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Abstract. The semi-parametric regression model is one of the most useful statistical tools that has gained sig-
nificant attention recently due to its key capability of combining both parametric and nonparametric features in
one model. In practical applications, however, the recorded information or the relationship between one or more
independent variables and the dependent variable is typically imprecise. Additionally, in certain situations, the
error terms exhibit heteroscedasticity or the data distribution is skewed, which leads to inaccurate results when
using conventional least squares models. In this regard, this paper introduces a semi-parametric quantile-based re-
gression model using the support vector machine technique, along with precise regressors and fuzzy outcomes. We
also employ the classic Durbin-Watson test to explore the existence of correlation among fuzzy residual expressions.
We propose a mixed procedure that incorporates a mean absolute error and a cross-validation measure to calculate
fuzzy multipliers in addition to the unknown autocorrelation criteria. We illustrate the efficacy of the suggested
method via three numerical examples, including two applied examples and a simulation study. To this end, we
use some common goodness-of-fit measurements to assess the performance of the suggested method in comparison
with other approaches. The numerical results showed that when the fuzzy error terms are correlated, the suggested
fuzzy semi-parametric quantile-based regression model performs better than the other methods.
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1 Introduction

The most crucial method in statistics for evaluating and depicting the relationships between an outcome
variable and multiple predictor variables is regression modeling. Regression models are also employed in
many other fields, including economics, engineering, social sciences, ecological studies, and medicine. Gener-
ally speaking, there are two fundamental categories of regression techniques: parametric and nonparametric
techniques. The choice of a regression approach, whether parametric or nonparametric, relies on the dis-
tribution of the stochastic error expression and the previous understanding of the functional statement for
the relationship between the independent and dependent variables. Therefore, parametric regression is ideal
for modeling data when the functional formula is known and correct. However, a large bias can occur when
the functional formula of the relation is misdefined. Nonparametric regression models do not require prior
assumptions about the distributions or a functional formula for the regression model. They also offer the
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flexibility to represent and analyze complex models. Non-parametric regression models can, however, occa-
sionally lead to problems such as the curse of dimensionality, computational complexity, over-adjustment,
and lack of extrapolation. Other regression models widely used recently include support vector regression
(SVR) models. Using the principles of support vector machine (SVM) [1, 2, 3, 4, 5], SVR is a machine
learning technique that fits the functional relation in regression analysis. SVR techniques are founded on the
idea of minimizing constructional risk, where the total of the training error limits the generalization error. In
contrast to classical regression models, which aim to estimate undetermined model parameters by reducing
the observed training error, aims to attain overall performance by reducing the generalization error limit. In
contrast to classical regression models, which aim to estimate undetermined model parameters by reducing
the observed training error, SVR aims to attain overall performance by reducing the generalization error
limit. Furthermore, SVR models have several advantages over conventional regression models, including
robustness to outliers, efficiency in high-dimensional spaces, effective modeling of complex and nonlinear re-
lationships, improved prediction accuracy by evaluating classification confidence, and lower computing power
requirements than other regression approaches.
Recently, quantile regression has received widespread attention from both theoretical and practical perspec-
tives. Quantile regression is a statistical method that aims to estimate the conditioned quantile functions
of an outcome variable. Quantile regression is also a robust technique for understanding the influences of
the entire distribution of predictor variables on a response variable. As a result, in contrast to conventional
least squares regression techniques, which compute the conditional mean functions by minimizing the sum of
the squares of the residuals, quantile regression methods depend on minimizing a weighted sum of absolute
residuals to estimate specified conditional quantile functions. The quantile regression model has some advan-
tages over traditional regression models, such as 1- robustness against outliers by focusing on quantiles rather
than the mean. 2- Offering a deeper analysis by examining the full distribution of the outcome variable. 3-
Not being based on postulations about the distribution of the dependent variable. 4- Unlike standard least
squares, which assumes constant error variance, quantile regression effectively handles heteroscedasticity and
provides accurate estimates, even when the variation of the outcome variable changes with the predictors
[6, 7].
Although quantile regression models have many advantages and applications, classical quantile regression
models are based on precise data as well as the exact relation between the predictors and the outcome
variable. The assumption of a fuzzy relation among variables in the regression model is actually preferable
when the phenomenon under investigation is imprecise or shows ambiguous variability instead of random
variability [8]. Thus, using regression methods based on accurate data under the aforementioned conditions
will lead to errors in the analysis and, as a result, to the presentation of an inappropriate model. Differ-
ent approaches and theories have been proposed for treating uncertainty and imprecision during the past
decades, among them the fuzzy set theory [9] have a key role and several researchers have concentrated
on applying this theory to various fields, especially in probability and statistics [10, 11]. A type of classic
regression modeling known as fuzzy regression modeling was first introduced by Tanaka et al. [12] in order
to examine the functional relationship between the predictors and outcomes in a fuzzy setting [13]. After
that, several methods were suggested for using the principles of fuzzy set theory in traditional regression
frameworks. Naderkhani et al. [14] also proposed an adaptive neuro-fuzzy inference system (ANFIS), which
aims to analyze and forecast the non-parametric fuzzy regression subject with precise input variables and
a symmetrical trapezoidal fuzzy outcome variable. Chachi et al. [15] suggested the resistant M -estimation
procedure to establish a fuzzy regression approach for precise predictors and a fuzzy response dataset, which
provides consistent results when outliers are present. Yoon et al. [16] present a new method to improve fuzzy
regression analysis by introducing an innovative fuzzy correlation metric as well as a distance-based variable
selection technique. Notably, quantile regression techniques under fuzzy conditions outperform other fuzzy
regression models because they simultaneously address uncertainty while offering robust and flexible modeling
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capabilities. Regarding the growing interest in this area, a recent review by Baha Alwan and Abdulmohsin
Ali [17] provides a comprehensive overview of semi-parametric methodology for fuzzy quantile regression
model estimation. However, few researchers have conducted studies on modeling quantile regression under
imprecise conditions. Some studies conducted in this field include Hesamian and Akbari [18], who suggested
a semi-parametric quantile-based regression procedure for cases with fuzzy regressors, a fuzzy smoothing
function, precise multipliers, and fuzzy outcomes. Their manner depended upon a recent set of advanced
kernel-driven signed-distance metrics in fuzzy number space. Arefi [19] proposed a regression model based on
quantile estimation utilizing a fuzzy outcome variable and fuzzy multipliers, employing a new technique that
integrates the loss function with fuzzy quantities. Also, Chachi and Chaji [20] suggested a method to predict
the multipliers of the fuzzy regression procedure based on the quantile method with mathematical program-
ming, relying upon some weights for sorted residues. Khammar et al. [21] introduced a quantile-based fuzzy
varied parameter regression modeling that utilizes the quantile loss function and kernel function, specifically
when the predictor variables and model constants are represented as fuzzy values. Hesamian and Akbari [22]
examined a newly developed nonlinear quantile-based regression framework designed for cases where outcome
variables are represented as triangular fuzzy quantities, while the regressors are precise data. Despite this,
semi-parametric regression modeling is an extremely useful statistical tool, as it combines parametric and
semi-parametric elements. Many studies have examined semi-parametric regression models. For example,
Hesamian et al. [23] employed a semi-parametric partly linear method to improve traditional fuzzy linear re-
gression approaches by incorporating fuzzy predictors, fuzzy outcomes, fuzzy smoothness function, and crisp
multipliers. They also introduced a combined approach that utilizes curve-fitting algorithms and the least
absolute errors to predict fuzzy smooth functions and imprecise parameters. Akbari and Hessamian [24] used
a semi-parametric approach for fuzzy regressors and outcomes, extending the conventional adaptive grid mul-
tiple linear regression pattern. By combining kernel smoothing and adaptive grid regularization techniques,
they developed a new variable selection approach within a fuzzy multiplex regression framework. As a result,
they compute non-fuzzy parameters using a new robust technique and the ridge methodology. Notably, all
the aforesaid fuzzy regression approaches depend upon uncorrelated error expressions. In various practical
applications, fuzzy error terms are correlated due to common underlying influences or dependencies between
data points. This, in turn, leads to incorrect results of the analysis and introduces the wrong regression
model. Additionally, this contradicts the standard assumption that residuals are uncorrelated in the least
squares or absolute deviation regression in a fuzzy situation. Hence, we must consider that the fuzzy error
terms are correlated in some regression models.
The major objective of this paper is to present a recent quantile-based semi-parametric regression modeling
with fuzzy outcomes and exact regressors, which utilizes a support vector regression technique to enhance
the estimation process and improve prediction accuracy. Additionally, for this investigation, we expanded
the proposed regression approach to include dependent error expressions rather than uncorrelated error ex-
pressions. To achieve this, we used a novel generalized subtraction technique to develop the semi-parametric
SVR quantile formulation that is dependent on LR−FNs and exact regressors. We proposed a two-stage
approach to evaluate the non-exact parameters as well as the autocorrelation criteria. For this reason, we
employed the total of absolute residues and cross-validation measures to predict the parameters of the fuzzy
regression procedure and the autocorrelation parameter. This approach reduces the summation of absolute
residuals and cross-validation measures dependent on distance in the space of non-symmetrical LR−FNs.
Additionally, we check for serial correlation between the residuals using the conventional Durbin-Watson
test. Using well-known model fit metrics, we compare the provided approach with several widely used fuzzy
linear regression techniques. Additionally, we examined the performance and usefulness of the suggested
semi-parametric quantile-based SVR method using several numerical instances and a simulation experiment.
According to both comparative and numerical outcomes, the suggested model can produce sufficiently accu-
rate fuzzy regression analysis results when the fuzzy error terms are correlated.
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The structure of the remaining sections of this paper is as follows: Section 2 offers the foundational aspects of
fuzzy numbers, generalized difference, and quantile regression. In Sect. 3, a semi-parametric SVR approach
utilizing the quantile method is illustrated, with precise regressors and fuzzy outcomes, in situations where
the fuzzy error expressions are dependent. Moreover, this section introduces a hybrid algorithm designed to
calculate the imprecise parameters in addition to the corresponding accurate correlation measure. Sect. 4
offers a simulation investigation and two numeric examples to evaluate the quality and efficacy of the sug-
gested method in contrast to other models using some commonly used goodness-of-fit criteria. Finally, Sect. 5
provides a summary of the major innovations discussed in this paper.

