocation decreased to 2.99 
ms, 2.86 ms, and 18.6 ms. The growth of storage for secret keys and access structures was reduced to 13.56 

KB and 10.4 KB, which made its use more efficient and secure. Overall, the results indicate that the model 

improves data security and minimizes computational overhead, leading to a more feasible implementation of 
CP-ABE for fog computing scenarios. 

NOMENCLATURE    

𝑡𝑖 Tripping time of the i-th relay 𝑇𝐷𝑆𝑖
𝑠 TDS of the second level of the i-th relay 

𝑇𝐷𝑆𝑖 Time dial setting (TDS) of the i-th relay 𝐼𝑝,𝑖
𝑓  PCS of the first level of the i-th dual-setting 

curve’s relay 

𝐼𝐹,𝑖 Short circuit current of the i-th relay 𝐼𝑝,𝑖
𝑠  PCS of the second level of the i-th dual-setting 

curve’s relay 

𝐼𝑝,𝑖 Pickup current setting (PCS) of the i-th relay   
𝐼𝐻,𝑖 Breakpoint of the i-th relay’s dual-setting curve   

𝐴𝑖 , 𝐵𝑖 Standard relay curve coefficients of the i-th 

relay 

  

𝑇𝐷𝑆𝑖
𝑓 TDS of the first level of the i-th relay   
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I. Introduction 

With the growing penetration of information technology 

and automation into critical infrastructures, the intelligent 

environments and smart buildings have sparked much 

concern. This transformation has been greatly supported by 

computational advancements [1]. With the advancements 

of modern data-driven technologies, smart environments 

not only provide deeper integration but also more 

optimized data sharing and more accurate decision making, 

resulting in higher efficiency, reduced costs and better 

operational effectiveness [1], [2]. 

However, most past models of smart environments rely 

on cloud computing as a backbone. Nevertheless, smart 

buildings and intelligent systems generate enormous 

amounts of data that result in the the explosive growth of 

data, while traditional cloud cannot provide fast responses 

to heterogeneous, latency-sensitive services [6]. To 

overcome these constraints, fog computing has been 

introduced aiming at distributed management of data along 

with its effective processing in real-time [1[, [6], [7]. In fog-

aided models, data received from smart devices are 

processed locally, and are sent to the cloud for storage. This 

approach eliminates latency, enhances mobility and 

location awareness, and minimizes data transmission costs 

[6], [7], [8]. 

While this is convenient, fog computing comes with 

issues like limited computational resources and data 

security. Data offloading is commonly needed to upload to 

fog nodes and cloud storage due to limited processing and 

storage capabilities of smart devices. As a result, data 

owners lose direct control over their data, which introduces 

security risks and makes access control difficult. Therefore, 

security has turned into one of the major concerns in fog-

driven smart buildings [6], [7], [8], [9]. To address these 

issues, cryptographic techniques provide an effective 

solution allowing data to be securely stored in untrusted 

servers that can reduce security risks and uphold user 

privacy [4], [5], [6], [7], [8], [9], [10]. 

In this work, we use the attribute-based encryption 

(ABE) for fine-grained access control in fog-assisted smart 

scenarios. ABE allows data owners to create an access 

policy over descriptive attributes tied to their encrypted data 

and to the secret keys of users [2], [4], [5], [9]. Such 

attributes, describing data properties, user roles, and 

domain-sensitive properties, are crucial to enacting 

security policies [2], [4], [11]. Ciphertext-policy attribute-

based encryption (CP-ABE), the first of the two central sorts 

of ABE, enables the information owner to set access 

policies to guarantee that only legitimate users can decrypt 

the data. Despite CP-ABE providing security 

augmentations, its implementation introduces several 

challenges with regards to encryption and decryption 

execution time, attribute revocation, and storage overhead 

[9], [10], [11], [12], [13]. 

However, the cryptographic operations demand more and 

more resources with the increase of the attributes and 

complexity of the access structures. Further, as the count of 

cryptographic inferences goes up, the execution time for 

encryption and decryption is directly proportional to it, 

thereby leading to a decrease in system efficiency [4], [9], 

[11]. Moreover, attribute revocation is another big problem, 

since any access structure modifying for the revoked 

attributes may lead to many users requiring frequent re-

encryption and key updates [4], [9], [10], [11], [12], [13]. 

This shapes up computation and storage costs, making 

policy enforcement more challenging in fog environments. 

In this study, we introduce a new semantic-based 

approach thanks to ontology modeling that can be used to 

convert simple attributes into functional and semantic 

attributes required in cryptography as a solution for these 

issues. This approach, through suppressing the diversity of 

attributes, can make access policies more interpretable, 

reduce the computation complexity and the time required 

for cryptographic operations, and improve the efficiency of 

cryptography [5]. Furthermore, the suggested scheme 

optimizes storage and policy management since it achieves 

a smaller ciphertext and simpler policy structure and 

minimizes the number of times access policies need to be 

updated [14], [15], [16], [17]. 

In this research, we introduce an enhanced security model 

for fog-based smart buildings by integrating outsourced CP-

ABE (Ciphertext-Policy Attribute-Based Encryption) with 

attribute revocation and proxy re-encryption (PRE) to 

minimize communication costs and strengthen security. The 

model utilizes the Advanced Encryption Standard (AES) to 

optimize encryption and decryption efficiency. 

Additionally, by incorporating a semantic ontology-based 

approach in conjunction with the Dragonfly optimization 

algorithm through ensemble learning, the framework 

effectively selects and prioritizes semantic features, which 

reduces storage requirements and enhances system 

performance. By addressing critical challenges in fog-based 

smart environments—such as security threats, 

cryptographic execution time, complexity of attribute 

revocation, and storage overhead—this study aims to 

improve system efficiency, reduce latency, and enhance the 

quality of service in intelligent infrastructures.  

Efficient, scalable attribute and access control policy 

management with heterogeneous IoT data and dynamic 

environmental changes is another major challenge in CP-

ABE for smart homes. Therefore, this paper addresses 

these challenges by offering a semantic representation of 
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user attributes, devices, and data using a semantic ontology-

based model with ensemble learning and attribute-based 

encryption. This helps enhance policy processing, mitigates 

computational cost, and allows dynamic, context-sensitive 

adjustment of access control. Fig 1 illustrates the security 

framework designed for a fog-based smart building. This 

study makes several contributions, which can be 

summarized as follows: 

1. To the best of our knowledge, this study is the first 

to optimize the number of attributes used in different 

phases of a CP-ABE scheme by leveraging ensemble 

learning to select the most relevant semantic features 

further enhances the cryptographic efficiency. 

2. This research integrates the Dragonfly optimization 

algorithm with a KNN-based core and an ontology-

driven approach to identify the most effective 

semantic features to enhance the cryptographic 

efficiency. 

3. Our approach employs ensemble learning technique, 

including GMDH, SVM, and KNN, to find out the 

most optimal attributes for CP-ABE to have secured 

communication in fog environments. This approach 

not only strengthens security but also enhances 

encryption and decryption efficiency while reducing 

the error rate.  

4. The introduced model combines CP-ABE with AES 

symmetric encryption for better security and 

computation accuracy. The scheme is used to 

optimize resource utilization in distributed 

environments by outsourcing complex encryption 

and decryption operations to fog nodes. 

5. Our proposed scheme uses a reduced number of 

semantic attributes in order to reduce the costs of 

encryption, decryption, key generation, ciphertext 

size and access policy processing. This optimization 

results in improved runtimes and storage efficiency 

across a wide range of domains, from fog to cloud 

systems, while maintaining strong security 

assurances. We evaluate our model to assess its 

performance and effectiveness. 

 

The rest of this paper is organized as follows: Section II 

provides a review of related work. Section III presents the 

foundational background necessary for this research. 

Section IV outlines the system architecture and security 

framework. Section V describes the proposed approach, 

detailing its components and structure. Section VI focuses 

on the security analysis and performance evaluation of the 

proposed model. Finally, Section 7 concludes the study. 

 

II. Related Work 

This section discusses the relevant literature related to our 

work, specifically on aspect-based explanation design, 

ontology, feature selection, and ensemble classifier. 

In [13] a multi-authority CP-ABE-based data-sharing and 

encryption scheme along with a robust user revocation 

mechanism were proposed in order to fulfill the security 

requirements of smart grids in fog environment. The study 

in [7] introduced a multi-authority CP-ABE scheme that 

focused on the reduction of both private key and ciphertext 

storage. In [11], a model outsourced the decryption process 

using fog through the Bloom filter technique. The paper 

proposes a multi-authority CP-ABE for fog computing to 

allow group keys to support attribute revocation and access 

management in [15]. The work in [4] presented a 

decentralized CP-ABE framework that identified and 

eliminated malicious users via a white box tracking 

mechanism and further removed them using the KUNodes 

method. The authors in [9] proposed a CP-ABE design for 

fog-assisted E-health systems, in which they exploit the 

PRE technology to realize the efficient control and 

revocation over medical data access attributes. Likewise, 

[18] introduced the ontology-based security architecture for 

cloud-based electronic health record systems and 

highlighted the need for scalability and semantic access 

control in multi-authority ABE encryption.  

In [19], A model was created to identify lung cancer with 

KNN and genetic algorithms, optimizing the feature 

selection to minimize the dataset dimensionality. An 

anomaly detection-based intrusion detection mechanism 

applicable to IoT-enabled smart environments is studied in 

[20]. The work in [21] proposed a security model for dirty 

power grid attacks. A lightweight and dynamic ontology 

model was proposed in [22] to improve semantic 

interactions among IoT services, along with a machine 

learning technique for concept extension. The study in [23] 

adopted an ontology-based approach to energy management 

and cost reduction in smart homes. The research in [24] 

presented an ensemble learning-based framework for smart 

grid energy consumption prediction using XGBoost, SVR, 

and KNN regression. In this context, [25] proposed an 

automated dietary assessment system based upon ADLs 

based on ensemble learning for weight management, 

whereas [26] created a method used for recognizing daily 

activities in smart homes using data from a wearable device.  

Tables I and II summarize the reviewed studies on CP-

ABE, ontology applications, feature selection, and 

classification. The analysis indicates that there has been no 

previous attempt integrating a semantic ensemble model 

utilizing ontology and machine learning to build the security 

and efficiency of fog-based systems. Nor has a semantic- 
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ensemble-based approach been applied in previous 

studies to establish attributes for ABE. Existing techniques, 

when run independently, cannot guarantee high security 

with low performance metrics for the sensitive 

environments of fog computing. 

 

III. Background 

This section presents the foundational concepts utilized in 

our research. The key definitions and notations are provided in 

Table III. 

A. Bilinear maps 

The sets 𝐺1, 𝐺2, and 𝐺𝑇 are cyclic groups of prime order p, 

where 𝑔1 and 𝑔2 are generators of 𝐺1 and 𝐺2, respectively. A 

bilinear map �̂�: 𝐺1𝑥𝐺2 → 𝐺𝑇 is recognized as valid when the 

following conditions are satisfied. In this case, the quintuple 

(𝑔1, 𝑔2, 𝐺, 𝐺𝑇, �̂�) is referred to as a bilinear group: 

-Bilinearity:  ȇ(𝑔1
𝑎, 𝑔2

𝑏) = ȇ(𝑔1, 𝑔2)𝑎𝑏 , ∀ 𝑔1, 𝑔2 ∈ 𝐺  & 𝑎 ∈
ℤ𝑝, 𝑏 ∈ ℤ𝑝. 

-Non degeneracy: ȇ(𝑔1, 𝑔2) ≠ 1.  

-Computability: The value of ȇ(𝑔1, 𝑔2) can be 

computed in probabilistic polynomial time. 

B. Access structure 

In the proposed model, the access structure 𝛢 is defined 

over a set of elements {p1, p2, … , pn}, where 𝛢 consists of a 

collection of non-empty subsets of these elements such that 

𝛢 ⊂ 2{𝑝1,𝑝2,…,𝑝𝑛}\{Ø}. If 𝛢 is monotonic, then for all sets 𝐵, 𝐶 ∈

𝛢, if 𝐵 ⊂ 𝐶, it follows that 𝐶 ∈ 𝛢. In this study, we examine a 

monotonic access structure, which includes the set of 

permissible feature sets. 

C. Linear secret sharing schema 

In CP-ABE schemes with high expressiveness, the matrix 

of LSSS is commonly used for representing monotone access 

structures. A secret sharing scheme ∏ over a group of 

participants ρ is considered linear if the following conditions 

hold: 

- The participants‘ shares can be seen as forming 

a vector in ℤ𝑝. 

- To ∏, a matrix M of size 𝑙 ∗ 𝑛 exists, with ρ(i) 

mapping the i-th row of the matrix to the 

respective participant, and 𝑖 = 1, 2, … , 𝑙. The 

vector 𝑀�⃗� has l shares corresponding to the 

secret s, defined by ∏. Here, 𝑣 =

(𝑠, 𝑟2, 𝑟3, … , 𝑟𝑛) is of order n, with 𝑟2, 𝑟3, … ,

𝑟𝑚 ∈ ℤ𝑝 randomly selected, while 𝑠 ∈ ℤ𝑝 

represents the secret to be shared. The share 

corresponding to the party 𝑝(𝑖) is (𝑀�⃗�)𝑖 [24]. 

If the access policy 𝛢 is in LSSS representing an authorized set 

𝑆, and if 𝐼 ⊂ {1, 2, … , 𝑙} is identified as 𝐼 = {𝑖: 𝑝(𝑖) ∈  𝑆}, and 

the value of 𝜆𝑖is representing valid shares of the secret 𝑠 

according to ∏, there must be coefficients {{𝑤𝑖 ∈ ℤ𝑝}, 𝑖 ∈ 𝐼 

such that {∑ 𝑤𝑖𝑖∈𝐼𝑠
𝜆𝑖 = 𝑠} is polynomial time compmlexity 

computable. Thus, it is obvious that 𝜆𝑖 = (𝑀�⃗�)𝑖 [24]. 

