
Transactions on Fuzzy Sets and Systems (TFSS)

URL: https://sanad.iau.ir/journal/tfss/

Online ISSN: 2821-0131

Vol.5, No.1, (2026), 97-114

DOI: https://doi.org/10.71602/tfss.2026.1200900

Article Type: Original Research Article

Fuzzy Bayesian, E-Bayesian, and Hierarchical Bayesian Estimations of
R = P (X>Y ) in Weibull Distribution under Type II censored Data

Kazem Fayyaz Heidari
..ID
, Fereshteh Momeni∗

..ID
, Shahram Yaghoobzadeh Shahrastani

..ID

Abstract. This study examines Bayesian, E-Bayesian (E-B), and hierarchical Bayesian (H-B) estimation methods
for the stress-strength reliability parameter (SSRP) R = P (X>Y ), within the Weibull distribution framework
under Type II censoring and fuzzy data conditions. Stress and strength random variables are modeled as Weibull
distributions with distinct scale parameters but a common shape parameter. Estimations are conducted using the
squared error (SE) loss function and Lindleys approximation. Furthermore, a comprehensive simulation study,
complemented by real-world data analysis, has been carried out to assess and compare the performance of the
proposed estimators. The results from both simulation and empirical analyses demonstrate that the H-B estimator
consistently outperforms both the Bayesian and E-B estimators under the squared error (SE) loss function.
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1 Introduction

In dependability, the R = P (X > Y ) is a measure of a system’s efficiency and is sometimes called the stress
strength factor. In this context, X represents the resilience of an element under stress Y . If the applied
stress exceeds the variable’s strength, the system fails. Estimating R is a critical topic in various scientific
disciplines, including lifetime analysis, mechanical reliability of systems, structural engineering, rocket engine
wear studies, and the assessment of aircraft components. Numerous researchers have investigated methods
for estimating R, particularly in scenarios where X and Y are independent random variables from the same
distribution. For instance, estimation techniques for R have been studied in various contexts, including the
bivariate exponential distribution (see [1]), the Weibull distribution (see [2]), the multivariate normal case (see
[3]), and the Burr Type XII distribution (see [4, 5]). Additional work includes investigations in the generalized
exponential distribution (see [6]), its three-parameter variant (see [7]), and through lower record values of the
same distribution (see [8]). Various distributions have been explored for estimating the reliability parameter,
including the Weibull distribution with progressively censored samples (see [9]), the exponential distribution
under progressive Type II censoring [10], and the Burr XII distribution with progressively censored samples
for initial failures [5]. Additionally, research has investigated the Lindley distribution [11] and its power-
transformed counterpart, the power Lindley distribution [12]. These studies emphasize the crucial role of
reliability parameter estimation in diverse applications within reliability analysis and related fields. Over the
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years, various methodologies have been proposed for estimating the parameters of statistical distributions,
with Bayesian estimation becoming a widely recognized approach. Selecting an appropriate prior density
function across the parameter space is crucial for minimizing errors in Bayesian estimates. However, extending
the range of parameter variation within this space may inadvertently increase error rates. Therefore, it is
essential to define suitable prior density functions and establish specific conditions for the hyperparameters
of the prior distribution. Within this framework, both E-B and H-B estimation methods are considered. The
concept of the H-B prior distribution was first introduced in [13], while [14] further developed techniques for
constructing such distributions and introduced the E-B and H-B methods. Bayesian and E-B formulations
for estimating the reliability parameter in scenarios involving zero-failure data were explored by [15, 16].
Subsequently, [17, 18] derived E-B and H-B estimations for system reliability parameters, with their properties
analyzed in detail [16]. The characteristics, reliability, and hazard functions associated with the Weibull
distribution were ascertained in [19] using maximum likelihood evaluation in conjunction with Bayesian
and E-B techniques. Furthermore, applications of the H-B method to data analysis were demonstrated in
[20, 21]. The estimation of under various distributions and sampling schemes has been researched in great
detail by numerous authors (see, for example, [22]-[29]). These cumulative efforts highlight the ongoing
advancements in parameter estimation techniques across multiple statistical and reliability frameworks. The
Weibull distribution is widely recognized as one of the most frequently used models. TheWeibull distribution’s
probability density function (pdf) is provided by

f (x;α, η) = αηxα−1e−ηxα
;x > 0 (1)

where α > 0 is the shape parameter, and η > 0 is the scale parameter. The same, the cumulative
distribution function (cdf) is given as

F (x;α, η) = 1− e−ηxα
;x > 0 (2)

The reliability function R(t) and the hazard rate function h(t) at time t are given by

