
Copyright © Author(s).

Publisher: Islamic Azad University – Zanjan Branch

 J IMPCS (2025) 19: 1-7

 DOI 10.71856/IMPCS.2025.1200970

A Reliability-Focused Adaptation of Scrum: An Empirical Study on

Software Reliability in Agile Teams

Taghi Javdani Gandomani*

Associate Professor, Department of Computer Science, Faculty of Mathematical Sciences, Shahrekord University,

Shahrekord, Iran. *Corresponding Author javdani@sku.ac.ir

Article Info ABSTRACT

Article history:

 Received: 24 Dec 2024

 Accepted: 3 Feb 2025

Keywords:

Agile Software Development,

Case Study,

Scrum,

Software Reliability.

Software products should be reliable enough to gain customer satisfaction. Paying more attention

to the development of highly reliable software products requires additional time and effort in

software projects, often leading to increased development overhead. This issue presents a challenge

when employing Agile methods, which prioritize flexibility and rapid iterations. While Agile

methodologies emphasize adaptability, integrating extra practices to ensure objective reliability

remains a critical concern. In recent years, the demand for high-quality and failure-resistant

software has significantly increased, necessitating new strategies to incorporate reliability

engineering into Agile frameworks. Given the growing complexity of modern software systems,

achieving a balance between agility and reliability is crucial for software development teams.

This paper investigates the combination of Scrum, the most widely adopted Agile method, with

software reliability engineering (SRE) practices. The study evaluates the additional cost of

implementing reliability-focused practices in a Scrum-based project through a case study. A

comprehensive analysis was conducted to assess the impact of these practices on project timelines,

software defects, and overall team performance. The study also examined the extent to which

reliability-focused modifications influence team productivity and customer satisfaction. The

results indicate that the modifications made to Scrum led to approximately 3.9% higher human

effort. However, the integration of SRE practices significantly reduced the number of failures and

rework occurrences, demonstrating the effectiveness of the proposed approach. Moreover, the

study highlights the importance of structured reliability assessment techniques, which can aid

teams in proactively identifying and mitigating potential software failures before product

deployment.

These findings suggest that, despite a marginal increase in project cost, the enhanced reliability

justifies the investment. The proposed methodology can serve as a model for Agile teams seeking

to improve software quality while maintaining development speed and flexibility. This study

highlights the potential of balancing agility and reliability in software development, offering

valuable insights for Agile teams aiming to improve software quality without compromising

efficiency.

Research Paper

https://sanad.iau.ir/Journal/impcs/Article/1200970

2 A Reliability-Focused Adaptation of Scrum/ T. Javdani Gandomani

I. Introduction

Software teams and companies continually are working on

employing new methods, techniques, and processes to

increase customer satisfaction and subsequently take more

market share in the software industry. Employing more

flexible and productive software development

methodologies, development frameworks, and best

development practices are parts of their strategies.

Scrum is the most popular Agile software methodology,

recently employed by software teams [1]. This method,

which is mainly known as a development framework, is

often used to manage software projects because of its focus

on project management. Scrum defines a small set of roles,

activities, and artifacts to simplify software development.

However, adapting to such an Agile methodology is not as

easy as expected [2-4]. Meanwhile, since the Agile approach

generally, and Scrum particularly promise higher customer

satisfaction through faster return on investment, embracing

the requested changes, and such tempting values, software

teams are interested in adapting with Scrum despite its

adoption challenges [5, 6].

The reliability of a software product is a quality factor that

many software teams pay great attention to it [7-9]. Also, a

reliable software product gets more customer satisfaction.

Indeed, software teams try to get particular practices to

ensure that their artifacts are reliable enough before their

final release. Thus, they need to adapt to reliability focused

practices or processes to get a higher degree of reliability in

their development methodologies [10]. Software Reliability

Engineering (SRE) is a part of Software Engineering, which

has mainly focused on reliability-related issues [11, 12].

A big issue is employing non-agile practices while using

an Agile methodology in software development. Since now,

no Agile specific reliability process has been introduced [13-

16]. So, applying any SRE processes within any Agile

method may lead to less agility, which can be contradictory

with Agile values promised in the Agile manifesto [17, 18].

This study mainly aimed to show to what extend the project

metrics can be affected by employing SRE activities in a

Scrum project.