D. Decisional Q-Parallel BDHE assumption 

Considering the bilinear map parameters on an elliptic curve, 

we define the set (𝑝, 𝑔, 𝐺, 𝐺𝑇 , �̂�). If an adversary 𝐴 obtains the 

following set:  �⃗� = 𝑔, 𝑔𝑠,  𝑔a, 𝑔𝑎2
, … , 𝑔𝑎q

, 𝑔𝑎q+2
, … , 𝑔𝑎2q

, 

𝑔s.bj ,  𝑔a/bj ,  𝑔𝑎2/bj , … , 𝑔𝑎q/bj , 𝑔𝑎q+2/bj , … , 𝑔𝑎2q/bj , 

1 ≤ 𝑗 ≤ 𝑞, 𝑔a.s.bi/bj ,  𝑔𝑎2.s.bi/bj , . . , 𝑔
𝑎q.s.

bi
bj  ,1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑞 

If the values q + 2,  ∈ 𝑍𝑝, and the random elements 

𝑎, 𝑠, 𝑏1, 𝑏2, … , 𝑏𝑞 , ∈ 𝑍𝑝 are considered, then, if the adversary 

cannot probabilistically decide in polynomial time whether 

�̂�(𝑔, 𝑔)𝑠𝑎𝑞+1
 is distinguishable from a random element in 𝐺𝑇, 

the q-parallel BDHE assumption holds. Specifically, the 

advantage 𝐴𝑑𝑣𝛢
𝑞(𝜆) of adversary in solving the decisional q-

parallel BDHE problem with respect to 𝜆 as a security 

parameter is represented as follows [9, 25, 2]. 

𝐴𝑑𝑣𝛢
𝑞(𝜆) = |𝑃𝑟[𝛢( �⃗�, �̂�(𝑔, 𝑔)𝑠𝑎𝑞+1

   ) = 1 ] 

− 𝑃𝑟 [𝛢 (�⃗�, 𝑅
𝑅
← 𝐺𝑇)

= 0]|                                             

IV. System and security model 

In this section, we first present the architecture of the 

proposed system, followed by an analysis of its security 

model. 

A. System model 

Fig. 2 depicts the system architecture of the proposed 

model, detailing the following components: cloud service 

provider, ontology-based semantic feature selection, 

attribute authority, fog node, IoT device, and data user. 

1) Cloud Service Provider 

The Cloud Service Provider (CSP) serves as a powerful 

computational center where users can upload and share all 

their stored data publicly. It provides direct storage of data 

transmitted over fog nodes in encrypted ciphertext from IoT 

devices. CSP sends the encrypted data to the appropriate fog 

node upon the request of an authorized user. In case some 

attributes need to be revoked, the CSP additionally re-

encrypts the affected ciphertexts to ensure that the 

outdated/unauthorized access is indeed revoked. 

2) Attribute Authority 

The Attribute Authority (AA) is a fully trusted third party 

that initializes the system, set up public parameters, and 

creates necessary cryptographic keys such as master secret 

keys (MSK), secret keys (SK), and symmetric session keys 

(K). Beyond these foundational tasks, the AA applies an 
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ontology-based semantic feature selection mechanism to 

enhance the system. 

3) Semantic ontology-based feature selection 

The semantic method of the attribute authority embeds 

the Dragonfly feature selection algorithm, enhanced by an 

ontology and supported by ensemble learning techniques. 

Using this generalised method, the objective of generating 

unique semantic and semantic attributes that are paramount 

in determining the policy structures and generating secret 

keys is aimed at. The use of the Dragonfly algorithm 

enables efficient selection of features, and the ontology 

offers a logical structure that can be used to determine the 

relationships between attributes. By combining the 

advantages of multiple algorithms, ensemble techniques 

provide even more strength by improving the robustness 

and reducing the error in the identification of attributes in 

the resulting policies as well as in the key generation 

process. 

4) Fog node 

Semi-trusted Fog Nodes (FNs) play an integral role in 

this fog-based architecture as intermediates which 

communicate the Cloud Service Provider (CSP) and end-

users. These nodes are usually small routers or servers, 

deployed near the edge of the network and close to the IoT 

devices. Fog nodes can send and receive encrypted data, 

and most of the encryption and decryption work is 

performed by these nodes. 
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Fig. 1. Security scenario of a smart building based on fog computing. 

 

 

Fig. 2. The architecture of the proposed model. 

 

 

Fig. 3. Our approach overview. 
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TABLE I. Relevant studies on CP-ABE and ontology 

Ref Year Key Purpose Technique Strengths Weaknesses 

[13] 2022 

Ensuring verifiable 

outsourcing of 

decrypting and data 
sharing in CP-ABE for 

secure revocation in 

fog-based smart grids 

Multi-authority framework for 

decentralized access control; Outsourcing 

cryptographic to fog nodes; User 
revocation through versioning of keys and 

ciphertexts; Minimizing attributes by 

optimizing key and ciphertext structures 

Optimized computational 

overhead in cryptographic 
operations; Delegated 

decryption and data-sharing 

system with verifiability; 
Compatibility with LSSS 

policy 

Reduced efficiency; Increased 

key updating costs; High costs 
associated for multi-

authorization 

[7] 2022 

Enhancing the 
performance of ABE for 

resource-limited devices 

in fog environments 

Multi-authority framework; Non-

dependence on the size of secret keys and 
ciphertexts 

Effective cryptographic 
processes; Optimized length 

of keys and ciphertext; 

Efficient data-sharing for IoT 

Incompatibility with LSSS 

policy; Complexity in multi-
authority calculations 

[11] 2022 
Fog computing CP-ABE 
decryption efficiency 

improvements 

Collaborative decryption in groups; 
Bloom filter and cooperation functions for 

attribute management 

Minimizing storage 

requirements and power 

consumption in IoT; 
Optimized computational 

overhead for IoT and fog; 

Privacy-preserving access 
control policies 

Not supporting LSSS policy; 

Difficulty in managing keys; 

Necessity of MA architecture; 
Lack of load balancing for 

attribute allocation to fog 

nodes; No support outsourcing 
encryption 

[18] 2022 

Rich semantic access 

control in cloud-based 

healthcare encryption 
systems with multiple 

authorities 

Multi-authority mechanism; Ontology-

based semantic access control instead of 
traditional access control 

Enhanced security through a 

semantic approach in access 
policies; Scalable access 

management for a large 

number of users and 
organizations 

Elevated computational costs 

due to multi-referencing; 

Scalability challenges with 
increasing users and 

organizations at a global level 

[15] 2021 

MA-CP-ABE enabling 

dynamic user attribute 
modifications and 

delegating computations 

to fog nodes 

Multi-authority framework; Fog 

delegating cryptographic tasks; Group key 
components for flexible adjustments of 

attributes; Revoking attribute using binary 

tree structures 

Minimal processing 

complexity; Enhanced 
performance and robustness 

for fog-enabled applications; 

Reduced runtime for 
cryptographic computations; 

Compatibility with LSSS 

policy 

Not accounting for 

communication latency and 
energy usage; No investigation 

into storage requirements for 

cryptographic computations 

[4] 2021 

Effective malicious user 
detection and user 

revocation in a multi-

authority CP-ABE cloud 
system 

White box tracking for detecting 

malicious users; Delegating decryption 

tasks 

Compatibility with LSSS and 

diverse cryptographic 
capabilities; Reasonable 

computational cost 

High computational overhead 

and execution time for 

cryptography; Lack of 
encryption outsourcing; No 

implementation of black-box 

traceability 

[9] 2021 

Enhancing access policy 
modification and 

performance in fog-

enabled CP-ABE 

Delegating decryption/encryption; Proxy-

based re-encryption for effective attribute 
revocation 

Less computation time and 

storage needs; Shortened time 

to revoke attribute; 
Compatibility with LSSS 

policies 

Incompatible with multi-

authority systems; Lacks 
tracking capabilities 



 

 

TABLE II. Relevant studies on feature selection, classification techniques and other applications of ontology. 
 

Ref Year Key Purpose Technique Strengths Weaknesses 

[20] 2023 

A framework for Intrusion 

detection in IoT-enabled smart 

environments using anomaly 

detection strategies 

AdaBoost algorithm for 

ensemble learning; 

Integration of multiple 

feature selection 

methods such as Boruta 

in Random Forest, 

Mutual Information, and 

Pearson Correlation 

Coefficient; K-fold 

cross-validation for 

assessment 

Improved accuracy of 

Intrusion Detection 

Systems; Reduced 
learning/detection time; 

Enhanced performance and 

attack resistance 

Lack of consideration for 

data diversity and multi-
class classification; 

Requirement for 

lightweight learning 
models in resource-

constrained IoT devices 

[21] 2022 

An intelligent IDS for precise 

attack classification in intelligent 

power grids utilizing binary gray 

Wolf optimization-based feature 

selection 

Ensemble classification; 

Adjusting learning 

mechanisms using 

multiple meta-

parameters; Self-tuning 

Bayesian optimization 

method 

Minimal prediction 

processing time; 
Effectiveness for real-time 

Intrusion Detection 

applications; Superior 
accuracy and reliability in 

2-class and 3-class 

classification tasks; 
Decreased 

misclassification rate 

Longer training phase in 
ensemble models 

incorporating multiple 

classifiers; Additional 
time required to set meta-

parameters; Inability to 

handle multiple-category 
classification challenges 

[19] 2021 

A hybrid approach for optimal 

feature selection and data 

reduction to enhance cancer 

diagnosis and classification 

efficiency 

KNN method; Genetic 

algorithm (GA) 

Superior model accuracy; 

Optimized execution time 

of the scheme 

Performance reliance on 
data quality; Limited 

exploration of impactful 

feature selection 
techniques 

[22] 2021 
A lightweight dynamic ontology 

model for IoT 

Machine learning for 

ontology expansion; 

Dynamic lightweight 

ontology 

High flexibility and 

scalability; Reduced 

resource consumption and 
response time; Accuracy in 

semantic interaction 

Implementation 

complexity for 
compatibility with various 

devices; Need for high-

quality input during 
training 

[23] 2021 

An ontology-driven strategy for 

energy optimization in smart 

homes 

Utilization of Data 

Analysis Techniques; 

Integration of Energy 

Management Systems 

and Ontology 

Automated Analysis and 

Decision-Making; 
Optimizing Energy 

Consumption and Smart 

Management; High 
flexibility and scalability 

Need for accurate data for 
optimal system 

performance; Complexity 

in ontology design 

[24] 2020 

A precise energy consumption 

prediction model in smart grids 

leveraging ensemble learning for 

effective resource management 

Hybrid ensemble 

learning approach 

incorporating XGBoost, 

Support Vector 

Regression, and K-

Nearest Neighbors; 

Genetic algorithm-based 

optimization 

Reduced error rate; 

Enhanced precision of the 

ensemble model 

Reduced performance 

with high-dimensional 

data; Inability to fulfill all 
contextual variables; 

Inaccurate results in 

certain metrics 

[25] 2020 

A diet evaluation framework for 

weight loss management 

incorporating image recognition 

and ensemble learning with a 

voting approach 

Ensemble learning setup 

using VGGNet, 

GoogleNet, ResNet, and 

InceptionV3; Integrating 

techniques: max, min, 

ave, med, and weighted 

softmax probabilities in 

the learning process; 

Weighted voting via 

Bayesian optimization; 

Learning configurations 

with a convolutional 

neural network pre-

trained 

Reduced model training 

time; Enhanced 

adaptability and efficiency 

in the vote-driven 

classification approach; 
Improved accuracy 

Limited support for 
personalizing user data 

images and handling 

diverse data; Increased 

hardware costs for 

CPU/GPU-level tasks and 

memory computing; 
Necessity for fine-tuning 

operations for optimal 

performance 



29                                                                                                                                     A Semantic Ontology-Based Model /R. Rezapour, et al 

.     TABLE III. Basic definitions and notational conventions. 

 Explanation Variable 

  DA 

 Accuracy of classification m 

 Feature dimensionality reduction n 

 Subset feature count |R| 

 Dataset feature count |C| 

 Ontology  

 With a value less than x for 𝑣 (𝑠𝑤𝑟𝑙𝑏: 𝑙𝑒𝑠𝑠𝑇ℎ𝑎𝑛(? 𝑣, 𝑥))  

 With a value greater than x for 𝑣 (𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(? 𝑣, 𝑥)) 

 Sending the command  cmd SystemCommand(?cmd) 

 Considering the feature  𝑝  as a key 

feature 
𝐾𝑒𝑦𝐹𝑒𝑎𝑡𝑢𝑟𝑒(? 𝑝) 

 Correlation between two features  

Correlation between two features 

(?p1, ?p2) 

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(? 𝑝1, ?  𝑝2, ? 𝑐𝑜𝑟) 

 Removal of feature 𝑝2 𝑅𝑒𝑚𝑜𝑣𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒(? 𝑝2) 

 Value changes of feature  𝑝  based 

on  𝑣 
𝑣𝑎𝑙𝑢𝑒𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(? 𝑝, ? 𝑣) 

 Significant changes in feature  𝑝 𝑖𝑠𝐻𝑖𝑔ℎ𝑙𝑦𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(? 𝑝, 𝑡𝑟𝑢𝑒) 

 GHMD  

 Root mean square error RMSE 

 Optimal RMSE 𝑅𝑀𝑆𝐸𝑚𝑖𝑛 

 Worst  RMSE 𝑅𝑀𝑆𝐸𝑚𝑎𝑥 

 Mean absolute error 𝑀𝑆𝐸 

 Selection-pressure 𝑒𝑐 

 Custom value within the range [0, 

1] 
𝑎 

 Estimated parameter value (i) 𝑦𝑖 

 Observed  parameter value (i) 𝐺𝑖 

 observation count 𝑛 

 KNN  

 KNN neighbor count K 

 Training sample(i) 𝑥𝑖 

 Test sample(i) 𝑥𝑖
′ 

 Features count 𝑛 

   

 

 Explanation Variable 

                             SVM  

 Weight array 𝑤 

 Bias vector 𝑏 

 Relaxing factor ξi 

 Kernel 𝐾𝑒𝑏𝑓 

 Cost of incorrect classification 𝑐 

 Gamma :  Kernel non-linearity Ɣ 

 Data  sample 𝑥𝑖 

 Sample category 𝑦𝑖  

                            CP-ABE  

 The security factor in attribute-based encryption 𝜆 

 The potential attributes in the semantic attribute set S 

 The collection {1, 2, …L} [𝑙] 

 Randomly selecting elements 𝑎 with uniform distribution from ℤ𝑝 𝑎
𝑅
← ℤ𝑝 

 The access structure represented by the matrix 𝐴  (𝐴, 𝑝)  

 The row i of policy matrix  𝑝(𝑖) 

 Symmetric key: , k̂
𝑅
← 𝐺𝑇 k̂ 

 A random horizontal vector  �⃗� ∈ ℤ𝑝
𝑛 �⃗� 

 The attribute y  scheduled for revocation y 

 𝐻 {0, 1}∗ →  𝐺 represents  a hash function ℎ(𝑥) 

 Collected data encrypted symmetrically under key �̂� {𝑆𝑂𝐷}𝑘 

 The initial ciphertext generated from ABE by fog 𝐶𝑇0 

 Temporary encypted data of k̂ 𝑇𝐶𝑇 

 The ciphertext re-encrypted version 𝐶𝑇1 

 Public parameter 𝑃𝑃 

 Mask secter key 𝑀𝑆𝐾 

 Secret key SK 

 Delegation key 𝑆𝐾𝑑 

 The intermediate ciphertext during decryption by fog �̂� 

 A set of integers in modulo p residue class ℤ𝑝 

 A bilinear algebraic group defined by prime order, generated by g G 

 



 

5) Data owner 

According to proposed framework sensing and 

communication functional integrated IoT devices are 

referred as Data Owners (DO). These DOs are responsible 

for picking the attributes that define access control policies 

and encrypt data with defined policy.  