2 Introductory Concepts

We review the key terms and concepts that will be used in this paper in this section.

2.1 Fuzzy Numbers

Assume that C̃ is a fuzzy subset [25] of R. The definition of C̃ is provided by a membership function,
expressed as µ

C̃
: R → [0, 1]. For every β ∈ (0, 1], the β-cut of a fuzzy set C̃, denoted by C̃[β], is represented

as {z ∈ R : µ
C̃
(z) ≥ β}. The crisp set C̃[0] = {z ∈ R : µ

C̃
(z) > 0} identifies the support of the fuzzy set

C̃ [26]. The notation C̄ represents the closure of C. By assuming that the domain of values for the β-cut
can be shown as C̃L

β = inf{z : z ∈ C̃[β]} and C̃U
β = sup{z : z ∈ C̃[β]}, C̃L

β and C̃U
β are named the lower

and upper bounds of the β-cut, respectively. Moreover, a fuzzy set C̃ of R is called a fuzzy number if: 1- it
is normal, i.e. there is a unique element z0 ∈ R that satisfies µ

C̃
(z0) = 1, 2- for every β ∈ [0, 1], C̃[β] is a

non-empty, bounded, closed interval of R. The most popular and intriguing technique for modeling fuzzy data
is LR−FNs. The LR−fuzzy number or LR−FN C̃ is represented as C̃ = (c; lc, rc)LR [27]. The membership
function of an LR−FN C̃ is determined by:

µ
C̃
(z) =


L
(c− z

lc

)
, c− lc ≤ z ≤ c,

R
(z − c

rc

)
, c ≤ z ≤ c+ rc,

so that c ∈ R is the center quantity, lc > 0 is denoted by the left margin, and rc > 0 is determined by the right
margin. The reference or shape functions L and R define the left and right forms of the FN, respectively.
The functions L,R : [0, 1] → [0, 1] must satisfy the following requirements:
1. L(1) = R(1) = 0, and
2. L(0) = R(0) = 1.
Additionally, L and R are continuous functions that are monotonically decreasing on the interval [0, 1]. The
symbol F(R) denotes the set of all LR−FNs. To address the inaccuracy in the dataset through numerical
valuations, we also employed the most widely used (unimodal) LR−FNs, also known as the triangular fuzzy
numbers TFNs, by the formula L(z) = R(z) = 1− z. Also, TFNs can be represented as C̃ = (c; lc, rc)T and
have the following membership function:

µ
C̃
(z) =


z − (c− lc)

lc
, c− lc ≤ z ≤ c,

(c+ rc)− z

rc
, c ≤ z ≤ c+ rc,

0, z ∈ R− (c− lc, c+ rc).

In addition, several popular operations among two LR−FNs of C̃ = (c; lc, rc)LR and D̃ = (d; ld, rd)LR can
be expressed as:
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1. C̃ ⊕ D̃ = (c+ d; lc + ld, rc + rd)LR.

2.

γ ⊗ C̃ =

{
(γc; γlc, γrc)LR, if γ > 0,

(γc;−γrc,−γlc)RL, if γ < 0.

Definition 2.1. [28] The operation (C̃ ⊖G D̃) between two FNs of C̃ and D̃ is known as the generalized
difference operation. It is defined using the following β-cuts:

(C̃ ⊖G D̃)[β] =

[
inf

η∈[β/2,1−β/2]
(C̃η − D̃η), sup

η∈[β/2,1−β/2]
(C̃η − D̃η)

]
,

in which

C̃η =

{
C̃L[2η], η ∈ [0, 0.5],

C̃U [2(1− η)], η ∈ [0.5, 1].

It should be noted that the major benefit of ⊖G on the Hukuhara subtraction [29] is its consistent existence
[28]. The generalized difference ⊖G satisfies the following features.

Lemma 2.2. [28] The key features of the generalized difference ⊖G for three LR−FNs of C̃, D̃, and F̃ are
listed as follows:

1. C̃ ⊖G C̃ = 0̃ where µ0̃(z) =

{
1 z = 0,

0 z ̸= 0.

2. C̃ ⊖G D̃ = (−1)⊗
(
D̃ ⊖G C̃

)
=
(
(−1)⊗ D̃

)
⊖G ((−1)⊗ C̃).

3. (C̃ ⊕ D̃)⊖G D̃ = C̃.

4. C̃ ⊖G D̃ = D̃ ⊖G C̃ if and only if C̃ = D̃.

5. (C̃ ⊕ F̃ )⊖G (D̃ ⊕ F̃ ) = C̃ ⊖G D̃.

6. 0̃⊖G (C̃ ⊖ D̃) = D̃ ⊖G C̃.

7. n⊗ (C̃ ⊖G D̃) = (n⊗ C̃)⊖G (n⊗ D̃), for any n ∈ R.

It is straightforward to verify that the generalized subtraction of two LR−FNs yields another LR−FN.

Lemma 2.3. Assume that C̃ = (c; lc, rc)T and D̃ = (d; ld, rd)T are two TFNs. Then, we can define the
generalized subtraction for C̃ and D̃ as follows:

C̃ ⊖G D̃ =
(
c− d; |lc − ld|, |rc − rd|

)
T
.

