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Abstract 9 

Introduction: Bioactive glasses are highly valuable in orthopedic therapeutic applications due to their inherent 10 
bioactive properties, ability to stimulate tissue regeneration, and enhancement of the healing process. 11 
Methods: In this study 50P2O5–50CaO calcium phosphate bioactive glass was synthesized by melt-quenching 12 
method, and molecular dynamic simulation was used to evaluate properties. The structural and mechanical 13 
properties were analyzed using computational techniques (LAMMPS). 14 
Findings: The results showed that the P–O bond lengths were 1.47 Å, and 1.65 Å, the O–O bond length was 2.53 15 
Å, and the Ca–O was 2.39 Å. The O-P-O, P-O-P, and Ca–O–Ca bond angles were measured at 160°, 110.1°, and 16 
80°, respectively, and the O-Ca-O bond was measured at 60°, and 90°. The calcium (Ca) diffusion coefficient in 17 
1500K, 2000K, and 2500K was 3.33 × 10⁻16  m²/s, 5 × 10⁻16 m²/s, and 1.66 × 10⁻14 m²/s, and for phosphorus (P) 18 
was 3.33 × 10⁻16 m²/s,  1.66 × 10⁻14 m²/s,  and 5 × 10⁻16 m²/s, respectively. The study of the mid-range structure 19 
of bioactive glass indicated that the ratio of bridging and non-bridging oxygens were 28.47%, and 71.53%, and 20 
the average number of arrangement for Ca and P atoms at cut-off radius of 3.0 Å, and 2.0 Å, were 4.25, and 3.7, 21 
and the density was measured as 2.13 g/cm3. The low percentage of bridging oxygens (28.47) in the simulated 22 
bioactive glass indicates a low network connection, a higher rate of glass network degradation, and the release of 23 
ions from its surface, which makes it possible to use it in orthopedic applications. 24 

Keywords: 50P2O5–50CaO calcium phosphate bioactive glass, Molecular dynamics simulation, Bridging and 25 
non-bridging oxygen, Amorphous structure, Bond length and angle. 26 

Extended Abstract 27 

Introduction 28 
Bioceramics such as zirconia and alumina have received much attention in medical applications due to their 29 
special properties such as suitable mechanical strength, high biocompatibility, and the ability to bond with 30 
surrounding tissue as dental implants and artificial joints (1-3). Also, bioactive glasses are a group of bioceramics 31 
with the ability to stimulate the process of bone tissue repair, which have been investigated by forming a 32 
hydroxyapatite layer on their surface after immersion in a simulated body solution and bonding with the 33 
surrounding bone tissue as one of the most widely used biomaterials in wound healing, dentistry and bone tissue 34 
engineering (4-6). Silicate-based (9,10) borate-based (7,11), and phosphate-based bioactive glasses (8,11) have 35 
been studied, and according to the results, a higher dissolution rate and a faster release of ions from the surface of 36 
phosphate-based bioactive glasses than silicate-based bioactive glasses were reported (12). In addition, the 37 
dissolution mechanism of phosphate-based bioactive glasses with a chemical composition very similar to the bone 38 
mineral phase is based on the hydrolysis of the P-O-P bonds in them, and the dissolution rate of bioactive glasses 39 
after being immersed in a simulated solution is dependent on the amount P2O5 in their chemical composition (5). 40 
Meanwhile, phosphate-based bioactive glasses, in addition to being used in bone tissue engineering 41 
therapeutic applications, have also been investigated and used due to their potential biological properties 42 
in repairing soft tissues such as ligaments and muscles (13). It is important to mention that improved 43 
mechanical strength, high bioactivity, and non-cytotoxicity have been reported in phosphate-based 44 
bioactive glasses with a chemical composition of 50P2O5–50CaO (14,15).  45 
Molecular dynamics simulation, while providing valuable information on the structure and properties of biological 46 
materials, is one of the effective methods in investigating and understanding the amorphous structure of bioactive 47 
glasses (16-19). Also, in molecular dynamics simulation, by integrating Newton's second law and Verlet's 48 
velocity algorithm, the position between atoms can be studied and calculated at each time step (20). The 49 
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possibility of studying the relationship between the structure and properties of materials in detail leads to an 50 
improvement in the rate of reduction in the cost of studies and a better understanding of the structures (21-23). 51 
Therefore, in this research, the molecular dynamics simulation of 50P2O5–50CaO calcium phosphate bioactive 52 
glass synthesized by the melt-quenching method was carried out using LAMMPS software. Its short- and medium-53 
range structure was determined by analyzing the size of interatomic bonds, the angles between the bonds, the 54 
percentage of bridging and non-bridging oxygens, the coordination number of phosphorus and oxygen atoms, and 55 
the penetration and density coefficients. 56 