6) Data user 

Data Users (DUs) are those IoT devices or people accessing 

the data found in the cloud data center. while the data user 

requests data access and if his attributes satisfies the access 

policy, he completes a segment of the decryption process and 

gets the required information. 

B. Selective security model  

The security model of the proposed system is framed as a 

security game between an adversary and a challenger as 

described in [9]. In this game, the adversary must guess 

which attributes in the challenge structure to target. This is 

described as follows [2], [9], [26]: 

Initialization: The adversary, denoted as 𝛢, sends a 

challenging access structure to the challenger, 𝐶. 

   Setup: The challenger, 𝐶, executes the Setup algorithm and 

sends the public parameters to adversary Α. 

   Phase 1:  Adversary 𝛢 selects a set of attributes and sends 

requests for private keys corresponding  to these attributes, 

as long as they do not participate in the challenge access 

structure. 

   Challenge: Adversary 𝛢 sends two messages, M0 and M1, 

of equivalent length to challenger 𝐶. The challenger then 

randomly selects a value b ∈ {0,1}, encrypts message M𝑏 

according to the access structure, and returns the 

corresponding ciphertext back to 𝛢. 

   Phase 2:  Adversary 𝛢 repeats the cycle from Phase 1. 

  Guess :  To win, the adversary must guess: if the adversary 

guesses for the value which is 𝑏′ = b. We define The 

adversary's advantage in attacking the scheme as |𝑃𝑟[𝑏′ =

𝑏 ] –  ½|. 

V. Proposed Approach 

In this section, we begin by presenting a general overview 

of our work, followed by an in-depth discussion of the 

different elements that make up our approach. 

A. Approach overview 

The objective of the proposed model is to reduce the 

number of relevant attributes during the multiple steps of 

CP-ABE by coupling with a semantic model based on 

ontology. This study aims to enhance cryptographic 

performance by accelerating execution time, minimizing 

storage need, and improving the system's security measures. 

It also reduces latency and improves the quality of service in 

fog-based smart building environments. There are two core 

components of our model:  

semantic ontology-based feature selection and attribute-

based encryption. A visual summary of our approach is 

shown in Fig. 3. The class labels that are predicted by 

semantic ensemble learning are considered to be lists of 

attributes that are fed into the cryptography process 

enabling efficiency and security in ABE (Attribute-Based 

Encryption). This is advantageous because the number of 

attributes that need to be considered affects both 

computational time and storage requirements. 

The CP-ABE key generation and update phase usually 

require processing time and storage that grows with the size 

of the key. Likewise, the running time and storage 

requirements in the encryption phase are also linear with the 

number of attributes that are specified in the access policy. 

In the local and outsourced decryption phases, the 

decryption time and storage used depend linearly on the 

number of attributes required for decryption. Moreover, for 

the ciphertext update phase, the time and storage 

requirements are also affected by the number of access 

control attributes. By controlling relevant features across the 

cryptographic pipeline, we hope to achieve performance along 

with improved security. 

We evaluated our cryptographic model on various datasets 

such as, HomeC, OSH, SBS, IEQ, and CU-BEMS against the 

scheme presented in [9] by comparing the execution time and 

storage requirements. For instance, in a smart environment, 

a device (data owner) collects data (temperature, humidity, 

etc.) and shares it with specific devices (data users), this 

sensitive data must be encrypted by the data owner before 

uploading to the cloud. Table IV summarizes a shared feature 

set that includes name, date of manufacture, file size, role, 

department, topic, temperature, light and motion sensor 

presence, and light and temperature sensor data. 

The proposed model also generates semantic feature 

labels, which are subsequently utilized in CP-ABE for  

 constructing both the access policy and the user’s private 

key. The semantic features are aligned with the semantic 

model via the Dragonfly optimization algorithm, which 

integrates ontology-based rules and semantic relationships, 

further enhanced through ensemble learning techniques. The 

specific details regarding these semantic features and their 

alignment are outlined in Tables V and VI. When a device 

enters the system, it is assigned specific features, illustrated 

by the attribute collections for two devices: Device 1= 

{Control Service, Disabling Trigger, Portable} and Device 

2= {General Service, Archiving Trigger, Non-Portable}. 

As illustrated in Fig. 4, the owner of data specifies the 

access policy {“Control Service” AND “Portable”} and 

performs encryption in accordance with this policy. 

According to this access policy, the attributes of Device1 that 

align with its secret key fulfill the conditions, granting access 

to the shared data. On the other hand, Device 2 is denied 

access. Device 1 decrypts the ciphertext using its private key 

whenever it needs access to the encrypted data (ciphertext). 

In the event of attribute revocation, the update of private 

keys is performed, while the cloud service provider is 

responsible for re-encrypting the data the relevant ciphertext. 

Upon revocation of an attribute, a section of the ciphertext 

undergoes decryption, and the new access policy is enforced. 

This operation is performed based on the identity of the data 

owner. 
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B. Approach details 

In this section, we provide a comprehensive explanation 

of our model.  

1) Preprocessing using the K-Means 

The raw data undergoes a preprocessing phase in which 

outliers are eliminated, and the data is transformed into a 

format suitable for further analysis. This step is vital, as real-

world datasets often contain redundancies, missing values, 

and NaN entries. A well-prepared dataset is necessary for 

obtaining reliable training results. Preprocessing helps in 

making the data more consistent, simplifying the model, 

speeding up sample processing, and improving feature 

selection accuracy [30]. By utilizing the K-Means-based 

clustering technique, the model can categorize the data, 

eliminate outliers, and discard weak clusters [30]. The K-

Means algorithm was chosen for its computational efficiency 

and ability to manage large, high-dimensional datasets. This 

method is simple yet effective for categorizing data with 

diverse characteristics [31]. Following this, the data is 

normalized to enhance accuracy and achieve superior results. 

2) Dragonfly optimization algorithm 

The Dragonfly Algorithm (DA) chooses optimal features 

from a feature set. This algorithm is a stochastic search 

technique that mimics the behavior of dragonflies in nature 

[30], [32]. Based on the criteria of this algorithm, the most 

effective and efficient collection of features, which 

contribute to accuracy of classification, is chosen. This 

method eliminates irrelevant features and identifies 

significant ones that influence classification performance 

[33]. In this study, we used the Dragonfly algorithm due to 

its notable advantages, enabling it to quickly reach the global 

optimum and implement it with greater precision [34]. The 

DA effectively balances exploration and exploitation to 

handle challenges in complex search spaces, similar to real-

world scenarios [35]. Its advantages over other algorithms 

include transparency, faster search times, and ease of 

improvement and hybridization. Moreover, compared to 

other algorithms, it has a better capability to select features 

that provide more informative data [34], [35]. We 

empirically adjusted the exploitation and exploration 

processes and fine-tuned the group parameters (a, c, e, f, s, 

w) during optimization. 

In the Dragonfly algorithm, the objective function is 

specified by equation 1. Feature selection is inherently a bi-

objective problem, where one goal is to minimize the size of 

feature set, and the other is to reduce classification error. The 

features that can minimize the objective function are 

assessed for their suitability. Better capability to select 

features that provide more informative data [34[, [35]. We 

empirically adjusted the exploitation and exploration 

processes and fine-tuned the group parameters (a, c, e, f, s, 

w) during optimization. 

In the Dragonfly algorithm, the objective function is 

specified by equation 1. Feature selection is inherently a bi-

objective problem, where one goal is to minimize the size of 

feature set, and the other is to reduce classification error. The 

features that can minimize the objective function are 

assessed for their suitability. 

𝐷𝐴𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = min [𝑚 ×

𝑘𝑓𝑜𝑙𝑑𝐿𝑜𝑠𝑠 + 𝑛 ×
|𝑅|

|𝐶|
]      

(1) 

In this context, 𝑚 + 𝑛 = 1, and kfoldLoss represents the 

classification error obtained from the K Nearest Neighbor 

(KNN) algorithm during cross-validation. In the KNN 

algorithm, classification is based on the distance between 

test and training samples [19]. During the execution of K-

fold cross-validation, the original dataset is randomly 

divided into K subsets; one subset is used for testing, and the 

remaining K-1 subsets are used for training. The K-fold 

cross-validation process calculates the error (using mean 

squared error) of the regression model CVMdl. The 

kfoldLoss computes the error for each validation subset 

based on a model trained on the corresponding training 

subset. The model undergoes K evaluations, and the average 

result is taken. In the KNN algorithm, the Euclidean distance 

metric is used, and the number of neighbors is set to 5. The 

K-Fold cross-validation process consists of 10 splits. 

Furthermore, |R| and |C| refer to the number of features in 

the subset and the entire dataset, in the same order. The 

parameters m and n govern the significance of classification 

accuracy and feature reduction, with values 𝑚 = 0.99 = 0.99 

and 𝑛 = 0.01 in this study. As a result, the algorithm is 

capable of selecting key features. Finally, the optimized 

dataset is sent to the semantic model based on ontology to 

perform the conceptual reformation of the data. Table VII 

presents the values of the parameters used in the DA 

algorithm. 

3) Ontology-based Semantic Approach 

Ontology, in the field of computer science, is a formal 

representation of knowledge as a set of concepts, categories, 

and the relationships between them, that can be useful for 

the purpose of simplifying and enriching information. 

Ontologies allow raw data to be converted into well- 

structured and meaningful information, enabling not only 

better processing and retrieval of data, but also integration 

of heterogeneous datasets [36]. In the context of a complex 

ecosystem, like IoT and fog computing, ontologies aid in 

ensuring a shared understanding of the data through an 

accurate representation of the attributes and their integration 

among components, which promotes intelligence [37]. 

As smart buildings become more important and the 

number of IoT devices used in various fields and applications 

continues to grow, semantic modeling based on ontology is 

needed for the standardization, generalization, reusability, 

and semantic enrichment of the systems, which contributes 

to the improvement of the system's efficiency [36], [37]. 

Ontology-based approaches in cryptography and access 

control enable the definition of semantically driven security 
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policies, thereby enhancing the effectiveness of encryption 

models [38]. 

In this work, the ontology-based semantic method leads to 

inferencing implication and reasoning between fundamental 

IoT device properties in accordance with their practical 

utility and realizing a knowledge-based feature ensemble. 

This approach aims for the recognition of the semantic 

characteristics of IoT devices in smart buildings, 

dimensionality reduction of features through ontologies, and 

improved prediction accuracy of ensemble learning models. 

Hence, the proposed model could use the accuracy and error 

rates of an identification process through efficient 

identification of features for attribute-based encryption to 

choose features very accurately. We developed the proposed 

ontology using Protégé OWL and Resource Description 

Framework (RDF). The class diagram of the proposed 

ontology is shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

  

TABLE IV. The initial features of dataset. 

Name Date Size Role Dep Subject TempS LightS MobilityS QualityS HumidityS LightV TempV SN 

AdaptiveBulb 2015 15 r_d1 r_dep Relaxation ❌ ✔️ ❌ ❌ ❌ 10 0 4 

PersenceDetector 2020 30 r_a1 r_dep Monitoring ✔️ ✔️ ✔️ ❌ ❌ 0 23 8 

HVAC 2018 12 r_l1 o_dep Control ✔️ ✔️ ✔️ ✔️ ✔️ 19 19 6 

DataLogger 2017 10 r_l2 o_dep Study ✔️ ❌ ❌ ✔️ ✔️ 20 0 5 

Lighting 2015 18 r_d2 o_dep Checking ❌ ✔️ ✔️ ❌ ❌ 16 0 4 

Thermostat 2020 30 r_d3 r_dep Meeting ✔️ ❌ ❌ ❌ ✔️ 0 24 8 

Library    o_dep        20  

TABLE V. The ontology-based semantic features dataset. 