Definition 2.4. Let C̃ ∈ F(R), and C̃β : [0, 1] → R be known as the β-values of C̃ which has the following
form:

C̃β =

{
C̃L[2β] 0 ≤ β ≤ 0.5,

C̃U [2(1− β)] 0.5 ≤ β ≤ 1.

where C̃L[β] stands for the lower bound of the β-cuts of C̃ and C̃U [β] for the upper bound.
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Example 2.5. If we consider that C̃ = (c; lc, rc)LR is an LR−FN. Then, we can find from Definition 2.4
that:

C̃β =

{
c− lcL

−1(2β), 0 ≤ β ≤ 0.5,

c+ rcR
−1 (2(1− β)) , 0.5 ≤ β ≤ 1.

For example,
1) Assuming that C̃ = (c; lc, rc)T is a TFN, after that:

C̃β =

{
(c− lc) + 2lcβ, 0 ≤ β ≤ 0.5,
c+ rc − 2rc(1− β), 0.5 ≤ β ≤ 1.

2) Assume that C̃ = (c; lc, rc)LR with the functions L(z) = 1− z and R(z) = 1− z2 then:

C̃β =

{
c− lc(1− 2β), 0 ≤ β ≤ 0.5,

c+ rc(
√
2β − 1), 0.5 ≤ β ≤ 1.

Remark 2.6. If C̃β is a non-increasing function of β, then β-values and β-cuts are related as follows:

C̃[β] = [C̃L[β], C̃U [β]] = [C̃β/2, C̃1−β/2], β ∈ [0, 1].

Definition 2.7. If C̃ = (cL, c, cU )LR and F̃ = (fL, f, fU )LR are two LR−FNs. Then, the following definition
of an absolute error distance criterion among C̃ and F̃ can be used:

D(C̃, F̃ ) = |c− f |+ r1|cL − fL|+ r2|cU − fU |,

where r1 =
∫ 1
0 L−1(β)dβ and r2 =

∫ 1
0 R−1(β)dβ. It can be shown that the distance D meets the requirements

listed below:

1. D(C̃, F̃ ) = 0 ⇔ C̃ = F̃ ,

2. D(C̃, F̃ ) = D(F̃ , C̃),

3. D(C̃, Ñ) ≤ D(C̃, F̃ ) +D(F̃ , Ñ).

Definition 2.8. Suppose that C̃ is an FN. Next, using the triangular density function of h, we can calculate
the expectation of C̃ as follows.

E
C̃
=

∫ 0.5

0
C̃L
2βh(β)dβ +

∫ 1

0.5
C̃U
2(1−β)h(β)dβ,

where

h0,0.5,1(β) =

{
4β β ∈ [0, 0.5],

4(1− β) β ∈ [0.5, 1].

Example 2.9. Here are some special cases of LR−FN expectation that we utilized in our computational
procedure.

1. Assume that C̃ = (c; lc, rc)T is a TFN. The expectation of C̃ can then be computed as follows:

E
C̃
=Eh0,0.5,1(C̃) =

∫ 1

0
h0,0.5,1(β)C̃β dβ =

∫ 0.5

0
4β(c− (1− 2β)lc) dβ

+

∫ 1

0.5
4(1− β)(c− (1− 2β)rc) dβ = c+

rc − lc
6

.
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2. Assume that C̃ = (c; lc)LL where L(z) =
√
1− z3. Then

E
C̃
=Eh0,0.5,1(C̃) =

∫ 0.5

0
4β(c− lc

3
√
1− 4β2) dβ

+

∫ 1

0.5
4(1− β)(c+ lc

3
√

1− 4(1− β)2)dβ = β.

3. Assume that C̃ = (c; lc, rc)LR where L(z) = 1− z and R(z) = 1− z2. After that.

E
C̃
= Eh0,0.5,1(C̃)

=

∫ 0.5

0
4β(c− lc(1− 2β)) dβ +

∫ 1

0.5
4(1− β)(c+ rc(

√
2β − 1)) dβ

= c− 0.166667lc + 0.266667rc. (1)

2.2 Quantile Regression

Quantile regression is a technique that addresses the limitations of the least squares regression model, in-
cluding issues such as non-normality of the error distribution and the presence of outliers. Koenker and
Bassett [6] first proposed this model in 1978, and it has since developed into a comprehensive method for the
statistical analysis of both linear and nonlinear models of response variables across various domains. Using
quantile regression and estimating a family of conditional quantile functions yield more complete patterns of
the effects of explanatory variables across all parts of the distribution. Quantile regression is a generalization
of quantile to conditional quantile when one or more explanatory variables are present. Assume that Z is a
real number stochastic variable. Also, assume that F (z) is the distribution function of the variable Z, which
is defined as FZ(z) = F (z) = P (Z ≤ z). The following is the ηth quantile of Z:

QZ(η) = Q(z) = F−1
Z (η) = inf{z : F (z) > η}

where η ∈ [0, 1]. The loss function can be expressed in the following way.

ρη(z) =[η − I(z < 0)]z

=[(1− η)I(z ≤ 0) + ηI(z > 0)]|z|.

where I is the characteristic function. The ηth sample quantile based on a random sample {z1, ..., zn} can be
found by solving the following equation:

qη = argmin
b

E[ρη(Z − b)].

The prior minimization problem is transformed as follows when a discrete variable Z has a probability
distribution f(z) = P (Z = z):

qη =argmin
b

E[ρη(Z − b)]

= argmin
b

{
(1− η)

∑
z≤b

|z − b|h(z) + η
∑
z>b

|z − b|h(z)

}
.

The analogous measure is employed for a continuous stochastic variable by replacing the sum with an integral:

qη =argmin
b

E[ρη(Z − b)]

= argmin
b

{
(1− η)

∫ b

−∞
|z − b|h(z)d(z) + η

∫ +∞

b
|z − b|h(z)d(z)

}
.
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Additionally, the sample data is used in the preceding formula to acquire the sample estimate q̂η for η ∈ [0, 1].
The ηth conditioned quantile of N considering Z is shown using the following formula:

QN |Z(η) = inf{n : FN |Z(n) ≥ η}.

Consequently, the quantile-based regression approach is illustrated as follows:

QN |Z(η) = Zβη.

This minimization problem determines βη by considering the distribution function of N :

βη = argmin
β

E[ρη(N − Zβ)].

By solving the above equation for the sample, we obtain the estimator of β as follows:

β̂η = argmin
β

n∑
i=1

(ρη(Ni − Ziβ)).

3 Quantile SVR-Based Fuzzy Semi-Parametric Modeling with Autore-
gressive Fuzzy Errors (FSPQSVR)

This section outlines the standard quantile approach for modeling semi-parametric support vector regression,
incorporating autoregressive fuzzy errors based on precise inputs and fuzzy outputs. Let {(mp, ñp)}p=1,2,...,j

represent a collection of training patterns, in which ñp ∈ F(R) is the seen value for every input data mp ∈ Rj .
Consider that all input data are sorted in matrix C ∈ Ri×j , where mt

p is the p-th row. Moreover, if K(., .) is
a kernel function [30, 31], then a kernel matrix K(C,Ct) with rank j can be displayed so that its pq-th entry
is (K(C,Ct))pq = K(mp,mq). Assume that K(m,Ct) = (K(m,m1), ...,K(m,mj))

T is a row vector for each
m ∈ Rj . Using the data mentioned above, we can implement the fuzzy semi-parametric SVR procedure with
autocorrelated fuzzy error terms (FSPSVR):

ñ∗ρ
p = z̃ρp(w̃)⊕ ṽp,

where:

1.

z̃ρp(w̃) =

((
K(mp, C

t)− ρK(mp−1, C
t)
)
w;

|K(mp, C
t)|lw +

∣∣∣∣∣∣∣(ρslnp−1 − ρ(1− s)rnp−1)−
∣∣ρK(mp−1, C

t)
∣∣lw∣∣∣− (ρslnp−1 − ρ(1− s)rnp−1)

∣∣∣∣,
|K(mp, C

t)|rw +

∣∣∣∣∣∣∣ (ρsrnp−1 − ρ(1− s)lnp−1

)
−
∣∣ρK(mp−1, C

t)
∣∣rw∣∣∣− (ρsrnp−1 − ρ(1− s)lnp−1

) ∣∣∣∣
)

LR

.