R(t) = e−ηtα h (t) = αηtα−1

The Weibull distribution is a highly flexible model widely utilized in survival analysis and reliability engi-
neering, particularly well-suited for handling censored data. By adjusting its shape α and scale η parameters,
it can represent a wide range of hazard rate behaviors, including monotonically increasing, decreasing, or
constant hazard functions. This versatility makes the Weibull distribution an effective tool for modeling
failure mechanisms in engineering systems, medical survival data, and risk assessment applications. Its ana-
lytically tractable probability density function (PDF) and hazard rate function, combined with its empirical
adaptability, have established the Weibull distribution as a cornerstone in Bayesian inference and fuzzy data
modeling frameworks. Figures 1 and 2 illustrate the PDF and hazard rate function for various values of
the shape parameter α, with the scale parameter fixed at η = 3. As observed, when α > 1, the hazard
rate function increases over time, which characterizes systems prone to early failures. Conversely, for α < 1,
the hazard rate decreases over time, reflecting systems prone to early failures. When α = 1, the Weibull
distribution reduces to the exponential distribution, resulting in a constant hazard rate over time. This
implies a memoryless process where the likelihood of failure is independent of the elapsed time. Furthermore,
variations in α affect the shape and skewness of the PDF, corresponding to changes in the concentration and
dispersion of failure times.
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Figure 1: The Probability density function of Weibull distribution for different values of α parameters

Figure 2: The Hazard rate function of Weibull distribution for different values of α parameters

In this study, the Weibull distribution is referred to as W (α, η) for convenience, where α > 0 and η > 0.
With the assumption that X and Y are independent random variables with W (α, η1) and W (α, η2) distribu-
tions, respectively, the Bayesian, E-B, and H-B estimators of R = P (X > Y ) constitute the main focus of
this investigation. Additionally, the parameters α,η1, and η2 are presumed to be mutually independent.

In lifetime experiments and reliability studies, incomplete information on failure times is a common
challenge due to various factors. As a result, researchers frequently encounter censored data. Among the
different censoring models, the Type-II censoring scheme is one of the most widely used. In life-testing
experiments, suppose n units are subjected to testing. The observed failure times, denoted as X(1) ≤ · · · ≤
X(n), represents the order statistics obtained from a random sample of size. However, it is often impractical
to continue the experiment until all units fail, as the time required for the final failure may be excessively long
[30]. To overcome this issue, the experiment is typically terminated when the rth failure X(r) occurs. This

approach defines a Type-II censoring scheme, in which data collection stops after the rth failure. Consequently,
only the first r failure times are recorded from a total of n units.

In a Type-II censoring setup, the number of observed failures, r, is predetermined, whereas the actual
termination point, X(r), is a random variable. Although this method reduces both testing time and cost, it
inevitably results in some loss of information about the underlying parameters. For a detailed discussion on
the Type-II censoring scheme, readers may refer to [31, 18, 28].

Type-II censoring is also attractive from a statistical perspective, as it simplifies the likelihood function
and facilitates estimation procedures by fixing the number of observed events. Moreover, it provides a balance
between data efficiency and practicality, making it highly applicable in engineering and industrial reliability
contexts [31]. As discussed in [31], under Type-II censoring, the likelihood function based on the first r
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observed failure times from a total of n units are given by

L(α, η) =
∏n

i=1 f(xi;α, η) [1− F (xi;α, η)]
r

which, for the Weibull distribution with parameters α and η, simplifies to

L(α, η) =
n∏

i=1

f(xi;α, η) [1− F (xi;α, η)]
r

= αnηne−η
∑n

i=1 x
α
i

(
e−η

∑n
i=1 x

α
i

)r
= αnηne−η(r+1)

∑
xα
i

E-B and H-B estimation frameworks provide statistically robust alternatives to the classical Bayesian
paradigm. The E-B approach utilizes the expected Bayes risk as the decision criterion, resulting in estimators
that are optimal on average with respect to the prior distribution. This is particularly advantageous in
situations where prior uncertainty is significant. In contrast, H-B models introduce hyperprior structures
that enable the modeling of multilevel dependencies and heterogeneity across observational units. These
methods enhance inferential accuracy, reduce estimator variance, and offer greater flexibility in representing
complex data-generating processes. [32] developed statistical inference techniques for Lomax populations
under balanced joint progressive Type-II censoring, thereby enhancing parameter estimation in censored
lifetime data. [33, 34] introduced E-B estimation and the corresponding E-MSE under Progressive Type-II
Censored Data for certain characteristics of Weibull and compound Rayleigh Distributions.

In statistical sciences, many parameter estimation methods are designed for precise data. However, in
practice, it is often infeasible to measure and record exact values for all observations due to various factors. In
some cases, data collection is subject to a degree of imprecision caused by unforeseen influences. Consequently,
it becomes essential to extend estimation techniques from crisp (exact) values to fuzzy numbers. Several
researchers have investigated methods for parameter estimation using imprecise data (see, for instance, [35]-
[38]). A previous study [39] derived E-B and H-B calculations for the parameter of the Gompertz Distribution
using fuzzy information. More recently, [40]-[42] developed Bayesian, E-B, and H-B estimation methods for
the parameters of the Lindley; Rayleigh and Gompertz distributions under Type-II censoring data with fuzzy
values, incorporating these methods within the framework of various loss functions.