Category Time stamp Data 

volume 

Role Security 

management 

Environmental 

control 

Energy 

management 

Sensor 

Ave 

Social 2015-2020 15-30 d ❌ ✔️ ❌ 10.6 

Operational 2020-2020 30-30 a ✔️ ✔️ ❌ 8 

Detector 2017-2018 10-12 l ❌ ✔️ ✔️ 5.5 

 

 

 

TABLE VI. The definitive 
attributes list 

Class Semantic label 

C1  General Service 

C2 Control Service 

C3 Alarm Trigger 

C4 Archiving Trigger 

C5 Disabling Trigger 

C6 Portable 

C7 None-Portable 
 

 

TABLE VII. The value of swarm factors 

Factors Value 

Population Size  40 

Max Iteration 250 

Constant ß, r1 & r2  1.5, [0.1] 

Separation(s) 0.1 

Cohesion (c) 0.7 

Alignment(𝑎) 0.1 

Food & EnemyFactor (f) & (e) 1 

Inertia Weight 0.9 - 0.2 

Fitness 𝑘𝑓𝑜𝑙𝑑𝐿𝑜𝑠𝑠 

K- Fold 10 

n, m 0.01, 0.99 

 

 

 

 

          Fig. 4. The explanation of CP-ABE. 

 

 



 

The PhysicalObject class represents a general category for 

any physical entity. The studied ontology comprises two 

subclasses: Platform and System. The Platform class defines 

an entity that can accommodate other entities, essentially 

serving as the installation or connection point for sensors and 

devices. In this study, 16 platforms are identified, including 

the bathroom, computer, dishwasher, living room, kitchen, 

oven, refrigerator, television, washing machine, four rooms, 

electricity, gas, and water. 

The System class represents an abstract entity for 

infrastructure components and sensing mechanisms. A 

system may consist of multiple subsystems, each of which 

can also be classified as a system. The proposed smart home 

includes four major systems: home appliances, heating, 

lighting, and security systems.  

 
Fig. 5. The overall class diagram of the proposed ontology. 

 

These classes and attributes incorporate the new data into 

the ontology, allowing for complex reasoning and 

inferencing with the Semantic Web Rule Language (SWRL). 

SWRL is the foundation for automated reasoning and for 

uncovering relationships between different entities in the 

ontology. They enable classification process and 

relationships between the concepts in the ontology. 

Execution rules in the proposed ontology, are employed 

to perform specific actions. These rules are usually 

performed following an inference process and directly 

influence the hardware and software of the building. 

Examples of execution rules that trigger heating and cooling 

systems according to temperature readings, are presented in 

Algorithm 1. It receives sensor data and ontology-based 

service information as input and produces ontology-based 

commands as output. 

The heating system rule states, if a room (? 𝑟) has a sensor 

(? 𝑠), and that sensor observes (? 𝑜) a property (? 𝑝) like 

temperature, then the respective value (? 𝑣) is evaluated. If 

the temperature value (? 𝑣) is less than or equal to 18 degrees 

Celsius (𝑠𝑤𝑟𝑙𝑏: 𝑙𝑒𝑠𝑠𝑇ℎ𝑎𝑛(? 𝑣, 18)), a command (? 𝑐𝑚𝑑) is 

sent to the system, indicating that the heating system should 

be activated (𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝐻𝑒𝑎𝑡𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚(? 𝑐𝑚𝑑)). By 

applying this rule, it helps in automatic controlling of the 

heating system as soon as the temperature decreases from set 

point threshold or predefined threshold, making the smart 

home energy efficient & comfortable.  

 

Algorithm 1. Sample of SWRL action rules  

Input: Sensed Data, Ontology Info 

 

Rull for activating Heating System 

Room(?r) ^ hasSensor(?r, ?s) ^ hasObservation(?s, ?o) ^ 

hasProperty(?o, ?p) ^ value(?p, ?v) ^ swrlb:lessThan(?v, 18) 

→ commands(?r, ?cmd) ^ SystemCommand(?cmd) ^ 

activateHeatingSystem(?cmd) 

 

Rull for activating Cooling System 

Sensor(?s) ^ hasObservation(?s, ?o) ^ hasProperty(?o, ?p) ^ 

value(?p, ?v) ^ swrlb:greaterThan(?v, 30) → commands(?s, 

?cmd) ^ SystemCommand(?cmd) ^ 

activateCoolingSystem(?cmd) 

Output: Action commands 

 

Likewise, the cooling system rule states that if a sensor 

(? 𝑠) value (? 𝑣) exceeds 30 degrees Celsius 

(𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(? 𝑣, 30))then a command 

(𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑦𝑠𝑡𝑒𝑚(? 𝑐𝑚𝑑)) is issued to the cooling 

system to switch ON to cool down the temperature. When 

the temperature exceeds a threshold, this rule activates the 

cooling element, thus aiding environmental management 

processes, and increasing comfort in the smart house. 

Feature extraction rules defined in the proposed ontology 

are utilized to decrease data dimensionality to improve 

classification model accuracy. These rules are defined based 

on relationships between entities and their attributes to 

extract the most significant features while eliminating less 

relevant ones. These rules are implemented via SWRL 

(Semantic Web Rule Language) which does not directly 

execute actions but rather allows the system to recognize 

new states and patterns within the smart home environment. 

The proposed ontology includes some extraction rules of 

SecurityManagementAbility and 

EnvironmentalControlAbility features based on sensor 

attributes. Using this extracted feature by ontology-based 

approach helps reduce feature dimensionality and retain 

those features that are effective. This process is implemented 

in Algorithm 2. It takes sensor data and ontology-based 

information as input and generates ontology-driven semantic 

features as output to improve overall performance. 

If the entity (? 𝑑) executes an activity (? 𝑎) with some 

numeric value (? value(? a, ? activityValue))of the where 

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(? 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒, 30), and if the 

entity is equipped with sensors (? 𝑡)and (? 𝑚) that report 

meaningful values, 

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(? 𝑇𝑒𝑚𝑝𝑉𝑎𝑙𝑢𝑒, 20) and 

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(? 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒, 10), the answer to 

whether or not we can conclude that the entity (?d) has 

security management capabilities, which is defined as 

ℎ𝑎𝑠𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡(? 𝑑, 𝑡𝑟𝑢𝑒). This rule is 
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specifically giving security capability to those devices and 

entities with all three such features specified. 

 

Algorithm 2. Sample of SWRL feature extraction  

Input: Sensed Data, Ontology Info 

 

Rull for extraxting Security Management 

Device(?d) ^ Activity(?a) ^ belongsTo(?a, ?d) ^ value(?a, 

?activityValue) ̂  swrlb:greaterThan(?activityValue, 30) ̂  

Temp-sensor(?t) ^ belongsTo(?t, ?d) ^ value(?t, ? 

TempValue) ^ swrlb:greaterThan(?TempValue, 20) ^ 

Mobility-sensor(?m) ^ belongsTo(?m, ?d) ^ value(?t, ? 

MobilityValue) ^ swrlb:greaterThan(?MobilityValue, 10) 

→ hasSecurityManagement (?d, true) 

 

Rull for extraxting Environmental Control 

Activity(?a) ^ value(?a, ?activityValue) ^ 

swrlb:greaterThan(?activityValue, 10) ^ (Temp-

sensor(?t) v Humidity-sensor(?h) v Light-sensor(?l))→ 

hasEnvironmentalControl (?d, true) 

Output: Semantic features 

 

Activity 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(? 𝑎) is an abstract characteristic that is 

not directly observed by a dedicated sensor, but is employed 

to describe the state of the environment and the behavior of 

a user in the smart home. The data comes from the output of 

several sensors. For example, if a motion sensor is triggered 

and someone enters the room, (? 𝑎, ? 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒) would 

return a high value, e.g., 30, indicating high activity in the 

room. A light sensor being triggered in the same room, 

however, (? 𝑎, ? 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒)  increases less significantly, 

reflecting a value of 10. 

If an entity (? 𝑑) performs an action (? 𝑎) with 

𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(? 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒, 10) and has at least 

one of the sensors(? ℎ), (? 𝑡), or (? 𝑙), it is inferred that the 

entity (? 𝑑) has environmental control capabilities, defined 

as hasEnvironmentalControl(?d,true). Only the three 

sensors (temperature, humidity,  and light) with a determined 

level of activity in this case are taken into account for 

developing and analyzing environmental control detection 

capabilities. 

The extracted rules in the ontology studied here, which 

identify important sensor features, eliminate unnecessary 

features, and determine and remove dependent features, are 

shown in Algorithm 3. 

If a sensor (? 𝑠)  has multiple observations (? 𝑜)  and a 

feature (? 𝑝) exhibits significant variability that impacts the 

environment 𝑖𝑠𝐻𝑖𝑔ℎ𝑙𝑦𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(? 𝑝, 𝑡𝑟𝑢𝑒), that feature is 

selected as a key feature for subsequent processing 

𝐾𝑒𝑦𝐹𝑒𝑎𝑡𝑢𝑟𝑒(? 𝑝). For instance, if temperature fluctuates 

considerably throughout the day, it is identified as a key 

feature. 

 

 

 

Algorithm 3. Sample of SWRL feature extraction rules  

Input: Sensed Data, Ontology Info 

 

Rull for extraxting Key Features 

Sensor(?s) ^ hasObservation(?s, ?o) ^ hasProperty(?o, ?p) 

^ isHighlyVariable(?p, true) → KeyFeature(?p) 

 

Rull for Removing Feature 

Property(?p) ^ valueVariance(?p, ?v) ^ swrlb:lessThan(?v, 

0.05) → RemoveFeature(?p) 

 

Rull for Removing Correlated Feature 

Property(?p1) ̂  Property(?p2) ̂  correlation(?p1, ? p2, ?cor) 

^ swrlb:greaterThan(?cor, 0.9) → RemoveFeature(?p2) 

Output: Semantic features  

 

If a sensor (? 𝑠) has multiple observations (? 𝑜) and a 

feature (? 𝑝) shows extreme variance that affects the 

environment 𝑖𝑠𝐻𝑖𝑔ℎ𝑙𝑦𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(? 𝑝, 𝑡𝑟𝑢𝑒), then that 

feature is taken as a ket feature 𝐾𝑒𝑦𝐹𝑒𝑎𝑡𝑢𝑟𝑒(? 𝑝), and is 

carried for the next stage. For example, if a temperature 

varies a lot during the day, it is recognized as a a key feature. 

On the other hand, if a feature exhibits minimal variation 

over time 𝑣𝑎𝑙𝑢𝑒𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(? 𝑝, ? 𝑣)and its variance is less 

than 0.05, it can be removed to save space. For instance, if 

the humidity varies less than 5% during the day, it is 

eliminated to lower the dimensionality of data. 

Additionally, if two features (? 𝑝1, ? 𝑝2) exhibit high 

correlation 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(? 𝑝1, ?  𝑝2, ? 𝑐𝑜𝑟) and their 

correlation exceeds 0.9 𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(? 𝑐𝑜𝑟, 0.9), 

one of them can be eliminated 𝑅𝑒𝑚𝑜𝑣𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒(? 𝑝2) to 

prevent redundancy. For instance, if temperature and power 

consumption in the heating system are highly correlated, one 

of them is removed to avoid redundant data. 

Ultimately, the ontology-based approach in the proposed 

method extracts a set of concepts, relationships, rules, and 

semantic inferences through knowledge modeling within a 

specific domain, facilitating the extraction of basic IoT 

device features and their transformation into functional 

attributes to define a feature set based on domain knowledge. 

Also, if two features (? 𝑝1, ? 𝑝2) are highly correlated and 

their correlation value (? 𝑝1, ?  𝑝2, ? 𝑐𝑜𝑟) is more than 0.9 

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(? 𝑐𝑜𝑟, 0.9), one of them can be 

dropped 𝑅𝑒𝑚𝑜𝑣𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒(? 𝑝2) to avoid duplication. For 

example, in case temperature and power consumption in 

heating system have high correlation, one of them is 

removed to not have duplicated data. 

Finally, the ontology-based method of the proposed index 

allows to extraction of several concepts, relations, rules, and 

semantic inferences through knowledge modeling in a 

specific domain, this is useful for extracting simple IoT 

device characteristics and a way of copying them into 

functional characteristics to define a feature set as based 

knowledge in the task domain. 
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The ontology-driven semantic approach, combined with 

the Dragonfly algorithm, identifies significant semantic 

features while eliminating non-essential data. This procedure 

lowers the dimensionality of the attributes, which improves 

the function of learning models and attribute-based 

cryptography in smart homes. 

4) The ensemble machine learning 

The semantic ontology-based feature selection model has 

been evaluated utilizisng an ensemble machine learning 

algorithm that integrates multiple classifiers, such as 

GMDH, KNN, and SVM. 

a) Group Method Data Handling 

Inspired by nature, the Group Method of Data Handling 

(GMDH) is built on the complex structure of the human 

brain and is employed to mathematically model complex 

systems concisely and efficiently [39]. The GMDH is mainly 

associated with the structure implemented in a quadratic 

second-order transfer function (self-organizing feed-forward 

neural network) where regression approaches are used to 

estimate coefficients [40]. 

This algorithm proves to be highly effective due to its 

ability to generate accurate and efficient models for real-

world problems, even when working with limited amounts 

of corrupted data. Moreover, the number of layers and 

neurons in the model is determined automatically, enabling 

the discovery of unbiased and objective models. GMDH 

automatically uncovers relationships between data and 

relevant input variables, and due to its sparse connectivity, it 

allows for rapid training [41]. 

The GMDH classifier is one of the significant base 

classifiers in method of ensemble learning of voting, because 

of its self-organizing structure, which ensures the optimality 

of model complexity and automatic selection of the most 

appropriate basic feature. It provides nonlinear fitting using 

polynomial, resulting in a more accurate prediction. More 

importantly, GMDH is robust to noise and high-dimensional 

datasets and can be adopted for real applications. Thanks to 

its adaptive learning process, it does not face the overfitting 

problem and provides a generalized model. Furthermore, 

GMDH is computationally efficient and can be used as part 

of an ensemble to enhance decision-making and total 

classification performance [41]. 