The rest of the paper is organized as follows: Section 2

briefly explains the Scrum framework. Section 3 introduces

the SRE process, followed by Section 4, which shows

Scrum's combination and the SRE process. Section 5 deals

with the results of the application of the proposed framework

in a Case Study. Finally, Section 6 concludes the paper and

gives some research insights for future work.

II. Scrum

Scrum was addressed by Ken Schwaber and Jeff

Sutherland in the early 1990s and formally introduced in

1995 [19]. After that, by the creation of Agile manifesto,

Scrum has been considered as an Agile methodology. Scrum

emphasizes flexibility, openness, courage, trust, focus,

collaboration, and empowerment [20, 21]. These values, as

Scrum developers claim, can facilitate project management

and decrease the risks that a software project may encounter.

Indeed, Scrum acts more like a project management

framework rather than a software development process. This

is the main reason why software teams employ Scrum

together with other Agile methodologies.

Scrum defines a simple software development framework

by considering three artifacts, including Product Backlog,

Sprint Backlog, and Sprint Burndown chart. Product

Backlog contains customer requirements list, known as User

Stories, which are sorted in based on their priority from the

customer perspective. Sprint Backlog is a subset of Product

Backlog picked up by the Scrum team to develop iteration,

known as Sprint. Sprint Burndown chart is the Scrum tool to

show the project's progress based on the remaining work.

Scrum provides three roles, only including Scrum Master,

Product Owner, and Development team members. Scrum

Master helps Scrum team members to do their tasks and

avoids them from unpredictable risks and challenges. He/she

acts as a servant leader and promotes self-organization. The

Product Owner is a customer representative who creates and

manages the Product Backlog and defines software project

direction. All technical developers are known as Scrum team

members or simply Scrum developers. They are responsible

for software development activities.

Scrum also has a few main activities, including Sprint

Planning, Sprint execution, Sprint Review, and

Retrospective meeting. In Sprint Planning, Scrum team

members select some of the User Stories from Product

Backlog and create Sprint Backlog. They also break the

selected User Stories into several tasks to be done in the

comping Sprint. In Sprint execution, Scrum team members

try to realize the content of the Sprint Backlog. Each Sprint

is a time-box cycle, often 2 to 4 weeks. Each day starts with

a short meeting called "Scrum daily meeting" to review the

challenges faced with the past day and talk about their

today's work. At the end of each Sprint, the Scrum team sits

with the customer to review the newly developed product

increment in a meeting called Sprint Review meeting.

Finally, Scrum team members review the past Sprint and

adjust their development process if necessary. The scrum

framework is shown in Figure 1.

3 A Reliability-Focused Adaptation of Scrum/ T. Javdani Gandomani

Fig. 1. Scrum Framework

Scrum does not force the team to employ specific

activities, methods, and practices besides its defined ones.

But usually, software teams need to use particular practices

to achieve other development goals such as the development

of a defect-free product, reducing the development risks, and

so on. The development of highly reliable software products

is another goal of Scrum development. However, such

practices may reduce the agility promised by Scrum.

III. Software Reliability Engineering

Reliability is a key factor in the success of a software

product mainly because it is focused on by its users. The

focus of SRE is primarily on reliability, not defects. SRE

deals with the measurement and improvement of the

reliability of software products. Therefore, SRE needs a

quantitative approach to measure the reliability of each

software product in real environments. To do this, various

practices can be defined and employed while the software is

under construction.

ANSI/IEEE defined software reliability as "the

probability of failure-free software operation for a specified

period in a specified environment" [22]. The roots of

software failures are errors and faults during software

development phases and activities, including requirements

definition, analysis, design, implementation, test, and

deployment [11]. However, most often, these errors and

faults remain hidden until a failure occurs.

Software reliability is a concern in the field of "software

quality." Software engineers need to use various quantitative

data and information to select the most suitable strategies to

deal with reliability engineering in their software projects.

Many practices are defined in SRE to handle reliability-

related issues in a software project. Some of these practices

are the definition of reliability objectives, using operational

profiles to manage and guide the test process, failure

tracking, using reliability growth strategies, and releasing the

product only when meeting reliability objectives [11, 23].

John Musa [11] defined a particular process to organize

SRE, as shown in Figure 2.

Fig. 2. The general process of Software Reliability Engineering

[11]

The definition of the expected product and highlighting its

specific characteristics is the first phase of SRE. To measure

SRE metrics, this process suggests using operational profiles

that contain a list of operations and their occurrence

frequency. At the same time, particular metrics and measures

need to be defined and used to ensure providing a

quantitative method to assess the reliability of the product.