This study explores the estimation of R = P (X > Y ) in the context of the Weibull distribution within
a Type-II censoring framework. It employs Bayesian, E-B, and H-B techniques to estimate the reliability
parameter R while taking into account imprecise data represented as fuzzy integers. The estimation is

performed under the squared error loss function, defined as L
(
θ̂, θ
)
= (θ̂ − θ)

2
.

This study is structured as follows: Section 2 employs a fuzzy set technique to compute the likelihood
function for the Weibull distribution. Section 3 investigates the E-B and H-B estimators of the reliability
parameter based on imprecise data, using the squared error loss function. Section 4 describes how Lindley’s
approximation is used to calculate these estimates. Section 5 presents numerical experiments and Monte
Carlo simulations that provide a comprehensive overview of all estimation methods. Additionally, a real-world
dataset is analyzed to demonstrate the practical applicability of the proposed methods. Finally, Section 6
summarizes the key results and offers a conclusion.

2 Likelihood Function with Fuzzy Set

Let X1, . . . , Xn of size n be i.i.d. lifetimes from a Weibull distribution, which is described by PDF given in
Equation (1). Under a Type II censoring scheme, the experiment ends at the rth failure (r < n). The first
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r failure times are imprecisely observed as fuzzy numbers x̃i with membership functions µx̃i , i = 1, 2, . . . , r.
Let the maximum value of the means of these fuzzy numbers be m(r). The remaining n − r units, removed
at the rth failure, are represented by fuzzy numbers x̃r+1, . . . , x̃n with membership functions defined as:

µx̃j (x) =

{
0 x ≤ m(r)

1 x > m(r)

, j = r + 1, . . . , n.

Assume the lifetimes follow a Weibull distribution. If the exact sample x = (x1, . . . , xn) of X were observed,
the complete-data likelihood functions could be formulated as:

l (η, α,x) = αnηn

(
n∏

i=1

xi
α−1

)
e−η

∑n
i=1 x

α
i

Now, consider a situation in which it is impossible to assess or accurately record the measurements of
these units of study. Instead, the data are represented as fuzzy numbers. Based on Zadehs definition of the
probability of fuzzy events (see [39, 43]), this incomplete information of x can be expressed as a fuzzy subset
x̃ = (x̃1, . . . , x̃n), defined by a Borel membership function µx̃ (x) = µx̃1 (x1)× · · · × µx̃n (xn).

Using this approach, the observed-data likelihood function for the parameters η1 and α is given by:

L (α, η1, x̃) =

∫
f (x, η1, α)µx̃ (x) dx

=
n∏

j=1

∫ ∞

0
αη1x

α−1e−η1xα
µx̃j (x) dx

=

 r∏
j=1

∫ ∞

0
αη1x

α−1e−η1xα
µx̃j (x) dx

 n∏
j=r+1

∫ ∞

0
αη1x

α−1e−η1xα
µx̃j (x) dx


=

 r∏
j=1

∫ ∞

0
αη1x

α−1e−η1xα
µx̃j (x)dx


 n∏

j=r+1

∫ m1(r)

0
αη1x

α−1e−η1xα
µx̃j (x) dx+

∫ ∞

m1(r)
αη1x

α−1e−η1xα
µx̃j (x) dx


=Uη1(α)

 n∏
j=r+1

∫ ∞

m1(r)
αη1x

η1−1e−η1xα
dx


=Uη1 (α)

(
e−η1mα

1 (r)
)n−r

=Uη1 (α) e
−(n−r)η1mα

1 (r)

Similarly, we obtain, L (η2, α, ỹ) = Uη2 (α) e
−(n−r)η2mα

2 (r). Where

Uη1 (α) =
r∏

j=1

∫ ∞

◦
αη1x

α−1e−η1xα
µx̃j (x) dx Uη2 (α) =

r∏
j=1

∫ ∞

◦
αη1y

α−1e−η2yαµỹj (y) dy

Then, likelihood function obtained as

L (η1, η2, α) = Uη1 (α)Uη2 (α) e
−(n−r)η1mα

1 (r)−(n−r)η2mα
2 (r) (3)
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3 E-Bayesian and H-Bayesian estimations of R

The E-B and H-B methods extend the classical Bayesian estimation framework by addressing key limitations
related to the specification of prior hyperparameters. Traditional Bayesian estimation is often sensitive to
the choice of hyperparameters, which can lead to biased or unstable results. The E-B approach averages
Bayesian estimators over a distribution of hyperparameters, thereby reducing this sensitivity and providing
more robust estimates. Similarly, H-B methods incorporate an additional layer in the model hierarchy to
estimate hyperparameters from the data itself, enhancing flexibility and allowing for more accurate inference
[44]. These methods have been shown to improve estimation accuracy and robustness in various statistical
models, particularly in reliability and lifetime data analysis [6]. Therefore, their application in this study
is motivated by the need for more stable and reliable estimation of the R = P (X > Y ) parameter under
Type-II censoring and in the presence of fuzzy data.