Root Mean Square Error (𝑅𝑀𝑆𝐸 ) is used as the objective 

function to determine the parameters of the regression for 

the power-law model [42]. The aim is to reduce the 

difference between the predicted outputs and the actual data 

labels. Equation 2 in this study defines the selection-

pressure criterion that will be used to adjust precision. The 

user defines  𝑎, which has to between 0 and 1. The value of 

𝑎 is specified by the user and falls between 0 and 1. Neurons 

with 𝑅𝑀𝑆𝐸 values lower than 𝑒𝑐 (which is computed based 

on the strongest (𝑅𝑀𝑆𝐸𝑚𝑖𝑛) and weakest (𝑅𝑀𝑆𝐸𝑚𝑎𝑥) values 

of the neurons in the same layer) are excluded from further 

consideration. 

𝑒𝑐 = 𝑎 × 𝑅𝑀𝑆𝐸𝑚𝑖𝑛 + (1 − 𝑎) ×  𝑅𝑀𝑆𝐸𝑚𝑎𝑥  (2) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (3) 

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝐺𝑖)

2𝑛
𝑖=1

𝑛
 

(4) 

The parameter effect has been investigated using trial-

and-error techniques in several studies (e.g., [43], [44], [45]). 

Based on their findings, the optimal selection pressure is 

reported to be 70%, which is applied in the present study. 

The maximum number of layers has been suggested in the 

literature to be between 2 and 10 (e.g., [43], [44], [45]). 

Additionally, the number of neurons in prior studies (e.g., 

[43], [44]) has been set between 2 and 20, with a step size of 

2. In the current study, we consider 9 layers and 6 neurons, 

with a selection pressure of 70%. It should be noted that the 

number of neurons may vary across layers. Therefore, the 

highest neuron count across all layers determines the 

maximum number of neurons, and we initiate the process 

with four neurons. 

b) K-Nearest Neighbor 

K-Nearest Neighbor (KNN) is a commonly used 

classification algorithm in which each sample is classified by 

finding the K closest neighbors [19], [46]. The method for 

estimating distance typically depends on the specific goal 

and the nature of the data [8], [48]. We elected to use KNN 

as it is easy to implement, has high efficiency and is resistant 

to noisy training data. In this paper, proximity is measured 

using Euclidean distance, such that it was defined using 

Equation 5, where x represents the training data, x′ refers to 

the test data, and 𝑛 denotes the number of features. 

𝑑(𝑥, 𝑥′) = √∑ (𝑥𝑖 − 𝑥𝑖
′)2   𝑛

𝑖=1                                (5)  

(5) 

The choice of K significantly influences the algorithm, as 

the value of K defines the boundaries that separate the 

classes. We used 10-fold cross-validation on the training 

dataset to find the best K experimentally as part of the model 

building process, ensuring the chosen K generalizes well to 

new data. In this study, the value used is k = 7 neighbors 

because it yielded the best performance for KNN. 

c) Support vector machine 

Support Vector Machine (SVM) is a kernel approach for 

regression and classification that works very well. It is based 

on structural risk minimization in machine learning [21], 

[49]. For the Non-Linear data, Kernel trick is used to move 

the data point from its original feature space to a higher 

dimension space, where we can separate it linearly [50], [52]. 

Specifically, a set of samples is defined as =

{(𝑥𝑖 , 𝑦𝑖)𝑖=1
𝑛|𝑥𝑖 ∈ 𝑅𝑛 , 𝑦𝑖 = {−1 , 1}, 𝑖 = {1 , 2, 3, … , 𝑛}, 

where 𝑥𝑖 denotes the sample data, and 𝑦𝑖 indicates the sample 

class. The hyperplane, which is what separates the sample, is 

what allows the samples to be separated by the largest margin 

and the objective function determines how to obtain this 

separation. The optimization problem is expressed as: 

𝑚𝑖𝑛 {
1

2
‖𝑤‖2 +   𝑐 ∑ 𝜉𝑖𝑖 },                                         (6) 

 𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1 −  𝜉𝑖  𝑐 ≥ 0, 𝑖 = {1, 2, 3, … , 𝑛} 
The parameter 𝑐 is the penalty coefficient. 
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The Kernel, 𝑐, and Gamma are the three crucial variables 

in the objective function [20], [45]. The Kernel specifies the 

hyperplane function type, where a common practice such as 

in this study, is to use the Radial Basis Function (RBF) kernel 

because of its good classification capabilities and 

applicability without prior knowledge of the dataset [47], 

[48], which is defined by the next equation: 

𝐾𝑒𝑏𝑓(𝑋, 𝑋𝑖) = 𝑒𝑥𝑝 (−
|𝑋− 𝑋𝑖|2

Ɣ2 )                                (7)             
(7) 

The parameter 𝑐 serves as a penalty for classification errors 

incurred through creating decision boundaries using kernels 

[21], [50], [51], [52]. The hyper parameter Gamma 

determines the level of non-linearity in the RBF kernel. We 

used the GridSearchCV method to fine-tune these 

parameters, resulting in a value of 𝑐 = 0.1 and Gamma 

ranging between 0.0001 and 10. 

In this research, we selected SVM as it can overcome 

complex issues and provide accurate outcomes even with a 

small amount of data [21]. It has various advantages like it 

is immune to overfitting and uses different Kernel Tricks to 

fit complex relations between features and solve the non-

linearity of data. The model stability and the ability to handle 

high-dimensional data is supported by the principle of 

hyperplane separation [54], [55]. 

d) The voting mechanism 

We describe ensemble learning in this section and an 

approach that integrates multiple base classifiers using a 

majority voting scheme [25], [53]. Ensemble learning is the 

method where voting among different models occurs to get 

the final label of the data. The outcome with the maximum 

votes is the final [50], [51]. For classification, majority 

voting based ensemble learning helps to improve accuracy 

in the training stage by creating simpler models with high 

accuracy and less errors by combining outputs of different 

models [55].  

 
 

Algorithm4. PseudoCode of ensemble Learning  

Inputs:  

𝑫𝒕𝒓: the training dataset 

𝑫𝒕𝒆: the testing dataset 

EnsembleLearning (Dataset 𝑫𝒕𝒓, Dataset 𝑫𝒕𝒆):  

Class= {}; 

𝑀𝐺𝑀𝐷𝐻=CreateGMDHModel(𝑫𝒕𝒓); 

𝑀𝑆𝑉𝑀=CreateSVMModel(𝑫𝒕𝒓); 

𝑀𝐾𝑁𝑁=CreateKNNModel(𝑫𝒕𝒓); 

For i=1 To LEN(𝑫𝒕𝒆) 

    𝑀𝐺[𝑖] = 𝑀𝐺𝑀𝐷𝐻 (𝐷𝑡𝑒[i]); 

    𝑀𝑆[𝑖] = 𝑀𝑆𝑉𝑀 (𝐷𝑡𝑒[i]); 

    𝑀𝑘[𝑖] = 𝑀𝐾𝑁𝑁 (𝐷𝑡𝑒[i]); 

    C=MAX(𝑀𝐺[𝑖],  𝑀𝑆[𝑖] , 𝑀𝐶[𝑖]); 

    Class [i] = C; 

End For 

Output: Best Class  

 

In this paper, we use the three algorithms: GMDH, KNN, 

and SVM. The motive for the mixture of these algorithms 

results from the respective dominant performance of all 

classifiers in the model generation. The architecture of the 

proposed ensemble learning model is illustrated in Fig. 7. 

The semantic feature set collected in the first stage is 

ingested as input, and training and evaluation datasets are 

generated to evaluate the model performance. Each base 

classifier fits its model on the training data independently. 

Then, each classifier is applied to predict the new labels for 

the data on the evaluation dataset. The outputs from all 

classifiers are combined using a majority-voting scheme, so 

the class with the highest number of votes is selected as the 

final prediction. 

The proposed auto-trainable model operates 

independently, employing the semantic feature selection 

mechanisms available to the attribute authority. 

Consequently, the lengthy work for training and building 

relevant datasets, model generation, and model structure 

refinement are performed independently as part of the 

computing procedure, while the processing occurs in a high-

power computing center. In this center, the class labels of the 

validation set are also predicted. Algorithm 4 shows the 

pseudo- code for the system that we proposed.  

In this setup, 𝐷𝑡𝑟 denotes the training data, 𝐷𝑡𝑒 represents 

the test data, 𝑀𝐺𝑀𝐷𝐻 corresponds to the GMDH classifier 

model, 𝑀𝑆𝑉𝑀 stands for the SVM classifier model, and 𝑀𝑘𝑛𝑛 

is the KNN the classifier model. The algorithm assigns the 

𝑀𝐺  class using the GMDH model, the 𝑀𝑆 class using 

 
Fig. 6. The procedure of integrating AES with CP-ABE. 
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Fig. 7. The proposed ensemble learning machine. 

 

the SVM algorithm, and the 𝑀𝐾  class using the KNN 

algorithm. Finally, C represents the final predicted class, 

which is determined through majority voting. 

5) The cryptosystem 

This scheme makes use of symmetric and asymmetric 

encryption techniques [9]. The CP-ABE is employed for 

asymmetric encryption according to bilinear pairing 

operations over a BN elliptic curve with 128-bit security 

level. This technique is proven secure under the Decisional 

q-parallel BDHE assumption and supports LSSS access 

polices. Symmetric encryption is implemented using the 

AES algorithm and a 256-bit key, where plaintext is 

transformed into ciphertext. The following section provides 

details on how this works. 

a) Ciphertext policy attribute-based encryption  

This approach employs an outsourced CP-ABE scheme 

based on [9], which integrates proxy re-encryption to handle 

attribute revocation in the cloud data center. In this context, 

the attribute selection method based on the ensemble 

machine learning is used to reduce the number of attributes 

in different stages of the CP-ABE that impacts the 

efficiency and security of the CP-ABE.  The attribute 

authority (AA) also gets the public key (PK) and master 

secret key (MSK), along with the attribute list of the IoT 

devices, to generate the users' secret key (𝑆𝐾𝑢). Attributes 

are an important part of the procedure itself (i.e., key 

generation and policy access definition) involved during the 

CP-ABE method, therefore optimization of semantic 

attributes improves the overall cryptographic structure of the 

proposed scheme. 

As illustrated in Fig. 2, the encryption is performed in two 

stages and most of the encryption is offloaded to the fog. 

Initially, based on efficient AES encryption, the IoT device 

(DO) chooses a symmetric key (K) and an access policy. 

Once the data are sensed, the device encrypts this data using 

AES algorithm and symmetric key encrypted with partial 

                                                                 
1 Delegation Key 

ABE operation (DO.PartialEncryption) according to the 

access policy defined above. It sends this encrypted key and 

data towards the fog node (FN). The FN performs the key 

encryption in accordance with ABE (FN.PartialEncryption), 

encrypts the symmetric key based on the access policy, 

before uploading the information to the cloud service 

provider (CSP) along with the symmetrically encrypted 

information. 

The access policy is given by the IoT device with respect 

to the optimized semantic attributes obtained by the 

ontology-based semantic module implemented in the 

attribute authority. The proposed semantic approach 

lightweightens and simplifies the access policy by select 

and reduces features. Since CP-ABE hides the access policy 

in the ciphertext, simplifying the policy reduces the size of 

the ciphertext and decreases the number and the complexity 

of encryption operations. 

Decryption, similar to encryption, proceeds in two steps, 

with most of the decryption work offloaded to the fog. Here, 

the fog downloads the symmetrically encrypted ciphertext 

data and the ABE ciphertext (encrypted key K) stored in the 

CSP for the first. Then, the attribute-based decryption 

method is carried out (FN.Decryption) with a partial secret 

key. This gives us a collection of partially decrypted 

ciphertext and symmetrically encrypted data. The symmetric 

key is sent to the data user (DU), if the user's attributes 

comply with the defined access policy. The DU finishes 

decrypting by running the rest of the decryption process 

(DO.PartialDecryption), which it uses to retrieve the actual 

symmetric key and decrypt the data. 

When attributes are revoked, the cloud service re-encrypts 

the data with new access structure by proxy re-encryption 

and the delegation key (𝐾𝑑
1), ensuring data security during 

the process of attribute revocation. This re-encryption 

method, which is a specialized variant of proxy re-

encryption, relates to the fact that we decrypt relevant parts 

of the ciphertext and insert the corresponding new values 

under the data owner's identity. This sophisticated method 

enables users to delegate proxy access, enabling ciphertexts 

to be converted from one access structure to another [9], 

[56]. As this process is time-consuming and requires 

extensive computational power, the proposed policy 

considers a semantic features selection approach; thus, the 

access policy becomes less complex, readable, and less 

often updated. In addition, this scheme reduces the 

computational overhead of data owners and users and 

improves the security, accuracy, and efficiency of the model, 

which leads to lower encryption/decryption time, lower 

latency, and better service quality. The proposed CP-ABE 

scheme includes the SETUP, KGEN, ENC, REENC, and 

DEC algorithms. 

Setup : In the beginning, the Setup function initializes the 

system by executing 𝑆𝑒𝑡𝑢𝑝( 𝜆 ) →  (𝑃𝑃, 𝑀𝑆𝐾, 𝑆𝐾𝑑), 
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generating the public parameters PP, the master secret key 

MSK, and the delegation key 𝑆𝐾𝑑. Following this, the 

Attribute Authority (AA) defines the semantic attribute space 

based on the security parameter λ, along with the set of 

possible attributes S derived from the semantic attribute set. 

The 𝐵𝐺𝐺𝑒𝑛( 𝜆 ) function then constructs a bilinear group 𝐺 

with a prime order p and generator g. Subsequently, random 

values 𝑎, 𝛼0, 𝛼1

𝑅
← ℤ𝑝 are selected, and the public parameter 

PP is determined as 𝑃𝑃 =  (𝑔,  𝑔𝑎 , �̂�(𝑔, 𝑔)𝛼0+ 𝛼1), where 

�̂� = �̂�(𝑔, 𝑔) represents the bilinear pairing. The master 

secret key MSK is defined as 𝑀𝑆𝐾 =  (𝛼0, 𝛼1,  𝑔𝛼0+ 𝛼1), 

where 𝑎 = 𝛼0 +  𝛼1, and the delegation key 𝑆𝐾𝑑 is given by 

S𝐾𝑑 =  𝑔𝛼1. Finally, the 𝑆𝐾𝑑  is sent to the Cloud Service 

Provider. The setup procedure is detailed in Algorithm 5. 