Materials and Methods 57 

In this study, the melt-quenching method was employed to investigate the chemical composition of 50P2O5–58 
50CaO calcium phosphate bioactive glass utilizing LAMMPS software, along with the Coulomb long-range force 59 
field and the Born-mayer-huggins short-range force field. Also, to simulate the synthesized bioactive glass via the 60 
melt-quenching method, the simulation box was heated to a temperature of 5000 K and subsequently cooled 61 
rapidly to 300 K to achieve the glass structure. Furthermore, a structural analysis of the bioactive glass was 62 
conducted using radial and angular distribution functions, average mean squared displacement of atoms, and 63 
diffusion coefficients. Additionally, the ratio of bridging to non-bridging oxygens and phosphorus coefficients 64 
was determined based on the atomic count. 65 

Findings and Discussion 66 

Fluctuations observed before the application of the large focal ring in the results of temperature changes 67 
over time suggest that the structure of the simulated bioactive glass was not in equilibrium. However, 68 
following the application, the fluctuations decreased significantly after 1.2 nanoseconds, suggesting 69 
that an equilibrium structure was achieved. Also, four peaks are observable in the pair distribution 70 
function: for the P-O bond, the peaks are located at 1.47 and 1.65 Å; for the Ca-O bond at 2.29 Å; 56 71 
and for the Ca-P bond at a distance of 3.70 Å. Additionally, peaks for the P-P and O-O bonds are 57 72 
observed at 3.25 and 2.53 Å, respectively, with the presence of two peaks attributed to the structure of 73 
the PO4 molecule, which possesses a double bond that is shorter than other P-O bonds. Besides, the 74 
values for the P-P, Ca-Ca, and Ca-P bonds are less significant as these bonds are not directly present in 75 
oxide structures, with an oxygen atom separating them. According to the analysis of the angular 76 
distribution function and the radial distribution function, the sizes of the P-O bonds were reported to be 77 
1.47 and 1.65 Å, while the O-O and Ca-O bonds were measured at 2.53 and 2.29 Å, respectively. The 78 
angles of O-P-O, P-O-P, and Ca-O-Ca were measured at 160°, 110°, and 80°, respectively, and the O-79 
Ca-O angle was measured at 60° and 90°. Notably, there is no distinct peak for the Ca-O-P angle due 80 
to the absence of specific bonds, which depend on the composition and arrangement of the atoms. 81 
Generally, most angles fall within the range of 130° to 160°. The total radial distribution function results 82 
further indicate structural order at atomic intervals, with irregularities at intervals of 3.0 Å. Additionally, 83 
based on the slope values from the mean square displacement graphs and the Einstein equation, the 84 
diffusion coefficient of calcium at temperatures of 1500, 2000, and 2500 K was calculated to be 3.33 × 85 
10-16 m²/s, 5 × 10-16 m²/s, and 1.66 × 10-14 m²/s, respectively. For phosphorus atoms at the same 86 
temperatures, the coefficients were 3.33 × 10-16 m²/s, 1.66 × 10-16 m²/s, and 5.33 × 10-16 m²/s. The ratio 87 
of bridging and non-bridging oxygens was measured at 28.47% and 71.53%, respectively, with a cut-88 
off radius of 2.0 Å. The ratios of P-atoms to one another were reported at 0%, 0.65%, 7.42%, 13.87%, 89 
and 78.06% for compound numbers 0, 1, 2, 3, and 4, respectively. Furthermore, the average 90 
coordination numbers for the calcium and phosphorus atoms were calculated at the cut-off radius of 2.0 91 
and 3.0 Å, yielding values of 3.7 and 4.25, respectively. The bioactive glass density of 50P2O5–50CaO 92 
was measured at 2.13 g/cm³ at a temperature of 300 K, indicating that the cooling rate of the glass can 93 
influence the compound density, with higher cooling rates resulting in lower density. 94 

Conclusion 95 

The structure of 50P2O5–50CaO calcium phosphate bioactive glass was investigated using molecular 96 
dynamics simulations. The results indicated a low structural correlation, which was attributed to the 97 
ratio of bridging and non-bridging oxygens, facilitating a more rapid release of ions from the glass 98 
surface. Moreover, the calculated diffusion coefficients showed that the increased diffusion rate of 99 
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calcium atoms led to a faster release of phosphorus atoms from the structure. This behavior highlights 100 
the potential of the studied bioactive glass for orthopedic applications. 101 
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