The Bayesian, E-B, and H-B of R = P (X > Y ) are obtained in this section whenX and Y are independent
random variables with W (α, η1) and W (α, η2) distributions, respectively. Additionally, the parameters α, η1
and η2 are assumed to be independent. The E-B and H-B estimates are described as follows, respectively, in
accordance with [14].

Definition 3.1. [14] Assume that b1 and b2 are hyperparameters in the prior density function of θ. The joint
prior density function of (b1, b2) is π(b1, b2), and let the Bayesian estimate of θ is θ̂B(b1, b2) Then, the E-B
estimator of θ is given by

θ̂EB = Eπ(b1,b2)(θ̂B (b1, b2)) =

∫
Λ1

∫
Λ2

θ̂B (a1, a2)π (b1, b2) db1db2; b1 ∈ Λ1, b2 ∈ Λ2

where Λ1 and Λ2 are the domains of b1 and b2.

Furthermore, the H-B estimator incorporates uncertainty regarding the hyperparameters by treating them
as random variables with their own prior distributions. In the hierarchical Bayesian setup, the hyperparame-
ters are modeled as random variables. The final estimator of θ is then obtained by integrating over the joint
posterior distribution of θ, resulting in the posterior mean:

θ̂HB =

∫
θ · π(θ | data) dθ

Here, data refers to the observed information under a Type-II censoring scheme, where the recorded values are
represented as fuzzy numbers. These observations reflect both imprecision and partial information, forming
the basis for the posterior inference of the parameter θ. The hierarchical Bayesian estimator is obtained by
integrating over the joint posterior distribution of the parameters and hyperparameters (see [44]).

Definition 3.2. [14] If the prior density of the parameter θ and hyperparameter ν are represented by π (θ | ν)
and π′(ν), respectively, then the hierarchical prior density of θ is given by:

π′′ (θ) =

∫
Λ
π (θ|ν)π′ (ν) dν; ν ∈ Λ

It is also assumed the parameters η1, η2 and α have the following prior density functions,

π1 (η1 | a1, b1) =
ba11

Γ (a1)
ηa1−1
1 e−b1η1 ; a1 > 0, b1 > 0, (4)

π2 (η2 | a2, b2) =
ba22

Γ (a2)
ηa2−1
2 e−b2η2 ; a2 > 0, b2 > 0, (5)



Fuzzy Bayesian, E-Bayesian, and Hierarchical Bayesian Estimations of R = P (X>Y ) in Weibull Distribution under
Type II Censored Data. Trans. Fuzzy Sets Syst. 2026; 5(1) 103

and

π3 (α | a3, b3) =
ba33

Γ (a3)
αa3−1e−b3α;α > 0, a3 > 0, b3 > 0, (6)

respectively. The selection of the Gamma distribution as the prior distribution for the parameters of the
Weibull distribution is based on theoretical foundations and computational convenience. Since the shape (α)
and scale (η) parameters of the Weibull distribution take positive values, the Gamma distributiondefined
over the positive real line and possessing flexible shape characteristicsis considered a natural and effective
prior choice. Importantly, in many cases, the Gamma distribution is conjugate to the Weibull likelihood
function; this property allows for analytical tractability and closed-form Bayesian estimators [6, 44]. Such
conjugacy significantly reduces computational burden and facilitates the inference process. Additionally, the
hyperparameters of the Gamma prior can be adjusted to incorporate prior knowledge or empirical data, thereby
enhancing the flexibility and robustness of the Bayesian analysis. According to [14] in equation (4), a1 and
b1 should be chosen to guarantee that π1 (η1 | a1, b1) is a decreasing function of ν1. Then,

dπ1 (η1 | a1, b1)
dη1

=
ba11 ηa1−2

1 e−b1η1

Γ (a1)
((a1 − 1)− b1η1)

where b1 > 0, 0 < a1 ≤ 1. In [45], Berger showed that a large b1 decreases the Bayesian estimation efficiency
of η1. Then, 0 < b1 < c1 and c1 is a fixed number. The prior distribution of b1, π3(b1), is assumed to be a
continuous uniform distribution in (0 , c1). Also according to (4), if a1 = 1, then we have

π1 (η1 | b1) = b1e
−b1η1 (7)

where b1 > 0 and η1 > 0. Similarly, for b2 and b3, we obtain

π2 (η2 | b2) = b2e
−b2η2 , (8)

π3 (α | b3) = b3e
−b3α (9)

respectively, where b2 > 0, η2 > 0, α > 0, and η3 > 0.