KeyGen : When users receive an attribute set S from the 

semantic attributes list, the Attribute Authority arbitrarily 

chooses a value𝑐
𝑅
← ℤ𝑝. It then runs the 

𝐾𝑒𝑦𝐺𝑒𝑛( 𝑃𝑃, 𝑀𝑆𝐾, 𝑆 ) →  𝑆𝐾 function to generate the 

secret key SK. The secret key is returned as 𝑆𝐾𝑢 =

 (𝑆, 𝐾, 𝐿, �̅�, {𝑘𝑥}𝑥∈𝑠 
), where 𝐾 =  𝑔𝛼0 . ( 𝑔𝑎)𝑐 =  𝑔𝛼0+ 𝛼1, 

𝐿 =  𝑔𝑐 , �̅� = ( 𝑔𝑎)𝑐 =  𝑔𝑎𝑐  and 𝑘𝑥 = ℎ(𝑥)𝑐 with ℎ ∈

{0,1}∗ → 𝐺. Finally, 𝑆𝐾𝑢 is sent to the users, either DO or 

DU. The process of KeyGen is outlined in Algorithm 6. 

 

Algorithm 5. PseudoCode of Setup 

Inputs: 𝜆 

Algorithm: Set semantic attribute space 

𝐵𝐺𝐺𝑒𝑛( 𝜆 ) →  (𝑝, 𝑔, 𝐺, 𝐺𝑇 , �̂�) 

Pick random elements 𝑎, α0, α1 uniformly from ℤ𝑝  

Compute  𝑃𝑃 =  (𝑔,  𝑔𝑎, �̂�(𝑔, 𝑔)𝛼0+ 𝛼1) where �̂� =

�̂�(𝑔, 𝑔)  

Compute 𝑀𝑆𝐾 =  (α0, α1,  gα0+ α1) where 𝑎 = 𝛼0 +  𝛼1  

𝑆𝐾𝑑 =  𝑔𝛼1 

Send 𝑆𝐾𝑑 to the CSP  

Output: 𝑃𝑃, 𝑀𝑆𝐾, 𝑆𝐾𝑑 
 

 
 

Algorithm 6. PseudoCode of KeyGen 

Inputs: 𝑃𝑃, 𝑀𝑆𝐾, 𝑆 

Algorithm: Get a semantic attribute list of users (DO or 

DU) 

Pick random element c uniformly from ℤ𝑝  

Compute  𝐾 =  𝑔𝛼0 . ( 𝑔𝑎)𝑐 , 𝐿 =  𝑔𝑐 , �̅� = ( 𝑔𝑎)𝑐 , 

𝑘𝑥 = ℎ(𝑥)𝑐, ℎ ∈ {0,1}∗ → 𝐺 

Compute 𝑆𝐾𝑢 =  (𝑆, 𝐾, 𝐿, �̅� , {𝑘𝑥}𝑥∈𝑠 
) 

Send 𝑆𝐾𝑢 to the users 

Output: SK 

Encrypt: The encryption process in this scheme utilizes 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡( 𝑃𝑃, (𝐴, 𝑝), �̂� ) →  𝐶𝑇0  method and  relies on the 

use of two procedures, DO.Encrypt and FN.Encrypt, which 

are utilized by the DO and FN components, respectively. 

Here, PP refers to the public parameter, and (A,p) represents 

the access policy, where A is a matrix of dimensions 𝑙 ∗ 𝑛 

and 𝑝: [𝑙] →  𝑈 ⊂ ℤ𝑝. This setup is used to encrypt the 

message �̂� and the data received from the Smart Objects Data 

(SOD). The Encrypt process, along with its two sub-

modules, is outlined in Algorithm 7. 

FN.Encrypt : Upon receiving PP and TCT as inputs, the 

final ciphertext 𝐶𝑇0 is generated by executing the 

𝐹𝑁. 𝐸𝑛𝑐𝑟𝑦𝑝𝑡( 𝑃𝑃, 𝑇𝐶𝑇 ) →  𝐶𝑇0 method, as outlined in 

Algorithm 8.  

 

 

Algorithm 7. PseudoCode of Encrypt 

Inputs: 𝑃𝑃, (𝐴, 𝑝), �̂� 

Algorithm: Generate symmetric key k̂ from AES algorithm 

Encrypt sensed data {𝑆𝑂𝐷}𝑘 under symmetric key �̂� 

Compute ciphertext 𝐶𝑇0 from symmetric key k̂ with access 

control (𝐴, 𝑝) 

Send 𝐶𝑇0, {𝑆𝑂𝐷}𝑘 to CSP 

Output: 𝐶𝑇0 

 
 

Algorithm 8.  PseudoCode of FN.Encrypt 

Inputs: 𝑃𝑃, 𝑇𝐶𝑇 

Algorithm: Choose vector �⃗� =  (𝑠0, 𝑣2, … ,  𝑣𝑛)  ∈ ℤ𝑝
𝑛 

Calculate 𝑙 shares 𝜆𝑖 =  𝐴𝑖 .  v𝑡⃗⃗ ⃗⃗ ⃗, i ∈ l.  

Calc 𝐶2 = 𝐶1 . 𝑔𝑠0 , 𝐶𝑖,1 = ( 𝑔𝑎)𝜆𝑖  𝐻(𝑝(𝑖))𝑡𝑖 , 𝐶𝑖,2 =  𝑔𝑡𝑖 , 𝑖 ∈ [𝑙]  

Compute 𝐶𝑇0 =  ((𝐴, 𝑝), �̂� , 𝐶1, 𝐶2, { 𝐶𝑖,1, 𝐶𝑖,2}) , 𝑖 ∈ [𝑙] 

Send 𝐶𝑇0, {𝑆𝑂𝐷}�̂� to CSP  

Output: 𝐶𝑇0 

The fog node randomly picks a horizontal vector 𝑣 ∈ ℤ𝑝
𝑛 

and determines the shares 𝜆𝑖 =  𝐴𝑖 .  𝑣𝑡⃗⃗⃗⃗⃗⃗  for 𝑖 ∈ 𝑙, 

where 𝑙
𝑅
← ℤ𝑝. Subsequently, it computes the  

components of the ciphertext 𝐶2 = 𝐶1 . 𝑔𝑠0 =

 𝑔𝑠0+𝑠 , 𝐶𝑖,1 = ( 𝑔𝑎)𝜆𝑖  𝐻(𝑝(𝑖))𝑡𝑖 =  𝑔𝑎𝜆, 𝐻(𝑝(𝑖))𝑡𝑖 , 𝐶𝑖,2 =

 𝑔𝑡𝑖 , 𝑖 ∈ {1, 2, 3, … , 𝑙}. These represent sections of the source 

ciphertext. Finally, the fog node sends 𝐶𝑇0 and {𝑆𝑂𝐷}k̂ to 

the  cloud provider. 

 DO.Encrypt :As illustrated in Algorithm 9, using the 

public parameter PP and the symmetric key �̂�, a intermediate 

ciphertext 𝑇𝐶𝑇 is generated by executing 

𝐷𝑂. 𝐸𝑛𝑐𝑟𝑦𝑝𝑡( 𝑃𝑃, k̂ ) →  𝑇𝐶𝑇. The TCT is defined as 

𝑇𝐶𝑇 =  ((𝐴, 𝑝), �̂�, 𝐶1), where �̂� = �̂�. ( 𝑦𝑎)𝑠 = �̂� . 𝑦𝑎𝑠 and 

𝐶1 = �̂� . 𝑔𝑠0〗. Additionally, DO decrypts data obtained 

from smart objects using an efficient AES method. 

Subsequently, the TCT along with the encrypted data 

{𝑆𝑂𝐷}𝑘 are sent to the fog nodes (FN). 

ReEncrypt : When the cloud service provider (CSP) 

receives a delegation key 𝑆𝐾𝑑 =  𝑔𝛼1  where 𝛼1

𝑅
← ℤ𝑝, a 

ciphertext 𝐶𝑇0, and an attribute y scheduled for revocation, 

it performs the re-encryption process by executing the 

method 𝑅𝑒𝐸𝑛𝑐𝑟𝑦𝑝𝑡( 𝑃𝑃, 𝐶𝑇0, 𝑦, 𝑆𝐾𝑑) →  𝐶𝑇1, as described 

in Algorithm 10. The first step is to verify whether the 

attribute set in 𝑆𝐾𝑑 matches the access structure defined in 
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𝐶𝑇0. If this condition holds, a re-encrypted ciphertext 𝐶𝑇1 is 

generated; otherwise, the output is "reject". Then, the CSP 

checks whether attribute y should be revoked from 𝐶𝑇1. If 

revocation is necessary, the CSP re-encrypts 𝐶𝑇0 to generate 

a new ciphertext 𝐶𝑇1 such that only users possessing 

attribute y are authorized to decrypt 𝐶𝑇1. 

 

 

Algorithm 9.  PseudoCode of DO.Encrypt 

Inputs: 𝑃𝑃, �̂� 

Algorithm: Generate symmetric key �̂�  

from AES  

Choose a random element, s at ℤ𝑝  

Compute �̂� = �̂�. ( 𝑦𝑎)𝑠, 𝐶1 = �̂�. 𝑔𝑠0 

Compute 𝑇𝐶𝑇 =  ((𝐴, 𝑝), �̂�, 𝐶1) 

Encrypt sensed data {𝑆𝑂𝐷}�̂� under  

symmetric key �̂� 

Send 𝑇𝐶𝑇, {𝑆𝑂𝐷}�̂� to the FN 

Output: 𝑇𝐶𝑇 

 
 

Algorithm 10. PseudoCode of ReEncrypt 

Inputs: 𝑃𝑃, 𝐶𝑇0, 𝑦, 𝑆𝐾𝑑 

Algorithm: Control SKd if its attributes satisfy (𝐴, 𝑝); 

otherwise, reject 

Pick a random element v uniformly at ℤ𝑝.  v
𝑅
← ℤ𝑝 and 

compute v =bn256.RandomGT(rand.Reader)  

Compute 𝐷1 = 𝐶1
1/𝑣

= 𝑔𝑠/𝑣, 𝐷2 =  (𝑆𝐾𝑑)𝑣 = 𝑔𝑎1𝑣 Where 

𝛼1

𝑅
← ℤ𝑝 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑛𝑑  𝐷2 is the ciphertext of 

the delegated key 𝑆𝐾𝑑.  

If y is a revoked attribute, pick a random key 𝛿𝑦 ∈ ℤ𝑝, 

compute 𝐶𝑖,1 =  𝐶𝑖,1. 𝐻(𝑝(𝑖))𝑢 , 𝐶�̅�,2 =  𝐶𝑖,2. 𝑔𝑢 =

(𝑔𝑡𝑖+𝑢)1/𝛿𝑦 , 𝑖 ∈ [𝑙] 

Else pick a random integer 𝑢 ∈ ℤ𝑝, compute 𝐶�̅�,1, 𝐶�̅�,2 =

𝐶𝑖,2. 𝑔𝑢 =  𝑔𝑡𝑖+𝑢, 𝑖 ∈ [𝑙] 

Compute 𝐶𝑇1 =  ((𝐴, 𝑝), �̂� , 𝐶1, 𝐶2, 𝐷1, 𝐷2, {𝐶𝑖,1, 𝐶𝑖,2})  

Output: 𝐶𝑇1 

 

Decrypt : The scheme executes 𝐷𝑒𝑐𝑟𝑦𝑝𝑡( 𝐶𝑇1, 𝑆𝐾𝑢 ) →

 �̂� and utilizes two decryption processes, DU.Decrypt and 

FN.Decrypt, which are carried out by FN and DU, 

respectively, both of which have the necessary permissions 

for decryption. When provided with the secret key 𝑆𝐾𝑢 and 

the ciphertext 𝐶𝑇1 as inputs, these processes follow the steps 

outlined below to generate the symmetric decryption key �̂�. 

Fn.Decrypt : In the scheme, the fog node (FN) executes 

the method 𝐹𝑁. 𝐷𝑒𝑐𝑟𝑦𝑝𝑡( 𝐶𝑇1,  𝑆𝐾′) →  �̂� by utilizing a 

portion of the secret key 𝑆𝐾′ =  (𝑆, 𝐿, �̅�, {𝑘𝑥} 𝑥∈𝑠 
). This step 

performs a portion of the decryption algorithm. The 

algorithm identifies the set of indices 𝐼 = {𝑖 ∈ [𝑙]| 𝑝(𝑖) ∈ 𝑆} 

and computes the values 𝑤𝑖  𝐴𝑖 , 𝑖 ∈ 𝐼  for ∑ 𝑤𝑖𝑖∈𝐼 𝐴𝑖 =

(1, 0, … ,0)), where Ai is the i-th row of matrix A. Then, the 

intermediate ciphertext �̂� ∈ 𝐺T is computed, and FN 

transmits �̂� and C1 to DU. The steps of FN.Decrypt are 

shown in Algorithm11. 

DU.Decrypt : Using the method 

𝐷𝑈. 𝐷𝑒𝑐𝑟𝑦𝑝𝑡( �̂�, 𝐶1, 𝐾) →  �̂�, the values�̂�, 𝐶1, and 𝐾 ∈ 𝐺 

are received, and the plaintext is obtained through another 

part of the decryption process. The steps of DU.Decrypt are 

presented in Algorithm 12. The procedure of integrating AES 

with CP-ABE is illustrated in Fig. 6. 

b) Advanced Encryption Standard  

Advanced Encryption Standard (AES) is a symmetric 

block cipher commonly used for encrypting and decrypting 

data. Its simplicity, high efficiency, and low memory 

requirements, make it one of the most widely used 

encryption algorithms [2]. AES uses the same key for data 

encryption and decryption processes. The algorithm is 

known for its security, as its keys are relatively unfeasible 

for attackers to guess. Each round of AES occurs in parallel 

processing, whereas substitution and permutation are the 

two techniques used for the AES encryption. A round refers 

to the repeated cycles during the encryption and decryption 

procedures. AES is one of the most secure methods of 

encrypting systems. The presented framework includes IoT 

that act as data owners, the data is encrypted by AES with a 

256-bit shared key, 14 rounds encrypts and decrypts the data 

[2], [5]. 