After that, the team should be prepared for testing by precise

planning and estimation. Then, the required and possible

tests should be run. Simultaneously, the test should be

directed so that risk-prone areas should be tested carefully

and ensure that all paths are covered by at least one test case

[11, 14, 24, 25].

The application of this process needs proper human

resources and may affect the cost and time of the project

[26]. As mentioned earlier, this can be a severe threat to the

project cost. Particularly, for lightweight software

development methodologies, like Scrum, it would also be a

threat to the agility of the development framework [27, 28].

However, paying the objective reliability is so important that

it is necessary to make a clear decision about it. Agile teams

often worry about additional costs they need to pay for

reliability [13, 16, 26, 29]. This is the main reason for

conducting this study.

IV. The Proposed Reliable Scrum

In this study, a customized version of the Scrum

framework has been proposed and then employed in a Case

Study. Figure 3 shows the proposed framework.

A. Changes made to Scrum framework

As shown in the Figure 3, three changes, including one

role, one artifact, one activity, have been made to the Scrum

framework to focus on the SRE. The Reliability Engineer is

responsible for directing the Scrum team to establish the

SRE process. This role works with the Product Owner for

managing Product Backlog and adding reliability-related

items, if necessary. Also, he/she works together with Scrum

developers to clarify those items during each Sprint. Also,

4 A Reliability-Focused Adaptation of Scrum/ T. Javdani Gandomani
the Reliability Engineer is directly responsible for creating

and managing the Operational profiles document as an extra

added artifact. This artifact is the same as defined in the SRE

process [11]. Finally, at the end of each Sprint and before

starting Sprint Review, Software Reliability Assessment

should be performed by Reliability Engineer, Product

Owner, and Scrum Team Members to ensure they have

committed to the expected reliability.

Fig. 3. The reliability-focused version of Scrum

B. Case Study

This study has been conducted in a software company that

had more than 30 software developers. They were well-

adopted Scrum framework for about three years. This

company was working in core banking systems for more

than one year. To conduct this study, a particular sub-system

was selected. This sub-system was a part of a banking

mortgage system that was estimated to be implemented in 7

two-week Sprints by about 3000 person-hours. In this study,

two teams were assigned voluntarily; each consists of 5

developers. Team 1, Control Team (CT), worked on the

project without considering SRE and its related practices.

Team 2, Study Team (ST), started the project using the

customized Scrum framework, as depicted in Figure 3. It

should be noted that all ST members participated in a one-

day workshop to be familiar with the proposed framework

and SRE related aspects in the coming project. Fortunately,

senior management agreed that both teams work

simultaneously on the same sub-system. Also, both teams

had almost the same technical skills and experiences and

well-familiar with the Scrum framework.

C. Metrics

Although both teams had five developers, one part-time

expert as Reliability Engineer has been added to ST. At first

glance, it seemed that the addition of this expert would have

led to an increase in the human effort in ST, but, the

researchers hoped that by focusing on SRE and in turn,

proper test management and distribution, the reduction of

human effort and cost is not far off. To measure the

effectiveness of the framework in its defined goal, some

metrics have been considered, and their values have been

collected manually during each Sprint. These metrics are

as follows:

 Person-hours in each Sprint (PH): this metric

shows the real amount of human effort in each

Sprint.

 The number of failures (NF): This metric shows

the number of failures reported by customers

after delivery of each Product Increment.

Indeed, the customer worked with the delivered

Product Increment and listed the occurred

failures.

 Number of Re-works (NR): This factor indicates

the number of re-works caused by failure (after

delivery).

Besides these criteria, some other metrics have been

collected, but since they are not directly related to SRE, they

are ignored in this article

V. Results and Discussion

As mentioned in the previous section, three main metrics

were focused in the Case Study. This section shows the

results of each metrics during the completed project.

A. Person-hours/ Project cost

This factor was used to compare the labor cost in both

teams, CT and ST. Table 1 shows the value of this metric in

the completed Sprints in both teams.