Now, when X ∼ W (α, η1) and Y ∼ W (α, η2) are independently distributed, we get E-B and H-B esti-
mators of R = P (X > Y ). To do this, we use the squared error (SE) loss function to calculate the E-B and
H-B estimators of the R parameter based on imprecise data and under the Type-II censoring framework.
Assuming that z̃ = (x̃, ỹ), we derive from equations (3), (7), (8), and (9)

π (η1, η2, α | z̃) = Uη1 (α)Uη2 (α) e
−(C1(α)η1+C2(α)η2+b3α)∫∞

◦

∫∞
◦

∫∞
◦ Uη1 (α)Uη2 (α) e

−(C1(α)η1+C2(α)η2+b3α)dη1dη2dα

where, C1 (α) = b1 +mα
1 (r) and C2 (α) = b2 +mα

2 (r)α.
Then, using the Weibull distribution with PDF provided in Equation (1) and the SE loss function, the

Bayesian estimator of R = η2
η1+η2

is computed by

R̂BS (b1, b2) =

∫∞
◦

∫∞
◦

∫∞
◦

η2
η1+η2

Uη1 (α)Uη2 (α) e
−(C1(α)η1+C2(α)η2+b3α)dη1dη2dα∫∞

◦

∫∞
◦

∫∞
◦ Uη1 (α)Uη2 (α) e

−(C1(α)η1+C2(α)η2+b3α)dη1dη2dα
(10)

4 Lindley’s Approximation

We use the Lindley approximation to obtain the Bayesian estimator since Equation (10) cannot be computed
analytically [46]. The expectation E (u(ν) |) z) is often given by

E (u(ν) | z) =
∫
u(ν)eQ(ν)dν∫
eQ(ν)dν

(11)



104 Fayyaz Heidari K, Momeni F, Yaghoobzadeh Shahrastani S. Trans. Fuzzy Sets Syst. 2026; 5(1)

In above relation, Q (ν) = l (ν) + ρ (ν), l (ν), with l (ν), where ρ (ν) is the logarithm of the prior density of ν
and l (ν) is the logarithm of the likelihood function. The expectation E (u(ν | z) is then derived as follows:

E (u(ν) | z)=

u (ν) + 1

2

∑
i

∑
j

(uij + 2uiρj)σij +
1

2

∑
i

∑
j

∑
k

∑
l

Lijkσijσklul


ν̂

(12)

In this context, consider a parameter vector represented as ν=(ν1, . . . , νm) , i, j, k, l = 1, . . . ,m, ν̂ is the

maximum likelihood estimate (MLE) of ν, ui =
ϑu(ν)
ϑνi

, uij =
ϑ2u(ν)
ϑνiϑνj

, ρj =
ϑρ(ν)
ϑνj

, Lijk = ϑ3l(ν)
ϑνiϑνjϑνk

. Additionally,

σij corresponds to the (i, j) − th element in the inverse of the Fisher information matrix {−Lij}, where
all components are evaluated at the MLE of the parameters. For the particular scenario involving three
parameters where ν is expressed as ν = (ν1 = ν1, ν2 = ν2, ν3 = α), applying these definitions to Equation
(12) yields:

E (u (ν) | z)=

[
u (ν) +

3∑
i=1

uiai + α4 + a5 +
1

2

(
A

3∑
i=1

uiσ1i +B

3∑
i=1

uiσ2i + C

3∑
i=1

uiσ3i

)]
(ν̂1,ν̂2,ν̂3)

where,

ai=

3∑
j=1

ρjσij , i = 1, 2, 3, a4 = u12σ12 + u13σ13 + u23σ23, a5 =

3∑
i=1

uiiσii

A =

3∑
i=1

σiiLii1 + 2 (σ12L121 + σ13L131 + σ23L231)

B =
3∑

i=1

σiiLii2 + 2 (σ12L122 + σ13L132 + σ23L232)

C =

3∑
i=1

σiiLii3 + 2 (σ12L123 + σ13L133 + σ23L233) , D = L11L
2
23 − L11L22L33 + L2

13L22

σ11 =
L22L33 − L2

13

D
, σ12 = σ21 =

L11L13

D
, σ13 = σ31 =

L13L22

D
, σ23 = σ32 = −L11L23

D
,

σ22 =
L11L33 − L2

13

D
, σ33 =

L11L22

D

Also, ν̂1, ν̂2 and ν̂3 are the MLEs of ν1, ν2 and ν3, respectively. In our case, for (ν1, ν2, ν3) ≡ (η1, η2, α),
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u (η1, η2, α) = η2
η1+η2

, l (ν) = lnL(η1, η2, α) and ρ (ν) = −b1η1 − b2η2 − b3α, we have

ρi = bi, i = 1, 2, 3,

u1 =
−η2

(η2 + η1)
2 , u2 =

η1

(η2 + η1)
2 , u3 = ◦, u12 =

η2 − η1

(η2 + η1)
2 ,

u13 = u23 = 0, L11=− r

η21
−

r∑
j=1

Iη13 Iη11 − (Iη12 )
2

(Iη11 )
2 ,

L22 = − r

η22
−

r∑
j=1

Iη23 Iη21 − (Iη22 )
2

(Iη21 )
2 = − 2r

α2
− (n− r)m2

1(r)