 
 

Algorithm 11 PseudoCode of FN.Decrypt 

Inputs: 𝐶𝑇1,  𝑆𝐾′ 

Algorithm: If the attribute set in  𝑆𝐾′ does not satisfy 

the condition (𝐴, 𝑝) in 𝐶𝑇1, the process will be rejected. 

Otherwise, the set 𝐼 = {𝑖 ∈ [𝑙]| 𝑝(𝑖) ∈ 𝑆} is identified, and 

∑ 𝑤𝑖𝑖∈𝐼 𝐴𝑖 = (1, 0, … ,0)) is performed. 

Next, the value �̂� is calculated as: 

Calculate �̂� =  
𝐶.̂∏𝑖∈𝐼  �̂�( 𝐶𝑖,2, 𝐾(𝑝(𝑖) )

𝑤𝑖 .�̂�( 𝐶2̅,�̅�)

𝑒 ̂(∏𝑖∈𝐼  ( 𝐶𝑖,1
𝑤𝑖,𝐿) .�̂�( 𝐷1,𝐷2) 

 

Send �̂� and C1 are sent to DU for further processing. 

Output: �̂� 

 
 

Algorithm 12. PseudoCode of DU. Decrypt 

Inputs:  �̂�, 𝐶1, 𝐾 

Algorithm: Calculate �̂� =  
�̂�

�̂�(𝐾,𝐶1) 
 

�̂� is determined, the ciphertext is decrypted using this 

symmetric key. 

Output: �̂� 

VI. Results and discussion 

This section begins by describing the simulation 

environment and the configuration of the proposed system, 

followed by an analysis of the evaluation metrics and 

criteria. 

A. Experimental configurations 

The evaluation was conducted on an Intel Core i7 

machine with 16 GB RAM. The semantic feature selection 

method that was proposed was implemented and executed 
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in MATLAB version 2018 running on Windows 10 OS. The 

ontology model was constructed with Protégé version 5.5 

and based on the OWL2 data modeling language. The 

Semantic Web Rule Language (SWRL) was also utilized for 

rule-based logic. For the development and performance 

analysis of the cryptographic scheme, the Charm library 

version 0.43 was used on a VM having Ubuntu 18.04. Charm 

is an extensible framework for the rapid prototyping of 

cryptographic systems, with its implementation being in 

Python. To streamline development time and reduce code 

complexity, Python 3.4 and its components were employed. 

Table VIII outlines the configuration required for simulating 

the system, under which the presented model was deployed 

and its results examined. 

B. Datasets 

The evaluations were conducted utilizing five publicly 

available smart building datasets to validate the effectiveness 

of the presented approach. The datasets used include: 

 

TABLE VIII. The configuration of simulating system. 

Desc Configuration 

Win 10 / Virtual machine using Ubuntu 

18.04 

Operating 

system  

16 Gigabytes  RAM  

Intel Core i7 processor Processor 

Protégé 5.5 with OWL2 & SWRL / Matlab 

2018 / Version 0.43 of the Charm library, 

utilizing Python 3.4 

Programming 

tools 

- HomeC dataset: This dataset features weather 

information specifically for a smart home, providing insights 

into how external weather conditions may impact energy 

consumption and building performance [57]. 

- SBS dataset: Comprising five distinct types of time-

series data collected from various sensors, this dataset was 

gathered over a week at the University of California, 

Berkeley, allowing for a comprehensive analysis of sensor 

data in a smart building context [58]. 

- OSH dataset: This dataset focuses on modular building 

design and modeling, particularly in intelligent homes, 

offering a resource for evaluating design choices and their 

implications on energy efficiency [59]. 

- CU-BEMS dataset: Featuring electrical measurements 

and environmental data from a commercial building in 

Thailand, this dataset is useful for understanding energy 

usage patterns and environmental conditions in a real-world 

setting [60]. 

- IEQ dataset: This dataset provides data on both static 

and dynamic power consumption in smart homes, including 

measurements from sensors and actuators, which can help 

assess indoor environmental quality and energy efficiency 

[61]. 

C. Proof of Security 

As stated in [9], if the BDHE problem is assumed to be 

difficult, our cryptographic system can be proven to be 

securely protected under the proposed security model, as 

stated in the subsequent theorem: 

Theorem: If the decisional q-parallel BDHE assumption 

holds, then no polynomial-time adversary can selectively 

break our system with a challenging matrix of order 𝑚 ∗ 𝑛, 

𝑚, 𝑛 <= 𝑞. 

Consider a polynomial-time adversary 𝒜  who is capable 

of breaking our system with a non-negligible advantage 

𝐴dvA
𝑞(λ) in the selective security game. This adversary could 

be utilized to build a simulator that breaks the assumption 

with non-negligible probability. This leads to a contradiction 

regarding the validity of the decisional q-parallel BDHE 

assumption, thus completing the proof. 

Initialization: Initially, the challenger 𝐶 runs the 

𝐵𝐺𝐺𝑒𝑛( 𝜆 ) →  (𝑝, 𝑔, 𝐺, 𝐺𝑇, �̂�) algorithm to construct a 

bilinear group based on the security parameter 𝜆. The 

adversary 𝛢 then sends the challenge access policy (𝐴, 𝑝) 

along with the matrix 𝐴∗ of order 𝑚 ∗ 𝑛, where 𝑚, 𝑛 <= 𝑞, 

and a list of revoked attributes 𝑅𝑦, which contains all the 

revoked user attributes, to the challenger 𝐶. 

Setup: The challenger 𝐶 executes the Setup process to 

establish the public parameters PP, the delegation secret key 

𝑆𝐾𝑑, and the master key MK. 𝐶 then sends the public 

parameters PP and 𝑆𝐾𝑑 to adversary 𝛢 and the cloud service 

provider (CSP).  

Phase 1: The adversary 𝛢 makes several queries for the 

retrieval of private keys based on each identifier and attribute 

set (𝐼𝐷𝑖, 𝑆𝑖),where 1 ≤ i ≤ 𝑞, ensuring that the attribute sets 

are not part of the access policy. The challenger 𝐶 generates 

the private key 𝑆𝐾𝑢𝑖 and sends it to the adversary 𝛢. None of 

the attribute sets S𝑖 in the queries match the access structure. 

Challenge: The adversary 𝛢 sends a message 𝑀 ∈

{0,1} to the challenger 𝐶. The challenger 𝐶 randomly selects 

b ∈ {0,1}  and performs the operations 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡( 𝑃𝑃, 𝐴∗, M�̂�  ) →  𝐶𝑇0
(𝑏)

 and 

𝑅𝑒𝐸𝑛𝑐𝑟𝑦𝑝𝑡( 𝑃𝑃, 𝐶𝑇0
(𝑏)

, 𝑦∗, SKd) →  𝐶𝑇1
(𝑏)

. C then sends the 

final ciphertext 𝐶𝑇1
(𝑏)

 to adversary 𝛢. 

Phase 2: The adversary 𝛢 submits more queries for the 

retrieval of private keys, and the responses are the same as  

in Phase 1, meaning none of the attribute sets S𝑖 are 

allowed in 𝐴∗. 

Guess: The adversary 𝛢 makes a guess 𝑏′ for b. If 𝑏′= b, 

the adversary wins the game, and the challenger 𝐶 returns 0 

to estimate the value 𝑇 =  �̂�(𝑔, 𝑔)𝑠𝑎𝑞+1
. Thus, the simulation 

is perfect, and we have 𝑃𝑟[𝛢( �⃗�, �̂�(𝑔, 𝑔)𝑠𝑎𝑞+1
   ) = 0 ] =

 𝐴dvA
𝑞(λ) +  ½.  Otherwise, 𝑇 is treated as a random element 

of group. In this case, with a random group 𝑅, we have 

𝑃𝑟 [𝛢 (�⃗�, 𝑅
𝑅
← 𝐺𝑇) = 0] =  ½, indicating that 𝑏 is 

independent of the adversary's perspective. Consequently, 
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the adversary is able to break the decisional q-parallel BDHE 

assumption with a non-negligible advantage, which 

contradicts the assumption. 

𝐴dvA
𝑞(λ) = 𝑃𝑟[𝛢( �⃗�, �̂�(𝑔, 𝑔)𝑠𝑎𝑞+1

   ) = 0 ] 

−   Pr [𝛢 (�⃗�, 𝑅
𝑅
← 𝐺𝑇) = 0]. 

D. Performance evaluation 

We provide the outcomes of our experiments and conduct 

a comparative analysis with alternative methods. The 

proposed model, which incorporates semantic feature 

selection based on ontology along with ensemble 

classification, was tested on different datasets and evaluated 

using various metrics, including accuracy, precision, 

specificity, recall, error rate, and F1-score. These 

evaluations, based on the formulas provided in Table IX, 

were performed for multi-class classification on the HomeC, 

OSH, SBS, IEQ, and CU-BEMS data collections to assess 

the model's performance in addressing the problem. 

Table IX details the evaluation formulas for each metric 

used in this study, providing a clear framework for 

understanding the effectiveness of our model. In this context, 

there are 𝑐 classes, and we observe TP𝑖(True Positive) as the 

count of actual positives for class i, FP𝑖  (False Positive) as 

the count of incorrect positives for class i, TN𝑖  (True 

Negative) as the count of actual negatives for class i, and FN𝑖 

(False Negative) as the count of incorrect negatives for class 

i. These values are extracted using the confusion matrix, 

which summarizes the classification predictions made on the 

test datasets [62]. 

The classification performance evaluation metrics, 

computed by the proposed model and other algorithms like 

LSTM2, RDNN3, GBT4, KNN, SVM, and RF5, are presented 

for the multi-class classification of the HomeC dataset in 

Table X, based on the relations outlined in Table IX. Table 

XI presents a comparison of the proposed model’s 

performance with other classification methods on the SBS 

dataset, while Table XII shows the results of the proposed 

model's evaluation against alternative approaches applied to 

the OSH data collection. Lastly, Tables XIII and XIV present 

the performance comparison of the presented model with 

other models on the CU-BEMS and IEQ datasets, 

respectively, using metrics such as accuracy, error rate, 

precision, specificity, recall, and F1-Score for multi-class 

data. 

A review of Tables X to XIV shows that the proposed 

classification model outperforms others in terms of accuracy 

across five datasets. This superiority is derived from the 

implementation of a semantic-based ontology approach, 

optimized feature selection, and ensemble learning. Moreover, 

in all of the smart building datasets, the proposed model 

outperforms with better precision and recall and specificity 

values. The enhanced performance is attributed to the ontology-

                                                                 
2 Long Short-Term Memory 

3 Recurrent Deep Neural Network  

based semantic modeling and the refined feature selection. 

Furthermore, the F1-Score metrics for the suggested model in 

this work show consistently high values in all the data 

collections, indicating its superior overall performance. The 

proposed model structure is simple and clear, so the error rate 

in feature selection is small, and a more accurate and effective 

model can be obtained. In addition, some existing models like 

LSTM and RDNN with large parameters are sensitive to the 

training data or noisy data and can easily cause overfitting when 

the data is insufficient. Also, their accuracy decreases on limited 

training data or non-optimized parameters, while the proposed 

voting-based ensemble model built by SVM, KNN, and GMDH 

can avoid this situation. Models such as SVM, KNN, or 

GMDH could be less prone to overfitting in low-volume or 

noisy data due to their structural and operational simplicity. 

They can help avoid unreasonable complexity with the right 

settings. It also prevents overfitting by combining the 

predictions of the ensemble model, including SVM, KNN, 

and GMDH. This estimation diversity gives errors from one 

model a chance to be corrected elsewhere, making them less 

sensitive to noisy or outlier datasets. Also, these three 

models are combined to reduce noise, improving the 

model's overall accuracy. Furthermore, our semantic 

ontology-based feature selection aims to avoid overfitting by 

removing irrelevant, noisy, and redundant features, 

increasing model performance and complexity, and 

improving the model to stratify more generalized. The 

proposed model lessens error rates, enhances F-score, and 

maintains a balance between sensitivity and specificity, 

which is crucial in the case of imbalanced datasets. As well 

as, the training process of some existing models like LSTM 

and RDNN involving Backpropagation Through Time 

(BPTT) requires high memory and computational time but 

our work executes lighter and faster models, leading to less 

execution time and lower error rates.  

This study integrates the key semantic features extracted 

from IoT devices in intelligent building systems with the 

cryptographic process Furthermore, the cryptographic 

computation time of the proposed model is compared with 

the approach introduced in [9] over the five datasets  used 

on smart building, namely, OSH, IEQ, SBS, HomeC, and 

CU-BEMS. 

TABLE IX.  Mathematical formulations for evaluation and 

definitions of multi-class metrics 

 

The approach presented in [9] relies on basic, non-

performance-based features and has a slow inflation of 

attributes set that may restrict compatibility with resource-

limited devices and fog environments. This increases the size 

of ciphertext, length of secret key, and time of cryptographic 

processing that adversely affect security and user privacy. 

This paper proposes a refined version of the CP-ABE 

4 Gradient-Boosted Trees  
5 Random Forest 
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scheme in [9] by using a semantic ontology and ensemble 

learning model that focus on attribute reduction and 

performance optimization, thus, reducing security concerns. 