Here, z̃ρp(w̃) is the fuzzy function of unknown multipliers w̃ in the regression model relative to the
correlation parameter ρ, which is an LR−FN.

2. w̃ = (w; lw, rw)LR, (p = 1, 2, ..., j) stands for the fuzzy coefficients, which are fuzzy numbers of the LR
type where w = (w1, w2, ..., wj)

T , lw = (lw1 , lw2 , ..., lwj )
T , rw = (rw1 , rw2 , ..., rwj )

T ,
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3.

ñ∗ρ
p = ñp ⊖G (ρ⊗ ñp−1)

=

(
np − ρnp−1;

∣∣∣lnp −
(
ρslnp−1 − ρ(1− s)rnp−1

)∣∣∣, ∣∣∣rnp −
(
ρsrnp−1 − ρ(1− s)lnp−1

) ∣∣∣)
LR

.

are fuzzy responses.

4. ṽp = (vp; lvp, rvp)LR, p = 1, 2, ..., j are fuzzy error expressions whose v1, v2, ..., vj are stochastic sam-
ples drawn from a Gaussian distribution with a mean of 0 and a variance of σ2. Moreover, lv1 , lv2 , ..., lvj
and rv1 , rv2 , ..., rvj are independent and identically distributed positive stochastic variables.

Therefore, we can formulate the quantile function for a fuzzy random variable ñ∗ρ
p based on Theorem 3.7 as

follows:
Qñ∗ρ

p
(η) = z̃ρp(w̃)⊕Qṽp(η) (2)

Therefore, we can show the quantile function for ñ∗ρ
p as an LR-fuzzy random variable as follows:

Q̃ñ∗ρ
p
(η) =

((
K(mp, C

t)− ρK(mp−1, C
t)
)
w +Qvp(η);

|K(mp, C
t)|lw +

∣∣∣∣∣∣∣(ρslnp−1 − ρ(1− s)rnp−1)− |ρK(mp−1, C
t)|lw

∣∣∣
− (ρslnp−1 − ρ(1− s)rnp−1)

∣∣∣∣+Qlvp (η),

|K(mp, C
t)|rw +

∣∣∣∣∣∣∣(ρsrnp−1 − ρ(1− s)lnp−1)−
∣∣ρK(mp−1, C

t)
∣∣ rw∣∣∣

− (ρsrnp−1 − ρ(1− s)lnp−1)
∣∣∣+Qrvp (η)

)
LR

.

(3)

Remark 3.1. Interestingly, the classic regression method can be expressed using autoregressive modeling as
follows:

n∗ρ
p = zρp(w) + vp, p = 1,2, ..., j,

in which ρ points out the correlation coefficient between vp and vp−1 where ρ = corr(vp, vp−1) and ρ ∈ [−1, 1]
[32]. However, when ρ = 0, it means that the residual expressions in the regression model are not correlated.
Conversely, ρ ̸= 0 indicates that the residual expressions of the regression modeling may be either positively or
negatively correlated. The Durbin-Watson test can be employed in regression modeling to determine whether
there is a correlation between the residuals (errors) [33, 34]. The Durbin-Watson test assesses whether the
residual expressions from one observation are correlated with those from the previous observation, specifically
testing for first-order autocorrelation. Using the Durbin-Watson statistic, we can evaluate the null hypothesis
H0 : ρ = 0 as follows:

D =

∑j
p=2(vp − vp−1)

2∑j
p=2 vp

2
, (4)

in which vp = np − n̂p are the residuals derived from the standard least squares regression method, and the
quantity of observations is denoted by j. In addition, when j is big enough, D is nearly equivalent to 2(1− ρ̂).



68 Salamah B, Zarei R, Mehrdoust F, Akbari MG. Trans. Fuzzy Sets Syst. 2026; 5(2)

The test compares the calculated D value to critical values found in statistical tables at two significance levels
(0.05 and 0.01) (Kutner et al. [32]). D is always between 0 and 4. When the value of D is 2, autocorrelation
is absent, whereas values above 2 indicate negative serial correlation, and values below 2 indicate positive
autocorrelation. Evaluating positive autocorrelation at the α significance level requires comparing the test
statistic D with the critical thresholds, dL,α and dU,α, which represent the lower and upper limits, respectively.
Thus, it is necessary to verify the following rule to evaluate the hypothesis: H0 : ρ = 0 against H1 : ρ > 0.
When D is smaller than dL,α, H0 should be rejected. If D is greater than dU,α, H0 is not rejected. However,
if D lies within the range of dL,α and dU,α, the test is indecisive. To test for negative autocorrelation at an α
significance level, the critical values dL,α and dU,α, which represent the lower and upper limits, are compared
to the statistic (4 − D). The residual expressions are negatively autocorrelated if (4 − D) < dL,α, which
indicates that ρ < 0. If dL,α < (4−D) < dU,α, the test is ineffective, but if (4−D) > dU,α, then H0 cannot
be rejected. Additionally, two one-sided tests can be applied independently to construct a two-sided test for
H0 : ρ = 0 versus H1 : ρ ̸= 0. The assumption is that α = 0.05 is maintained throughout the paper.

3.1 Algorithm Applied to Choosing Model Constituents:

To evaluate the constituents of the proposed FSPQSVR, we use the approach presented by Akbari et al.[35].
They introduced a two-stage method for calculating both the multipliers and the correlation coefficient for
the proposed regression technique 3. Consider that in the proposed method 3, ρ and w̃ are both undefined
values. It is possible to estimate the undefined vector of fuzzy multipliers of w̃ and ρ by simultaneously
minimizing the following goal functions:
1) The first goal function:

g(ρ, w̃) =

j∑
p=2

ρη(D(ñ∗ρ
p , Q̃ñ∗ρ

p
(η))) =

j∑
p=2

(∣∣∣η − I
(
D(ñ∗ρ

p , Q̃ñ∗ρ
p
(η)) ≤ 0

)∣∣∣ ∣∣∣D (ñ∗ρ
p , Q̃n∗ρ

p
(η)
)∣∣∣)

=

j∑
p=2

(∣∣∣η − I
(
D(ñ∗ρ

p , Q̃ñ∗ρ
p
(η)) ≤ 0

)∣∣∣)
∗

∣∣∣∣∣∣∣∣(np − ρnp−1

)
−
((

K(mp, C
t)− ρK(mp−1, C

t)
)
w +Qvp(η)

)∣∣∣
+

1

2

∣∣∣∣(∣∣lnp −
(
ρslnp−1 − ρ(1− s)rnp−1

)∣∣)− (|K(mp, C
t)|lw

+
∣∣∣∣∣(ρslnp−1 − ρ(1− s)rnp−1

)
− |ρK(mp−1, C

t)|lw
∣∣

−
(
ρslnp−1 − ρ(1− s)rnp−1

)∣∣∣+Qlvp (η)

)∣∣∣∣+ 2

3

∣∣∣∣(∣∣rnp − (ρsrnp−1 − ρ(1− s)lnp−1)
∣∣)

−
( ∣∣K(mp, C

t)
∣∣ rw +

∣∣∣∣∣(ρsrnp−1 − ρ(1− s)lnp−1)− |ρK(mp−1, C
t)|rw

∣∣
−
(
ρsrnp−1 − ρ(1− s)lnp−1

) ∣∣∣+Qrvp (η)

)∣∣∣∣
∣∣∣∣∣.