(
lnm1(r)

)2 − (n− r)m2
2(r)

(
lnm2(r)

)2
L33=− 2r

α2
− (n− r)m2

1(r)

(
lnm1(r)

)2 − (n− r)m2
2(r)

(
lnm2(r)

)2
+

r∑
j=1

Jη1
1 Iη11 − 3η1J

η1
2 Iη11 + η21J

η1
3 Iη11 − (Hη1

1 )
2
+ 2η1H

η1
1 Hη1

2 − η21(H
η1
2 )

2

(Iη11 )
2

+

r∑
j=1

Jη2
1 Iη21 − 3η2J

η2
2 Iη21 + η22J

η2
3 Iη21 − (Hη2

1 )
2
+ 2η2H

η2
1 Hη2

2 − η22(H
η2
2 )

2

(Iη21 )
2 ,

where

Jη1
i =

∫ ∞

◦
xiα−1(lnx)2e−η1x

α
µx̃j (x) dx, Iη1i =

∫ ∞

◦
xiα−1e−η1x

α
µx̃j (x) dx,

Jη2
i =

∫ ∞

◦
yiα−1(ln y)2e−η2y

α
µỹj (y) dy, Iη2i =

∫ ∞

◦
yiα−1e−η2y

α
µỹj (y) dy,

Hη1
i =

∫ ∞

◦
xiα−1 (lnx) e−η1x

α
µx̃j (x) dx, Hη2

i =

∫ ∞

◦
yiα−1 (ln y)e−η2y

α
µỹj (y) dy

Similarly, we can obtain L111, L222, L133 = L331, L233 = L332, and L333. Hence,

a4=u12σ12, a5 =
u11σ11 + u22σ22

2
,

A = σ11L111 + σ33L331, B = σ22L222 + σ33L332 and C = 2σ13L133 + 2σ23L133 + σ33L333.

The Bayesian estimator of R is then given by

R̂BS (b1, b2) =R+

(
u1a1 + u2a2 + u12σ12 +

u11σ11 + u22σ22
2

)
+

1

2
(σ11L111 + σ33L333) (u1σ11 + u2σ12)

+ (σ22L222 + σ33L333) (u1σ21 + u2σ22)

+
1

2
(2σ13L133 + 2σ23L233 + σ33L333) (u1σ31 + u2σ32) . (13)

Keep in mind that every metric is evaluated at (η̂1, η̂2, α̂). Based on Equation (13) and Definition 3.1 provide
the E-B estimator of R is then determined as follows:

R̂EB =R+ ρ3σ13 + ρ3σ23 + u12σ12 +
u11σ11 + u22σ22

2

+
1

2
(σ11L111 + σ33L333) (u1σ11 + u2σ12)

+
1

2
(2σ13L133 + 2σ23L233 + σ33L333) (u1σ31 + u2σ32)−

c1
2
σ11 −

c2
2
σ
12
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The H-B estimator of R is now derived. Based on Definition 3.2, the prior distribution of the hierarchical
parameter α is given by

π (α) =
1− c3αe

−c3α − e−c3α

c3α2

Therefore, the hierarchical posterior joint distribution of η1, η2 and α is

π∗ (η1, η2, α | z̃) = α2r(η1η2)
rUη1 (α)Uη2 (α)π (α) e

−(n−r)(mα
1(r)

+mα
2(r)

)∫∞
◦

∫∞
◦

∫∞
◦ α2r(η1η2)

rUη1 (α)Uη2 (α)π (α) e
−(n−r)(mα

1(r)
+mα

2(r)
)
dη1dη2dα

R’s H-Bayesian estimator under the SE loss function is thus provided by

R̂HBS =

∫∞
◦

∫∞
◦

∫∞
◦

η2
η1+η2

α2r(η1η2)
rUη1 (α)Uη2 (α)π (α) e

−(n−r)(mα
1(r)

+mα
2(r)

)
dη1dη2dα∫∞

◦

∫∞
◦

∫∞
◦ α2r(η1η2)

rUη1 (α)Uη2 (α)π (α) e
−(n−r)(mα

1(r)
+mα

2(r)
)
dη1dη2dα

Note that RHBS is also calculated using Lindleys approximation, which has the same structure as Equation
(13), except that the logarithm of the prior density of ν’s logarithm is given by

ρ (ν) = ln

(
1− c3αe

−c3α − e−c3α

c3α2

)

5 Numerical Experiments

To assess and compare the effectiveness of the estimators discussed in the previous sections, this section
presents the results of a Monte Carlo simulation and numerical experiments. All calculations and program-
ming were performed using R software.