TABLE I Person-hours in the Case Study

Sprints SP1 SP2 SP3 SP4 SP5 SP6 SP7 ALL

PH in

CT
380 390 420 400 410 420 410 2830

PH in
ST

410 420 430 420 410 430 430 2940

Figure 4 shows person-hours in all Sprints during the Case

Study. As shown in the figure, it seems that in all the Sprints,

ST paid more person-hour compared to the CT team. In CT,

normal teamwork time could be about 400 hours in each

Sprint. This number could be about 440 for ST because they

hired a half-time Reliable Engineer. However, in 5 Sprints

(SP3 to Sp7), CT had extra work, more than the maximum

number of working hours allowed in each Sprint. But it

seems that ST usually works without additional work. This

is known as a good sign for the team's workflow.

5 A Reliability-Focused Adaptation of Scrum/ T. Javdani Gandomani

Fig. 4. Number of staff-hours spent during the project

Comparing total human effort in both teams shows that

2830 hours have been spent in the CT. This number has

increased to 2940 hours in the ST team. Indeed, the cost of

the project by employing SRE has increased by 3.9%.

B. Number of failures

The second metric was the number of failures reported by

customers after each small release, i.e., each Sprint. The data

related to this metric were collected from the end of the

second Sprint to project completion, Sprint by Sprint. Table

2 shows these data.

TABLE II Number of failures reported by the customer

Sprints SP1 SP2 SP3 SP4 SP5 SP6 SP7 ALL

NF in
CT

- 4 4 5 5 6 7 31

NF in

ST
- 4 4 4 3 3 3 21

As shown in Table 2, it seems that employing the proposed

framework led to a notable decrease in the number of

detected failures. Although this result was expected, the

reduction rate was amazing. Indeed, ST experienced about

30% less failure compared to CT. Figure 5 shows the data

regarding the number of reported failures.

Fig. 5. Number of failures reported by the customer

Figure 5 shows that detected failure was increasing in CT,

while this metric was declining in ST. This indicated the

product developed by CT would encounter more risk of

failure in the future. This fact the reality that managers

need to consider in their marketing decisions.

C. Number of re-works

This metric was used to count the number of re-works

related to the failures. It should be said that most often,

failures can be repaired without re-work. But, sometimes, a

failure leads to re-work. This increases the cost and risk of

the development process as well as customer dissatisfaction.

Table 3 shows the data related to this metric.

TABLE III The number of re-works rooted in the occurred

failures

Sprints SP1 SP2 SP3 SP4 SP5 SP6 SP7 ALL

PH in
CT

380 390 420 400 410 420 410 2830

PH in

ST
410 420 430 420 410 430 430 2940

Table 3 shows a substantial decrease in the number of re-

works in ST. Indeed, ST experienced less than about 50%

regarding the number of re-works compared to CT. Figure 6

also shows these data. Figure 6 shows that CT encountered

more re-works in all Sprints. This is the main reason that CT

should spend extra effort in each Sprint.

Fig. 6. Number of necessary re-works reported by the customer

Reviewing the results shows that employing the proposed

framework had led to significant findings. However, the

project cost increased a little bit; the number of occurred

failures and re-works were decreased dramatically.

VI. Discussion

As mentioned in the previous sections, Agile software

development and its methodologies have left several

development issues untouched. This is mainly due to

maintaining the flexible nature of the promised Agile

methods. Software reliability and its required process are one

of such issues. However, SRE and its process play a vital role

in software engineering and software development

6 A Reliability-Focused Adaptation of Scrum/ T. Javdani Gandomani
methodologies, and neglecting such a process can cause a lot

of damage to the software products [18, 24].

As explained in this study, the proposed version of Scrum

tries to handle the potential reliability risks in Scrum

projects. The changes made to the Scrum framework are to

manage the SRE process within the Scrum framework.

However, no change has been made on each Sprint structure,

as addressed by other researchers [30]. The new role,

Reliability Engineer, is responsible for handling SRE issues

during the Scrum project. Adding new roles is a common

strategy for managing specific concerns in Agile

methodologies [31-33]. This is the same for new artifacts and

activities too.

The revised version of Scrum results in some

improvements and advantages in software development. The

most significant improvement was on the number of failures

reported by the customer. A 30% reduction in this item is

amazing and heralds the efficiency of the proposed

framework. However, since the related works have not

reported any quantitative improvement, this study cannot

compare this achievement to the previous studies.

Another achievement was a severe reduction in the

number of re-works rooted in the occurred failures. This

benefit leads to a reduction in the project cost directly.