Therefore we have:
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g(ρ, w̃) =η

p∑
p=2:D(ñ∗ρ

p ,Q̃
ñ
∗ρ
p

(η))≥0

∣∣∣∣∣
∣∣∣∣(np − ρnp−1)−

((
K(mp, C

t)− ρK(mp−1, C
t)
)
w +Qvp(η)

)∣∣∣∣
+

1

2

∣∣∣∣(∣∣∣lnp −
(
ρslnp−1 − ρ(1− s)rnp−1

)∣∣∣)−
(∣∣∣K(mp, C

t)
∣∣∣lw +

∣∣∣∣∣(ρslnp−1 − ρ(1− s)rnp−1

)
− |ρK(mp−1, C

t)|lw
∣∣− (ρslnp−1 − ρ(1− s)rnp−1

)∣∣∣+Qlvp (η)

)∣∣∣∣
+

2

3

∣∣∣∣(∣∣∣rnp −
(
ρsrnp−1 − ρ(1− s)lnp−1

)∣∣∣)−
(∣∣∣∣K(mp, C

t)

∣∣∣∣rw
+

∣∣∣∣∣∣∣(ρsrnp−1 − ρ(1− s)lnp−1

)
−
∣∣ρK(mp−1, C

t)
∣∣rw∣∣∣− (ρsrnp−1 − ρ(1− s)lnp−1

)∣∣∣+Qrvp (η)

)∣∣∣∣
∣∣∣∣∣

+ (1− η)

j∑
p=2:D(ñ∗ρ

p ,Q̃
ñ
∗ρ
p

(η))<0

∣∣∣∣∣
∣∣∣∣(np − ρnp−1)−

((
K(mp, C

t)− ρK(mp−1, C
t)
)
w +Qvp(η)

)∣∣∣∣
+

1

2

∣∣∣∣(∣∣∣lnp − (ρslnp−1 − ρ(1− s)rnp−1)
∣∣∣)−

(
|K(mp, C

t)|lw +
∣∣∣∣∣(ρslnp−1 − ρ(1− s)rnp−1)

− |ρK(mp−1, C
t)|lw

∣∣− (ρslnp−1 − ρ(1− s)rnp−1)
∣∣∣+Qlvp (η)

)∣∣∣∣
+

2

3

∣∣∣∣(∣∣rnp −
(
ρsrnp−1 − ρ(1− s)lnp−1

)∣∣)−
(∣∣∣K(mp, C

t)|rw +
∣∣∣∣∣(ρsrnp−1 − ρ(1− s)lnp−1)

− |ρK(mp−1, C
t)|rw

∣∣− (ρsrnp−1 − ρ(1− s)lnp−1

)∣∣∣+Qrvp (η)

)∣∣∣∣
∣∣∣∣∣,

where:

1. g(ρ, w̃) represents the sum of the absolute error in the goal function.

2. ρη(v) = |η − I(v ≤ 0)||v|, η ∈ (0, 1), is the quantile loss function (quantile cost function) [7].

Remark 3.2. The absolute error distance criterion among two fuzzy quantities that was mentioned in Defi-
nition 2.7, i.e., D(C̃, F̃ ), was utilized in the calculations of the first goal function g(ρ, w̃) for the purpose of
estimating the undefined multipliers w̃ in the regression model 3.
where: r1 =

∫ 1
0 L−1(β)dβ and r2 =

∫ 1
0 R−1(β)dβ.

Remark 3.3. We assume that L(z) = 1 − z and R(z) = 1 − z2 have these forms throughout the article,
where we intend to compute the absolute error distance measure D(C̃, F̃ ). Therefore, in this case, we can
deduce that: r1 =

∫ 1
0 L−1(β)dβ = 1

2 and r2 =
∫ 1
0 R−1(β)dβ = 2

3 .

Remark 3.4. The two fuzzy numbers C̃ = (c, lc, rc) and F̃ = (f, lf , rf ) in the absolute error distance criterion



70 Salamah B, Zarei R, Mehrdoust F, Akbari MG. Trans. Fuzzy Sets Syst. 2026; 5(2)

D(C̃, F̃ ) used in calculations of the first goal function g(ρ, w̃) are defined as follows:

C̃ ≡ ñ∗ρ
p =ñp ⊖G (ρ⊗ ñp−1) (5)

=

(
np − ρnp−1;

∣∣∣lnp −
(
ρslnp−1 − ρ(1− s)rnp−1

)∣∣∣, ∣∣∣rnp −
(
ρsrnp−1 − ρ(1− s)lnp−1

)∣∣∣)
LR

.

F̃ ≡ Q̃ñ∗ρ
p
(η) =

((
K(mp, C

t)− ρK(mp−1, C
t)
)
w +Qvp(η);

|K(mp, C
t)|lw +

∣∣|(ρslnp−1 − ρ(1− s)rnp−1)− |ρK(mp−1, C
t)|lw

∣∣
−
(
ρslnp−1ρ(1− s)rnp−1

)∣∣∣+Qlvp (η),

|K(mp, C
t)|rw +

∣∣∣∣∣(ρsrnp−1 − ρ(1− s)lnp−1

)
− |ρK(mp−1, C

t)|rw
∣∣

−
(
ρsrnp−1 − ρ(1− s)lnp−1

)∣∣∣+Qrvp (η)

)
LR

.

2) The second goal function:

CV (ρ, ŵ∗) =

j∑
p=2

(
En∗ρ

p
−EQ

n
∗ρ
p

(ŵ∗(−p))

)2
, (6)

where ŵ∗(−p) shows the estimated value of ŵ dependent on the hold-out observation in matrix C ∈ Ri×j

whose mt
p is the p-th row. It is important to note that CV represents the cross-validation measurement,

while g(ρ, w̃) denotes the sum total of the absolute error goal function. In addition, quantities En∗ρ
p

and

EQ
n
∗ρ
p

(ŵ∗(−p)) present the expectation of ñ∗ρ
p and Q̃ñ∗ρ

p
(ŵ∗(−p)), respectively.

In the following, to find the second goal function, we need to calculate the expectation of ñ∗ρ
p and Q̃ñ∗ρ

p
(ŵ∗(−p))

via Definition 2.8.

Corollary 3.5. We conclude from Definition 2.8 and formula 1 in Example 2.9 that the expectation of ñ∗ρ
p

and Q̃ñ∗ρ
p
(ŵ∗(−p)) is respectively as follows:

Eñ∗ρ
p

=(np − ρnp−1)− 0.166667
(∣∣lnp − (ρslnp−1 − ρ(1− s)rnp−1)

∣∣)
+ 0.266667

(∣∣rnp −
(
ρsrnp−1 − ρ(1− s)lnp−1

)∣∣).
E

Q̃
ñ
∗ρ
p

=

((
K(mp, C

t)− ρK(mp−1, C
t)
)
w +Qvp(τ)

)
− 0.166667

(
|K(mp, C

t)|lw

+ ||(ρslnp−1 − ρ(1− s)rnp−1)− |ρK(mp−1, C
t)|lw| − (ρslnp−1 − ρ(1− s)rnp−1)|+Qlvp (τ)

)
+ 0.266667

(
|K(mp, C

t)|rw +
∣∣∣∣∣(ρsrnp−1 − ρ(1− s)lnp−1

)
− |ρK(mp−1, C

t)|rw
∣∣

−
(
ρsrnp−1 − ρ(1− s)lnp−1

)∣∣∣+Qrvp (τ)

)
.