Fig. 8 illustrates the encryption computation time for the 

proposed method and the method from [9] on the five data 

collections. Fig. 9 shows the decryption time results for both 

methods. The proposed approach outperforms the 

comparison method in terms of minimizing the calculation 

time of encryption and decryption, saving computation time 

for data owners, users, and fog nodes. The mean reduction in 

encryption and decryption times is 2.99 ms and 2.86 ms, 

respectively, compared to the method in [9]. The average 

decrement in encryption and decryption times is 2.99 ms and 

2.86 ms, respectively, over the method mentioned in [9]. 

The key reasons are the adoption of optimal features selected 

by the Dragonfly optimization algorithm and the semantic 

approach, which eliminates irrelevant features and focuses 

on the most important and related ones. 

The attribute revocation time is another important 

assessment metric for the proposed model, which consists of 

during the exclusion of attributes, update of the key and 

access structure, and the re-encryption of data. As shown in 

Table XV, the proposed model shows a clear advantage over 

the method in [9], with an average revocation time 

improvement of 18.6 ms. The revocation time is relied upon 

reconstructing access policies, re-encrypting data, and 

regenerating secret keys and therefore, makes the proposed 

scheme superior and quicker in comparison with the method 

in [9] due to the use of meaningful and influential features. 

Finally, Table XVI compares the storage requirements for 

generating the private key and defining the access structure 

on the smart building data collections (HomeC, OSH, SBS, 

IEQ, and CU-BEMS) between the proposed method and the 

scheme in [9]. According to Table  XVI, average memory 

consumption of constructing private key is reduced by 13.56 

KB, and space overhead of access structure is optimized by 

10.4 KB. This reduction in storage is attributed to the 

semantic ontology-based model and the Dragonfly 

optimization algorithm which minimize the number of 

attributes included in the access policy and the process of 

private key generation. As a result the data structure becomes 

very small as there is no need to save unnecessary 

information. 

The key and access structure's smaller size leads not just 

to efficient use of system resources but also increased 

complexity of data processing. Furthermore, since the 

access structure is included in the cipher text, the 

improvement of access policies and their simplification is 

essential to increase the overall performance of attribute-

based cryptographic schemes. Finally, the use of ontological 

approaches offers more flexibility and compatibility for 

changes to data and policies, contributing also to the 

scalability of the system in terms of the volume of data and 

new complexities, while preserving high levels of security 

and performance. 

Our ontology-based model proposed in this paper aims to 

tackle one of the biggest challenges in smart environments 

with diverse IoT devices, namely scalability and 

heterogeneous IoT data management. Combining both 

semantic reasoning and ensemble-based learning, this 

framework builds a systematic model for deriving essential 

characteristics from heterogeneous data sources to produce 

Key and control access to the same through abstracting the 

semantic links between data, devices, and humans. Also, 

feature selection is important in improving cryptographic 

operations by removing irrelevant or noisy attributes, and in 

turn lessens computation complexity and improves system 

performance when dealing with large amounts of data. 

Moreover, ontology integration and feature selection 

algorithms further validate the flexibility of access structures 

that facilitate adaptive security policy deployment in 

changing settings. Such adaptability is crucial for big data 

management and dynamic access control in the IoT 

ecosystem due to the variety of devices, the continuous 

changes of data conditions, and the increasing number of 

users, which require scalable and flexible cryptographic 

Evaluation focus Specs     Metrics 

The average of the correctly classified instances relative to the total instances for each class. It 

is important to note that a model performs optimally when it achieves a higher accuracy rate. 
∑

𝑇𝑃𝑖+𝑇𝑁𝑖
𝑇𝑃𝑖+𝑇𝑁𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖

𝑛
𝑖=1

𝑛
  

Accuracy  

The average of true positive instances correctly predicted from all actual positive instances for 

each class. 
∑

TP𝑖
TP𝑖+FP𝑖

𝑛
𝑖=1

𝑛
    

Precision  

The average of the instances predicted as positive that are actually positive, out of all instances 

predicted as positive by the model, for each class. 
∑

TP𝑖
TP𝑖+FN𝑖

𝑛
𝑖=1

𝑛
  

Recall  

The average of the true negative instances predicted by the model out of all actual negative 

instances predicted as negative for each class. 

∑
𝑇𝑁𝑖

𝑇𝑁𝑖+𝐹𝑃𝑖

𝑛
𝑖=1

𝑛
  

Specificity 

The ratio of the correctly predicted instances to the total number of instances for each class. ∑
𝐹𝑃𝑖+𝐹𝑁𝑖

𝑇𝑃𝑖+𝑇𝑁𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖

𝑛
𝑖=1

𝑛
  

Error  

The harmonic mean, derived from false negatives, false positives, and sensitivity which is 

calculated for each class. The F1-score may provide a more meaningful evaluation metric than 

accuracy, especially in cases of imbalanced class distributions. 

2∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚∗𝑅𝑒𝑐𝑎𝑙𝑙𝑚

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚+𝑅𝑒𝑐𝑎𝑙𝑙𝑚
    F1-Score 
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models. One of the key purposes of the presented model is 

to improve context-aware security policy reasoning of the 

big data processing node and optimize the CP-ABE process 

of the big data processing node to better enhance the 

security while still being able to maintain good scalability 

and efficiency to deal with those large-scale and dynamic 

data. Thus, this model is an intelligent, scalable, efficient 

cloud-fog-IoT computing model that can efficiently process 

complex tasks with high data volumes and dynamic access 

conditions, which facilitates the efficiency from the cloud to 

the fog and IoT environments. 

VII. Conclusion and future work 

This study introduces a novel cooperative approach 

designed to bolster the security of smart buildings within fog 

computing environments. The approach emphasizes optimal 

feature selection and accurately applying relevant attributes 

in ciphertext-policy attribute-based encryption (CP-ABE), 

while also enhancing the performance of encryption, 

decryption, and feature revocation. To accomplish these 

objectives, a semantic-based method utilizing an ontology 

framework is employed, in conjunction with the Dragonfly 

optimization algorithm and a KNN kernel, to effectively 

identify key features. Furthermore, the ontology-based 

strategy, paired with inference rules, facilitates the reduction 

of data dimensionality and transforms the data into 

meaningful values. This comprehensive methodology not 

only improves security but also ensures that the system is 

efficient and responsive to the dynamic needs of smart 

building environments.  

The final stage of feature extraction and selection was 

performed using ensemble learning, utilizing a combination 

of GMDH, SVM, and KNN algorithms. This study used 

ciphertext-policy attribute-based encryption (CP-ABE) 

integrated with the AES algorithm for the encryption, 

decryption, and feature revocation processes on the reduced 

semantic features. The evaluation of the proposed model was 

conducted on five datasets, OSH, HomeC, SBS, IEQ, and 

CU-BEMS and the results illustrated that our approach 

effectively identifies key features and surpasses existing 

methods in performance. A comparative analysis with other 

techniques, such as LSTM, RDNN, KNN, GBT, SVM, and 

RF, demonstrated superior outcomes in various metrics, 

including accuracy, precision, specificity, error rate, recall, 

and F1-score. Moreover, the findings indicate that 

outsourcing encryption and decryption tasks to fog nodes 

significantly reduces computational costs. The result of 

evaluating the proposed model on five smart building 

datasets indicates that our approach is able to successfully 

identify important features and outperform existing methods 

in terms of performance. Performances were superior to 

LSTM, RDNN, KNN, GBT, SVM, and RF under different 

metrics (accuracy, specificity, precision, error rate, recall, 

and F1-score). In addition, outsourcing the encryption and 

decryption tasks at fog nodes significantly reduced the 

computation cost. Adopting a semantic-based approach to 

feature selection for encryption and decryption further 

improved efficiency in execution times, achieving 2.99 ms 

encryption and 2.86 ms decryption compared to traditional 

methods. It was also observed that the time to revoke the 

feature was reduced to 18.6 ms compared to the previous 

methods. The study also showed a 13.56 KB and a 10.4 KB 

reduction in memory consumption during the construction of 

the private key and the access policies, respectively. The 

main reason for these improvements is with the optimized 

feature selection and the semantic ontology-based model that 

simplifies the complexity of data structures. The proof of 

security of the proposed approach was shown in the 

standard model with respect to in memory consumption during 

the construction of the private key and the access policies, 

the DBDH assumption. Nevertheless, these features provide 

efficiency and flexibility for resource-constrained platforms 

in fog-based smart buildings. 

The findings of the study represent major improvements 

in cryptographic computations and data classification in 

smart homes, however, because the core of methodology is 

not implemented on the IoT devices and resource-

constrained fog nodes, it should be regarded as a relevant 

limitation. Moreover, other key components such as 

transmission delays and energy costs required for data 

exchange, which impact the overall performance of the 

system, are not covered in the study. Future works will look 

into other optimization methods like genetic, honey bee, 

advanced cat, and ant colony optimization as an alternative 

of the its Dragonfly to produce a salient features and refine 

the model.  

This work also needs to be expanded with efficient policy 

updates in heterogeneous IoT environments, accommodating 

diverse device attributes, constant data flows, and changing 

security policies in heterogeneous IoT networks. 

Lightweight mechanisms, such as incremental re-encryption, 

may facilitate policy adaptation with lower computational 

costs. This would enable scalable policy enforcement with 

quantization of system latency under network heterogeneity. 

Such improvements would facilitate a robust and adaptable 

access control paradigm, providing secure and effective 

policy administration in extensive and changing IoT 

environments. 

In addition, our future research will also include the 

application of deep bidirectional and reinforcement neural 

networks, in contrast to the ensemble learning method for 

the identification of features and classification of data, which 

may also improve the effectiveness of the proposed method. 

Another interesting avenue to explore would be to use fuzzy 

logic instead of the semantic ontology based approach to 

benefit better results. Lastly, a challenge is an interesting 

direction for future research, which is to embed our proposed 

model within lattice-based ABE schemes where 

constructions are highly complex and requires high storage 

as well as time consumption. 
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SBS Data Collection      

Metrics % RF SVM GBT KNN RDNN LSTM 
Proposed 

work 

Accuracy 98.08 97.51 92.81 93.82 94.44 89.34 99.01 

Precision 95.8 94.95 91.16 91.57 92.81 88.61 97.91 

Recall 97.25 97.11 97.63 97.02 97.81 98.22 98.60 

Specificity 98.09 96.92 92.89 92.71 94.31 88.12 99.03 

Error 1.92 2.49 7.19 6.18 5.56 10.66 0.99 

F1-Score 96.93 96.21 91.98 92.68 93.62 88.97 98.46 

 

HomeC Data Collection      

Metrics % RF SVM GBT KNN RDNN LSTM 
Proposed 

work 

Accuracy 98.96 98.43 95.06 95.79 92.86 91.59 99.21 

Precision 96.2 95.7 93.19 93.28 91.29 90.46 98.31 

Recall 97.14 97.11 97.73 97.12 97.9 98.31 98.50 

Specificity 98.23 98.76 95.08 95.03 92.7 91.61 99.27 

Error 1.04 1.57 4.94 4.21 7.14 8.41 0.79 

F1-Score 96.67 97.05 94.12 94.52 92.07 91.02 98.76 

 

TABLE XI. Performance metrics on SBS. 

 

TABLE X. Performance metrics on HomeC. 

CU-BEMS  Data      

Metrics % RF SVM GBT KNN RDNN LSTM 
Proposed 

work 

Accuracy 98.54 97.8 94.44 94.76 92.44 90.96 98.88 

Precision 96 95.12 92.64 92.34 90.94 89.94 97.2 

Recall 97.32 97.09 97.72 97.1 97.89 98.3 98.6 

Specificity 98.32 97.01 94.32 94.87 92.01 90.98 99.91 

Error 1.46 2.2 5.56 5.24 7.56 9.04 1.12 

F1-Score 97.25 96.44 93.53 93.53 91.68 90.45 98.03 

 

OSH Data Collection      

Metrics % RF SVM GBT KNN RDNN LSTM 
Proposed 

work 

Accuracy 98.08 97.5 92.77 93.82 94.41 89.31 98.94 

Precision 95.8 94.95 91.16 91.57 92.81 88.61 97.23 

Recall 97.45 97.1 97.62 97.02 97.8 98.22 98.6 

Specificity 98.01 97.6 92.61 98.71 94.5 89.4 99.95 

Error 1.92 2.5 7.23 6.18 5.59 10.69 1.06 

F1-Score 96.93 96.21 91.96 92.68 93.60 88.96 98.08 
 

TABLE XIII. Performance metrics on CU-BEMS. 

 

 

 

 Data Collection  

AVG 
CU-

BEMS 
IEQ SBS OSH HomeC millisecond 

64.8 39 17 92 68 108 
Proposed 

Work 

83.4 55 27 110 90 135 

 

The 

Scheme[9] 

 

IEQ  Data Collection      

Metrics 

% 
RF SVM GBT KNN RDNN LSTM 

Proposed 
work 

        

Accuracy 98.06 97.46 92.65 93.68 94.32 89.13 98.2 

Precision 95 94.87 91.03 91.41 92.69 88.44 96.2 

Recall 96.6 97.05 97.58 96.96 97.76 98.19 98.84 

Specificity 98.01 97.32 92.6 93.69 94.12 89.2 99.91 

Error 1.94 2.54 7.35 6.32 5.68 10.87 1.80 

F1-Score 96.51 96.15 91.83 92.53 93.50 88.78 97.19 

TABLE XII. Performance metrics on OSH. 

TABLE XV. Comparative evaluation of attribute revocation time in the 

proposed approach with the scheme in [9]. 

TABLE XIV. Performance metrics on IEQ. 
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Fig. 8. Comparison of encryption execution time. 
 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Comparison of decryption execution time. 
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TABLE XVI. Comparison of private key storage and access structure requirements in the proposed method 

vs. [9]. 

Key Generation (Kbytes) Access Policy (Kbytes)  

CU-

BEMS 
IEQ SBS OSH HomeC 

CU-

BEMS 
IEQ SBS OSH HomeC 

Data 

Collection 

11 12 12 16 14.2 17 17.5 17 20 20 
Proposed 

Work 

25 26 26 29 28 27.5 28 27 31 30 
The Scheme 

[9] 
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