However, in the Case Study reported in this research, the

project's person-hour increased by 3.9%. Adding one person,

i.e., a Reliable Engineer, obviously increases the project cost,

but applying the SRE process reduces re-works and project

cost. Nonetheless, increasing the project's cost in this

situation seems to be normal, as addressed in the literature

[9, 29, 30].

VII. CONCLUSION

Considering software development reliability is an

important factor that software teams and companies pay

considerable attention to it. However, focusing on reliability

results in more development time and cost. In Agile

methodologies, due to their processes' weight-light nature,

they paid less attention to extra tasks regarding SRE.

Conducting a Case Study research, the authors tried to

investigate considering SRE related practices while using

Scrum. To do this, a customized version of Scrum was

developed in which one new role, one new artifact, and one

new activity were added to the Scrum framework.

Employing this framework in a Case Study showed 3.9%

extra human effort in a software project. However, the results

showed a dramatic decrease in the number of failures that

occurred as well as a number of re-works. This showed that

it seems that it worth employing software reliability practices

together with Scrum.

This framework needs to be applied to other projects to

assess the results. Also, the agility degree of the customized

Scrum would be evaluated quantitatively in the future study.

ACKNOWLEDGEMENTS

The author would like to express his gratitude to all the

developers and managers who participated in this study.

Without their support, this study could not have been

completed.

REFERENCES

[1] VersionOne, "14 annual state of Agile report," 2020.

Accessed: June 2020. [Online]. Available:

https://stateofagile.com/#ufh-c-7027494-state-of-

agile

[2] T. J. Gandomani and M. Z. Nafchi, "Agile transition

and adoption human-related challenges and issues: A

Grounded Theory approach," Computers in Human

Behavior, vol. 62, pp. 257-266, 2016.

[3] T. J. Gandomani, H. Zulzalil, A. A. A. Ghani, A. M.

Sultan, and M. Z. Nafchi, "Obstacles to moving to

agile software development; at a glance," Journal of

Computer Science, vol. 9, no. 5, pp. 620-625, 2013,

doi: 10.3844/jcssp.2013.620.625.

[4] D. A. Lawong and O. Akanfe, "Overcoming team

challenges in project management: The scrum

framework," Organizational Dynamics, p. 101073,

2024.

[5] T. Javdani Gandomani and M. Ziaei Nafchi, "An

empirically-developed framework for Agile transition

and adoption: A Grounded Theory approach," Journal

of Systems and Software, vol. 107, pp. 204-219, 2015,

doi: 10.1016/j.jss.2015.06.006.

[6] B. A. A. Ammourah and S. A. Pitchay, "Challenges of

Applying Scrum Model and Knowledge Management

for Software Product Management," in RITA 2018:

Springer, 2020, pp. 123-130.

[7] Q. Li and H. Pham, "A generalized software reliability

growth model with consideration of the uncertainty of

operating environments," IEEE Access, vol. 7, pp.

84253-84267, 2019.

[8] P. Roy, G. S. Mahapatra, and K. N. Dey, "Forecasting

of software reliability using neighborhood fuzzy

particle swarm optimization based novel neural

network," IEEE/CAA Journal of Automatica Sinica,

vol. 6, no. 6, pp. 1365-1383, 2019.

[9] U. Samal and A. Kumar, "Metrics and trends: a

bibliometric approach to software reliability growth

models," Total Quality Management & Business

Excellence, vol. 35, no. 11-12, pp. 1274-1295, 2024.

[10] Y.-S. Huang, K.-C. Chiu, and W.-M. Chen, "A

software reliability growth model for imperfect

debugging," Journal of Systems and Software, vol.

188, p. 111267, 2022.

[11] J. D. Musa, Software reliability engineering: more

reliable software, faster and cheaper. Tata McGraw-

Hill Education, 2004.

[12] S. Khurshid, A. Shrivastava, and J. Iqbal, "Effort

based software reliability model with fault reduction

factor, change point and imperfect debugging,"

International Journal of Information Technology, pp.

1-10, 2019.

[13] G. Islam and T. Storer, "A case study of agile software

development for safety-Critical systems projects,"

Reliability Engineering & System Safety, p. 106954,

2020.

https://stateofagile.com/#ufh-c-7027494-state-of-agile
https://stateofagile.com/#ufh-c-7027494-state-of-agile

7 A Reliability-Focused Adaptation of Scrum/ T. Javdani Gandomani
[14] P. Sharma and A. L. Sangal, "Soft Computing

Approaches to Investigate Software Fault Proneness

in Agile Software Development Environment," in

Applications of Machine Learning: Springer, 2020,

pp. 217-233.