5.1 Simulation Study

This subsection presents experimental results related to the estimation methods under discussion. The
W (α, η1) and W (α, η2) distributions’ differences in sample sizes and stress-strength characteristics are the
main focus of the investigation. To assess and contrast the effectiveness of Bayesian, E-B, and H-B estimation
techniques in predicting the stress-strength variable, a Monte Carlo simulation research is carried out. The
assessment is based on key efficiency measures, such as average values (AV) and mean square error (MSE).
Furthermore, the study examines the impact of different sample sizes on the performance of these methods.
The simulation process follows the steps outlined below and was executed using R software:

Step 1. Generate random samples of varying sizes from the U(0, 1) distribution.

Step 2. Consider X =
[
− 1

η ln(1− U)
] 1

α
, where U is a continuous random variable uniformly distributed

over the interval [0, 1]. Using this formulation, random samples of varying sizes were generated from two
Weibull distributions W (α, η1) and W (α, η2). The parameter sets used for these distributions are (α, η1, η2) =
(1, 2, 2) , (2, 2, 3), and (2.5, 3, 2.5).

Step 3. Each sample generated from X in Step 2 and subjected to Type-II censoring is treated as fuzzy
sample. This is done using the fuzzy framework described by [35, 6], employing the following membership
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functions:

µx̃1 (x) =


1 x ≤ 0.25
0.5−x
0.25 0.25 ≤ x ≤ 0.5

0 otherwise

µx̃2 (x) =


x−0.25
0.25 0.25 ≤ x ≤ 0.5

0.75−x
0.25 0.5 ≤ x ≤ 0.75

0 otherwise

µx̃3 (x) =


x−0.5
0.25 0.5 ≤ x ≤ 0.75
1−x
0.25 0.75 ≤ x ≤ 1

0 otherwise

µx̃4 (x) =


x−0.75
0.25 0.75 ≤ x ≤ 1

1.25−x
0.25 1 ≤ x ≤ 1.25

0 otherwise

µx̃5 (x) =


x−1
0.25 1 ≤ x ≤ 1.25
1.5−x
0.25 1.25 ≤ x ≤ 1.5

0 otherwise

µx̃6 (x) =


x−1.25
0.25 1.25 ≤ x ≤ 1.5

1.75−x
0.25 1.5 ≤ x ≤ 1.75

0 otherwise

µx̃7 (x) =


x−1.5
0.25 1.5 ≤ x ≤ 1.75
2−x
0.25 1.75 ≤ x ≤ 2

0 otherwise

µx̃8 (x) =


x−1.75
0.25 1.75 ≤ x ≤ 2

1 x ≥ 2

0 otherwise

Step 4. This sample is used to compute the Bayesian, E-B, and H-B estimates of R for the parameter
settings c1 = 3 and c2 = c3 = 5.

After 1000 iterations of Steps 1 through 3, average values and MSEs were computed. R software is
used for all calculations. Tables 1 through 3 present the simulation results as well as the actual values of
R = P (X > Y ). Furthermore, Figure 3 shows the estimates of the R’s parameter for each approach for
various parameter values α, η1 and η2. The results show that, under the SE loss function, the H-B estimating
approach outperforms the others. In particular, the H-B estimator consistently displays fewer MSEs than
the other estimators across all sample sizes and with the fixed value of r = 8 for (α, η1, η2) = (1, 2, 2). This
implies that, under the SE loss function, the H-B estimator provides better accuracy in predicting the R’s
parameter, especially for these parameter levels.

Table 1: Average values and mean squared errors for different estimators of R with α = 1, η1 = 2, η2 = 2

Rreal = 0.5 R̂BS R̂EBS R̂HBS

n AV MSE AV MSE AV MSE

10 .6012 .1254 .6914 .1564 .5876 .1012
20 .6004 .1117 .6754 .1412 .5567 .0987
30 .5876 .1097 .6254 .1256 .5214 .0897
40 .5565 .0997 .5889 .1118 .5191 .0712
50 .5209 .0876 .5343 .1088 .4997 .0549

5.2 Analysis of real data

This subsection provides a detailed analysis of the strength data presented in [47]. The dataset includes
strength measurements in gigapascals (GPa) for both impregnated 1000-carbon fiber tows and individual
carbon fibers. Tensile tests were conducted on the single fibers, using gauge lengths of 20 mm for Data Set
1 and 10 mm for Data Set 2. These datasets have been previously used in other studies, including those
documented in sources [25].
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Table 2: Average values and mean squared errors for different estimators of R with α = 2, η1 = 2, η2 = 3

Rreal = 0.6 R̂BS R̂EBS R̂HBS

n AV MSE AV MSE AV MSE

10 .7151 .2215 .7654 .3217 .7091 .2077
20 .7113 .2176 .7566 .3141 .6897 .1987
30 .7015 .2011 .7519 .3092 .6679 .1707
40 .6800 .1917 .7349 .2897 .6512 .1560
50 .6991 .1888 .7188 .2675 .6226 .1278

Table 3: Average values and mean squared errors for different estimators of R with α = 2.5, η1 = 3, η2 = 2.5