Therefore, we can write the second goal function in formula 6 based on formula 1 in Example 2.9 and Corollary
3.5 as follows:
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CV (ρ, ŵ∗) =

j∑
p=2

(
En∗ρ

p
− EQ

n
∗ρ
p

(ŵ∗(−p))

)2

=

j∑
p=2

(((
np − ρnp−1

)
− 0.166667

(∣∣lnp −
(
ρslnp−1 − ρ(1− s)rnp−1

)∣∣)
+ 0.266667

(∣∣rnp −
(
ρsrnp−1 − ρ(1− s)lnp−1

)∣∣))−
(((

K(mp, C
t)− ρK(mp−1, C

t)
)
ŵ∗(−p) +Qvp(η)

)
− 0.166667

(∣∣K(mp, C
t)
∣∣lŵ∗(−p) +

∣∣∣∣∣∣∣(ρslnp−1 − ρ(1− s)rnp−1

)
−
∣∣ρK(mp−1, C

t)
∣∣lŵ∗(−p)

∣∣∣
−
(
ρslnp−1 − ρ(1− s)rnp−1

)∣∣∣∣+Qlvp (η)

)
+ 0.266667

(∣∣K(mp, C
t)
∣∣rŵ∗(−p) +

∣∣∣∣∣(ρsrnp−1 − ρ(1− s)lnp−1

)
− |ρK(mp−1, C

t)|rŵ∗(−p)

∣∣− (ρsrnp−1 − ρ(1− s)lnp−1

)∣∣∣+Qrvp (η)
)))2

.

The algorithm that can be used to minimize the goals mentioned earlier is:
Stage (1): Allow

ρ̂=arg min
ρ∈{−1,...,−0.01,0,0.01,...,1}

CV (ρ, ŵ∗
ρ).

Stage(2): Allow ˜̂wρ̂=argmin
w̃

g (ρ̂, w̃)

= arg min
wp,lwp>0,rwp>0

j∑
p=2

ρη

(
D
(
ñ∗ρ̂
p , Q̃

ñ∗ρ̂
p
(w̃)
))

.

Hence, ρ̂ and ˜̂wρ̂ are the optimal values.

Remark 3.6. In the proposed FSPQSVR model, we calculate the smoothing value in the kernel K(C,Ct), h,
using the iterative method or the generalized Wasserman cross-validation measure. Furthermore, we compute
σ2 using the trial-and-error method in Mathematica software.

Theorem 3.7. Let Z̃ = (Z̃L, Z, Z̃U )LR be an LR-fuzzy stochastic variable. Then, for every fuzzy number
b̃ = (b̃L, b, b̃U )LR, we have that:

Q̃
Z⊕b̃

(η) = QZ(η)⊕ b̃.

Proof.

Q̃
Z⊕b̃

(η) =
(
F−1

Z+b̃L
(η), F−1

Z+b(η), F
−1

Z+b̃U
(η)
)
LR

=
(
QZ(η) + b̃L, QZ(η) + b,QZ(η) + b̃U

)
LR

=QZ(η)⊕
(
b̃L, b, b̃U

)
LR

=QZ(η)⊕ b̃.

□
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Remark 3.8. Several performance measures were applied to assess the performance of the suggested model
and to compare it with other methods.

1. Mean absolute errors:

MAE =
1

j

j∑
p=1

|ñp − ˜̂np|,

2. Mean absolute relative errors:

MARE =
1

j

j∑
p=1

∫ 1
0 |ñp(m)− ˜̂np(m)| d(m)∫ 1

0 ñp(m) d(m)
.

3. Mean similarity criterion:

MSM =
1

j

j∑
p=1

SUI(˜̂np, ñp),

Where

SUI(˜̂np, ñp) =

∫
min{˜̂np(m), ñp(m)}dm∫
max{˜̂np(m), ñp(m)}dm

,

It is worth noting that MSM ∈ [0, 1]. Additionally, MSM is zero if and only if there is no intersection

between ˜̂np and ñp, whereas MSM is one if and only if ˜̂np is equal to ñp. As a result, an MSM value
close to 1 indicates a strong match between outcome variables and their identical estimates.

4. Determination coefficient:

COD = 1−
∑j

p=1D
2(ñp, ˜̂np)∑j

p=1D
2(ñp, ˜̄np)

,

in which ñ = (
1

j
)⊗(⊕j

p=1ñp). A crucial point to remember is that COD ∈ [0, 1]. A COD of 1 indicates

that the regression model perfectly fits the data points, while a COD of 0 means that the regression model
does not fit the data points at all.

4 Numeric Examples

In this section, we use two numeric examples and a simulation study to assess the efficacy and applicability
of the suggested FSPQSVR model and compare it with different models. The primary focus is on the linear
fuzzy regression techniques created by Yoon and Choi [36], Choi and Buckley [37], Zeng et al. [38], Taheri
and Kelkinnama [39], Kula and Apaydin [40], and Icen and Demirhan [41]. The measurements outlined in
Remark 3.8 are used to compute the goodness-of-fit measures.

Example 4.1. (Zhou et al. [42]) proposed a fuzzy linear regression procedure to estimate affordable levels of
house prices. These models identify six key factors: three related to policy (the interest rate on a mortgage,
the tax on real estate, and the ratio of down payment) and three non-policy factors (size of the house,
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yearly income of the household, and family population). These factors aid in decision-making for both the
government and realty extenders. An interview questionnaire is used in this study to collect data for the
variables mentioned above. To enhance the credibility of our treatment, we distributed questionnaires to wage
earners aged 20 to 60 who were working in trade office buildings in Shanghai, including the Green Building,
Global Finance Building, Air SOHO, and Golden Bridge Software Park. This group consists of employees
who purchased their properties within the last five years (2012-2016) or have agreed to buy a property. At
first, 200 employees were invited to participate in the survey. Nevertheless, 53 of them either did not complete
it correctly or gave answers that did not match the facts. Thus, the remaining 147 questionnaires are the main
focus of this investigation. In this example, the fuzzy outcomes are presented as non-symmetrical triangular
FNs, and the proposed FSPQSVR model is examined. The main goal is to evaluate H0 : ρ = 0 in contrast
to H1 : ρ > 0 using the classic Durbin-Watson test. The amounts of vp, shown in Table 1, are obtained by
minimizing the MSE criterion. We can easily determine the test statistic from formula 4 as follows:

D =

∑147
p=2(vp − vp−1)

2∑147
p=2 vp

2
= 0.054,

where vp = np− n̂p. To test H0 : ρ = 0 against H1 : ρ > 0, it is necessary to compare the test statistic D with
the lower critical quantity dL,α and the upper critical quantity dU,α. From the Durbin-Watson tables, we find
that dL,α = 0.46. Since D = 0.054 < dLα = 0.46 then we reject H0 and H1 is accepted. Thus, there is a
positive correlation between the error expressions. Using the suggested algorithm discussed in Sub Sect. 3.1
of Sect. 3, we can estimate ρ and ˜̂wρ as follows:
Stage(1) Allow:

ρ̂=arg min
ρ∈{−1,...,−0.01,0,0.01,...,1}

CV (ρ, ŵ∗
ρ)

= arg min
ρ∈{−1,...,−0.01,0,0.01,...,1}

147∑
p=2

(
En∗ρ

p
− EQ

n
∗ρ
p

(ŵ∗(−p))

)2
,

Stage(2) Allow:

˜̂wρ̂=argmin
w̃

g (ρ̂, w̃)

= arg min
wp,lwp>0,rwp>0

147∑
p=2

ρη

(
D
(
ñ∗ρ̂
p , Q̃

ñ∗ρ̂
p
(w̃)
))

.

in which z̃∗ρp and Q̃z̃∗ρp
(w̃) are given in formulas 5. The evaluated parameters of the suggested regression model

for w̃0, w̃1, ..., w̃6 and the correlation parameter ρ, along with its proficiency measurements, are presented in
Table 2. The estimated values of h, τ , and σ2, as well as the proficiency measurements of several fuzzy
regression methods, are summarized in this Table. Table 2 compares the proficiency measurements of the
suggested procedure with those of other methods. When comparing the various methods using proficiency
measurements, the results can be summarized as follows: the suggested method shows higher MSM and
COD values than the other models (MSM = 0.812 and COD = 0.95), while its MAE and MARE values
(MAE = 17.25 and MARE = 5.914) are smaller than those of the alternative approaches. The results
indicate that the suggested method outperformed the other approaches when the fuzzy error terms were
correlated, in contrast to when they were uncorrelated with the dataset.
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Table 1: The amounts of vp in Example 4.1