[15] M. F. M. Fudzee and J. Wadata, "A Mechanism to

Support Agile Frameworks Enhancing Reliability

Assessment for SCS Development: A Case Study of

Medical Surgery Departments," in Recent Advances

on Soft Computing and Data Mining: Proceedings of

the Fourth International Conference on Soft

Computing and Data Mining (SCDM 2020), Melaka,

Malaysia, January 22–⁠ 23, 2020, 2019, vol. 978:

Springer Nature, p. 66.

[16] S. Ali, Y. Hafeez, S. Hussain, and S. Yang, "Enhanced

regression testing technique for agile software

development and continuous integration strategies,"

Software Quality Journal, pp. 1-27, 2019.

[17] K. Beck, A. Cockburn, R. Jeffries, and J. Highsmith.

"Agile manifesto." http://www.agilemanifesto.org

(accessed Feb. 2020.

[18] S. Dwivedi and N. K. Goyal, "Effect of Fault

Correction Delay on Software Reliability Modelling

in Agile Software Development," in International

Conference on Reliability, Safety, and Hazard, 2024:

Springer, pp. 795-802.

[19] K. Schwaber, "Scrum development process," in

Business object design and implementation: Springer,

1997, pp. 117-134.

[20] M. Cohn, Succeeding with Agile: Software

Development Using Scrum. Boston, MA: Addison-

Wesley Professional, 2009.

[21] M. Hron and N. Obwegeser, "Why and how is Scrum

being adapted in practice: A systematic review,"

Journal of Systems and Software, vol. 183, p. 111110,

2022.

[22] ANSI/IEEE, "Standard Glossary of Software

Engineering Terminology," 1991.

[23] M. R. Lyu, Handbook of software reliability

engineering. IEEE computer society press CA, 1996.

[24] K. Sahu and R. Srivastava, "Revisiting software

reliability," in Data Management, Analytics and

Innovation: Springer, 2019, pp. 221-235.

[25] U. Samal and A. Kumar, "Empowering software

reliability: Leveraging efficient fault detection and

removal efficiency," Quality Engineering, vol. 37, no.

1, pp. 118-129, 2025.

[26] W. D. Van Driel, J. W. Bikker, M. Tijink, and A. Di

Bucchianico, "Software reliability for agile testing,"

Mathematics, vol. 8, no. 5, p. 791, 2020.

[27] N. Barraza, "Software Reliability Modeling for

Dynamic Development Environments," in Recent

Advancements in Software Reliability Assurance:

CRC Press, 2019, pp. 29-37.

[28] P. Jain, A. Sharma, and L. Ahuja, "A customized

quality model for software quality assurance in agile

environment," International Journal of Information

Technology and Web Engineering (IJITWE), vol. 14,

no. 3, pp. 64-77, 2019.

[29] S. Rawat, N. Goyal, and M. Ram, "Software

reliability growth modeling for agile software

development," International Journal of Applied

Mathematics and Computer Science, vol. 27, no. 4,

pp. 777-783, 2017.

[30] S. Munawar, R. Yousaf, and M. Hamid, "Extended

Scrum Process Model Using Software Reliability

Engineering Concerns," Journal of Information

Communication Technologies and Robotic Applications, pp. 1-

10, 2018.

[31] M. Esteki, T. Javdani Gandomani, and H. Khosravi

Farsani, "A Risk Management Framework for

Distributed Scrum using PRINCE2 Methodology,"

Bulletin of Electrical Engineering and Informatics,

vol. 9, no. 3, 2020.

[32] M. Mousaei and T. Javdani Gandomani, "A new

project risk management model based on scrum

framework and Prince2 methodology," International

Journal of Advanced Computer Science and

Applications, vol. 9, no. 4, pp. 442-449, 2018, doi:

10.14569/IJACSA.2018.090461.

[33] M. Afshari and T. J. Gandomani, "A novel risk

management model in the Scrum and extreme

programming hybrid methodology," International

Journal of Electrical & Computer Engineering (2088-

8708), vol. 12, no. 3, pp. 2911-2921, 2022, doi:

10.11591/ijece.v12i3.

http://www.agilemanifesto.org/