∗ 47.174 −12.925 −41.593 13.052 35.119 −2.808 11.567
−9.760 50.384 12.772 −48.126 19.108 14.843 −1.504 −19.494
−33.408 7.217 −56.827 32.306 34.693 14.854 73.328 −6.147
−64.662 −12.512 6.525 −11.195 −61.664 5.318 11.951 −2.911
1.037 1.0349 4.701 −7.334 37.145 −8.946 −4.958 −30.636

−13.755 −66.279 −26.242 7.459 −22.402 17.641 102.521 −16.688
9.0367 63.256 −38.072 −18.297 −4.139 −22.634 2.596 7.107
−10.944 −4.097 21.689 −9.537 −64.139 −7.572 5.700
5.363 6.979 −9.066 33.172 15.726 −14.145 −21.523
−5.903 −68.833 −7.868 −8.272 19.320 37.813 41.055
14.133 −41.902 31.805 −1.756 −14.177 43.868 11.641
−12.083 17.737 −34.047 −39.840 −23.661 −5.278 −16.336
−0.966 −16.708 15.892 −13.151 24.896 −15.475 −15.009
−8.042 −55.928 −49.741 6.401 22.916 7.723 −33.547
9.782 12.459 1.188 35.319 86.028 −17.089 −40.837
−4.638 0.034 −11.541 212.598 11.041 −22.593 −21.538
15.903 8.745 6.704 −19.141 16.523 −20.818 −22.114
−12.300 13.273 −17.47 −37.597 −20.431 34.868 −11.495
−10.505 −6.835 −1.971 12.994 −13.373 −4.711 72.699
−34.227 11.022 44.273 24.077 −12.956 28.668 −26.118

Table 2: The evaluated parameters of the model, along with its analogous proficiency criteria for the
suggested method and various fuzzy regression methods in Example 4.1

Method Cofficient MSM MAE COD MARE

Proposed

ρ = 0.298 0.812 17.25 0.95 5.914

h = 0.5

τ = 0.2

σ2 = 7.58

Icen and Demirhan

˜̂w0 = (−585.95; 250.564)T

˜̂w1 = (7.016; 2.693)T 0.675 25.928 0.842 13.674

˜̂w2 = (−6.925; 1.055)T

˜̂w3 = (−52.515; 20.12)T

˜̂w4 = (−0.404; 0.056)T

˜̂w5 = (14.456; 3.391)T

˜̂w6 = (−3.528; 0.895)T

Choi and Buckly

˜̂w0 = (−498.873; 208.564)T
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Method Cofficient MSM MAE COD MARE

˜̂w1 = (6.015; 2.693)T 0.604 31.251 0.702 18.041

˜̂w2 = (−5.744; 2.714)T

˜̂w3 = (−64.345; 14.456)T

˜̂w4 = (0.084; 0.107)T

˜̂w5 = (16.834; 2.543)T

˜̂w6 = (−2.562; 0.527)T

Kula and Apaydin

˜̂w0 = (−604.54; 179.08)T

˜̂w1 = (8.002; 3.265)T 0.619 30.125 0.76 16.021

˜̂w2 = (−5.865; 1.347)T

˜̂w3 = (−58.243; 13.845)T

˜̂w4 = (1.045; 0.0984)T

˜̂w5 = (11.007; 4.45)T

˜̂w6 = (−2.934; 1.178)T

Taheri and Kelkinnama

˜̂w0 = (−384.85; 301.005)T

˜̂w1 = (10.776; 3.25)T 0.618 29.289 0.762 16.10

˜̂w2 = (8.543; 2.143)T

˜̂w3 = (−45.976; 14.85)T

˜̂w4 = (−0.533; 0.184)T

˜̂w5 = (11.967; 4.445)T

˜̂w6 = (−2.395; 0.748)T

Zeng et al.

˜̂w0 = (−541.37; 242.78)T

˜̂w1 = (6.244; 2.936)T 0.663 26.851 0.830 15.025

˜̂w2 = (−7.036; 1.317)T

˜̂w3 = (−48.966; 17.745)T

˜̂w4 = (−0.327; 0.036)T

˜̂w5 = (11.966; 2.995)T

˜̂w6 = (−3.895; 1.045)T

Choi and Yoon

˜̂w0 = (−620.74; 266.94)T
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Method Cofficient MSM MAE COD MARE

˜̂w1 = (7.536; 1.927)T 0.68 27.086 0.827 13.559

˜̂w2 = (−8.045; 0.925)T

˜̂w3 = (−60.829; 15.932)T

˜̂w4 = (−0.638; 0.027)T

˜̂w5 = (12.953; 4.008)T

˜̂w6 = (−3.932; 0.637)T

Figure 1: ñ and ˜̂n values of the suggested model in Example 4.1

Example 4.2. (House Price Example). The proposed FSPQSVR is applied to the house cost model in this
example. The house cost data presented in Table 4 is sourced from Hao and Chiang [43]. In the aforesaid
dataset, m1 represents the quality of the materials, m2 indicates the space on the first floor, m3 indicates the
space on the second floor, and n represents the selling price (in 10, 000 yen). Note that m1 can have three
values, namely, 1, 2, and 3, which represent low, medium, and high grades of materials, respectively. By
considering the proposed FSPQSVR model in formula 2 and using the proposed algorithm, the currently
unidentified parameters associated with ρ and ˜̂wρ can be determined as described below:

Stage(1) Allow:

ρ̂=arg min
ρ∈{−1,...,−0.01,0,0.01,...,1}

CV (ρ, ŵ∗
ρ)

= arg min
ρ∈{−1,...,−0.01,0,0.01,...,1}

15∑
p=2

(
En∗ρ

p
− EQ

n
∗ρ
p

(ŵ∗(−p))

)2
,

Stage(2) Allow:

˜̂wρ̂=argmin
w̃

g (ρ̂, w̃)

= arg min
wp,lwp>0,rwp>0

15∑
p=2

ρη

(
D
(
ñ∗ρ̂
p , Q̃

ñ∗ρ̂
p
(w̃)
))

.
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The values of vp obtained from the ordinary least squares method are presented in Table 3, where vp = np−n̂p.
We obtain the Durbin-Watson test statistic as D = 0.86034. Furthermore, we want to test the hypothesis
H0 : ρ = 0 in contrast to the hypothesis H1 : ρ > 0. However, the value of D is not smaller than dL,α = 0.82
and is not greater than dU,α = 1.75. Therefore, the test for positive correlation is ineffective. Then, we
examine H0 : ρ = 0 against H1 : ρ < 0. Since (4 − D) = 3.13966 > dU,α = 1.75, the error terms are
uncorrelated. Table 5 summarizes the performance measurements for several fuzzy regression models. The
estimated parameters of the suggested regression model for w̃0, w̃1, w̃2, w̃3, h, τ , σ

2, and ρ in addition to its
proficiency measurements, are summarized in the same Table. In this example, the proficiency measures are
MSM = 0.89, MAE = 11.927, COD = 0.962 and MARE = 14.108, respectively. While the MAE value of
11.927 might appear numerically significant, it is important to consider the inherent variability and fuzziness
of the house price data, as well as the nature of the fuzzy error expressions in this real-world application. The
data’s characteristics, including its range and the presence of diverse material qualities (n1) and floor spaces
(n2, n3), contribute to the overall scale of the prediction errors. Nevertheless, as indicated by the high COD
value of 0.962, our model explains a substantial portion of the variance in the selling prices, demonstrating its
strong predictive capability within this context. Furthermore, as summarized in Table 5, the proposed method
consistently achieves a lower MAE compared to other established fuzzy regression methods, indicating its
superior performance in addressing this specific estimation problem. Hence, the suggested method performs
better than other fuzzy regression methods in situations with correlated fuzzy error expressions.

Table 3: The amounts of vp in Example 4.2

Observation vp Observation vp

1 48.994 9 −57.445
2 46.901 10 −49.116
3 4.202 11 −13.025
4 −13.841 12 −33.764
5 −3.366 13 67.344
6 −14.226 14 36.094
7 −23.373 15 26.240
8 −21.615

Figure 2: ñ and ˜̂n values of the suggested model in Example 4.2
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Table 4: Dataset used in Example 4.2

Observation ñ m1 m2 m3

1 (606; 30.30)T 1 38.09 36.43

2 (710; 35.50)T 1 62.10 25.50

3 (808; 40.40)T 1 63.76 44.71

4 (826; 41.30)T 1 74.52 38.09

5 (865; 43.25)T 1 75.38 41.40

6 (852; 42.60)T 2 52.99 26.49

7 (917; 45.85)T 2 62.93 26.49

8 (1031; 51.55)T 2 72.04 33.12

9 (1092; 54.60)T 2 76.12 43.06

10 (1203; 60.15)T 2 90.26 42.64

11 (1394; 69.70)T 3 85.70 31.33

12 (1420; 71.00)T 3 95.27 27.64

13 (1601; 80.05)T 3 105.98 27.64

14 (1632; 81.60)T 3 79.25 66.81

15 (1699; 84.95)T 3 120.50 32.25

Table 5: The evaluated parameters of the model, along with its analogous proficiency criteria for the
suggested method and various fuzzy regression methods in Example 4.2

Method Cofficient MSM MAE COD MARE

Proposed
ρ = 0.9 0.89 11.927 0.962 14.108

h = 5

τ = 0.08

σ2 = 5.5

Icen and Demirhan

˜̂w0 = (−258.07; 51.778)T

˜̂w1 = (278.554; 6.879)T 0.684 16.372 0.820 30.528

˜̂w2 = (7.987; 0.574)T

˜̂w3 = (5.255; 0.285)T

Choi and Yoon

˜̂w0 = (−258.07; 42.773)T

˜̂w1 = (255.82; 5.772, 1233498)T 0.725 15.268 0.836 28.386

˜̂w2 = (10.554; 0.623)T

˜̂w3 = (8.224; 0.232)T

Kula and Apaydin

˜̂w0 = (−233.38; 7.551)T

˜̂w1 = (266.82; 4.156)T 0.63 18.113 0.729 33.201

˜̂w2 = (9.262; 0.573)T
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Method Cofficient MSM MAE COD MARE

˜̂w3 = (5.7128; 0.427)T

Taheri and Kelkinnama

˜̂w0 = (−24325; 12.556)T

˜̂w1 = (239.4526.82; 4.156)T 0.627 18.923 0.722 33.982

˜̂w2 = (11.852; 0.652)T

˜̂w3 = (7.526; 0.329)T

Zeng et al.

˜̂w0 = (−268.65; 153)T

˜̂w1 = (248.225; 166)T 0.763 14.605 0.863 25.336

˜̂w2 = (725858; 0.296)T

˜̂w3 = (492368; 0.554)T

Choi and Buckley

˜̂w0 = (−236.884; 20.334)T

˜̂w1 = (220.884; 6.656)T 0.643 17.957 0.767 31.925

˜̂w2 = (10.565; 0.366)T

˜̂w3 = (8.256; 0.321)T

Example 4.3. (Simulation study). In this case, we examine the following fuzzy nonlinear regression model
via 10 simulated data sets of size j = 150:
Stage 1:

1. Generate a random sample of size j = 150 using LR−FNs listed below:

2. Assume that s̃p = (|mp − 1|/4+ 2| sin(π(1+ (mp − 1)/4))|+1+ ϵp; |0.1 exp(−|mp|/50)+ ϵ′p|)L in which

(a) ϵp ∼ N(0, 0.01) and ϵ′p ∼ N(0, 0.50).

(b) A random sample denoted as mp is taken from the uniform distribution defined as U(−10, 10).

(c) L(m) =
√
1−m2.

Stage 2:

1. For a randomly chosen P1 = {p11, p12, ..., p110} ⊆ {1, 2, 3, ..., 150}, Allow ñp = s̃p ⊕ P{10}, p ∈ P1.

2. For a randomly chosen P2 = {p21, p22, ..., p210} ∈ {1, 2, 3, ..., 150} − P1, Allow ñp = s̃p ⊕ (0; 1)L, p ∈ P2.

Stage 3: Assume that ñp = s̃p for p ∈ {1, 2, 3, ..., 150} − (P1 ∪ P2).
We use the classic Durbin-Watson test to evaluate H0 : ρ = 0 against H1 : ρ > 0. From formula 4, we can
easily deduce that the test statistic D is equal to 0.478744. Since D falls below dL,α = 1.65 with level of
significance α = 0.05, the correlation between the error expressions is positive. We compare the suggested
method with various popular fuzzy regression techniques, and the results of their performance measurements
are summed up in Table 6. Moreover, the performance measures of the suggested method and the estimated
quantities of w̃p and ρ are represented in Table 6. The evaluated values of h, τ , and σ2 are also given in this
Table. Regarding the MAE of 22.508 for the average model and 19.254 for the best model in the simulation
study, it is crucial to recognize that the simulated data, generated with specific LR−FNs and defined error
terms (ϵp ∼ N(0, 0.01) and ϵ′p ∼ N(0, 0.50)), inherently contains a certain level of uncertainty and fuzziness as
described in Stage 1 and Stage 2 of the data generation process. This intrinsic variability naturally contributes
to the magnitude of the observed MAE values. Despite these intrinsic data characteristics, the high COD
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values (e.g., 0.722 for the average model) demonstrate that our model effectively captures the underlying
relationships in the simulated fuzzy nonlinear regression model. More critically, as illustrated in Table 6, our
proposed method consistently shows improved MAE values compared to other fuzzy regression techniques
across the simulated datasets, confirming its robust performance under these challenging conditions. As a
result, it is evident that the newly implemented procedure outperformed the other approaches in this instance.

Table 6: The evaluated parameters of the model, along with its analogous proficiency criteria for the
suggested method and various fuzzy regression methods in Example 4.3.

Method Cofficient MSM MAE COD

Proposed Average model 0.513 22.508 0.722

Best Model
ρ = 0.412 MSM = 0.597 MAE = 19.254 COD = 0.746
h = 5

τ = 0.08
σ2 = 5.5

Figure 3: ñ and ˜̂n values of the suggested model in Example 4.3

5 Conclusion

In this paper, the main goal was to introduce a new approach for a semiparametric quantile-based regression
model, which integrates a support vector machine approach to enhance its estimation capabilities, precise
regressors, and fuzzy outcomes. Since the assumption that fuzzy error terms are always independent in fuzzy
regression models is unrealistic, we study the proposed method in situations where there is a correlation
among the fuzzy residual expressions. To do this, we applied a generalized difference and absolute error
distance criterion to LR-fuzzy quantities that are not symmetric. Depending on the sum of absolute residuals
and cross-validation measurements, we suggested a hybrid approach to estimate the optimum amounts of the
autocorrelation measure and fuzzy multipliers. In order to detect the presence of correlation between fuzzy
error terms, we employed the traditional Durbin-Watson test. Additionally, we examined the efficiency of the
suggested regression model based on the quantile method and contrasted it with other well-founded methods
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using various widely used goodness-of-fit metrics. According to the numerical results, the suggested fuzzy
semi-parametric quantile-based regression method produces more accurate results than alternative methods.
Additionally, the outcomes demonstrated that when there was autocorrelation among fuzzy error expressions,
the recommended strategy performed better. Future work could focus on exploring the existence of extreme
points in the dataset. Additionally, expanding the suggested approach to an FSPQSVR procedure when
the regressors and outcomes are fuzzy datasets could be another subject for future research.
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