Rreal = 0.454 R̂BS R̂EBS R̂HBS

n AV MSE AV MSE AV MSE

10 .5267 .3560 .5613 .4532 .4672 .3203
20 .5097 .3211 .5322 .4232 .4570 .3067
30 .4965 .3176 .4566 .2896 .5247 .3476
40 .4657 .2987 .5054 .3248 .4559 .2553
50 .4548 .2589 .4678 .3095 .4548 .2415

In our analysis, the lifetimes of the fibers is modeled as triangular fuzzy numbers. The data are summarized
in Tables 4 and 5, where the actual measurements are treated as the central points of the fuzzy numbers.
To model variability, we generate two random samples u1 and u2 from a uniform distribution U(0.03, 0.05),
with U representing a uniform distribution. Using these random samples, we determine the left and right
ambiguities of the triangular fuzzy numbers by incorporating them into the real data. Essentially, the
imprecision in the measurements is expressed using fuzzy numbers defined as x̃i = (xi, xiu1, xiu2). The
KolmogorovSmirnov (KS) and AndersonDarling (AD) tests were conducted to evaluate the distribution of
the actual tensile strength and resistance data. The results are presented in Table 6. Both the KS and AD
test results indicate that the Weibull distribution provides an acceptable and appropriate fit for the data.

Based on real data and under the SE Loss function with c1 = 2 and c2 = 3, the Bayesian, E-B, and H-B
estimators of the reliability parameter R = P (X > Y ) are 0.6895, 0.5679, and 0.7865, respectively. Since
R represents system reliability, with higher values indicating better performance, the H-B estimator which
provides the largest estimate among the three methods can be considered the most appropriate estimator for
R in this study. It is observed that the results obtained from the real data are consistent with the findings
of the simulation study.
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Figure 3: Chart of the Bayesian estimation (BS), E-B estimation (EBS) and H-B estimation (HBS) of R.

Table 6: Results of K-S and A-D tests on actual tensile strength and resistance data

Test Test Statistic p-value

KolmogorovSmirnov (KS) 0.142 0.983
AndersonDarling (AD) 0.432 0.814

6 Conclusion

This work aimed to estimate the stressstrength parameter, R = P (X > Y ) , using several approaches. Here,
X and Y represent independent Weibull random variables characterized by distinct scale parameters while
sharing a common shape parameter. The study developed Bayesian, E-B, and H-B estimators for R, incor-
porating imprecise prior information and a Type-II censoring scheme. Both Monte Carlo simulations and
real-world data were used to evaluate the performance of the proposed estimators. The results indicate that
increasing the sample size (n) and the number of completely observed (uncensored) samples (r) reduces the
mean squared error (MSE) of the Bayesian estimators, reflecting improved estimation accuracy. Furthermore,
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Table 4: Data Set 1 (gauge lengths of 20 mm)

(0.8829, 1.312, 1.998) (0.8848, 1.314, 2.001) (1.049, 1.479, 2.182) (1.228, 1.552, 2.262)
(1.271, 1.700, 2.425) (1.374, 1.803, 2.602) (1.432, 1.861, 2.606) (1.435, 1.865, 2.694)
(1.515, 1.944, 2.709) (1.528, 1.958, 2.718) (1.536, 1.966, 2.761) (1.576, 1.997, 2.778)
(1.591, 2.006, 2.784) (1.597, 2.021, 2.815) (1.625, 2.027, 2.824) (1.633, 2.055, 2.863)
(1.668, 2.063, 2.909) (1.710, 2.098, 2.952) (1.749, 2.140, 3.001) (1.749, 2.179, 3.019)
(1.794, 2.224, 3.033) (1.810, 2.240, 3.052) (1.823, 2.253, 3.056) (1.840, 2.270, 3.086)
(1.842, 2.272, 3.086) (1.844, 2.274, 3.086) (1.871, 2.301, 3.150) (1.871, 2.301, 3.175)
(1.929, 2.359, 3.175) (1.952, 2.382, 3.223) (1.952, 2.382, 3.232) (1.996, 2.426, 3.233)
(2.004, 2.434, 3.281) (2.005, 2.435, 3.281) (2.048, 2.478, 3.294) (2.060, 2.490, 3.294)
(2.081, 2.511, 3.317) (2.084, 2.514, 3.320) (2.105, 2.535, 3.343) (2.124, 2.554, 3.364)
(2.136, 2.566, 3.377) (2.140, 2.570, 3.382) (2.126, 2.586, 3.399) (2.199, 2.629, 3.447)
(2.203, 2.633, 3.451) (2.212, 2.642, 3.461) (2.218, 2.648, 3.468) (2.254, 2.684. 3.507)
(2.267, 2.697, 3.521) (2.296, 2.726, 3.553) (2.340, 2.770, 3.602) (2.343, 2.773, 3.605)
(2.370, 2.800, 3.635) (2.379, 2.809, 3.645) (2.388, 2.818, 3.655) (2.391, 2.821, 3.658)
(2.418, 2.848, 3.688) (2.450, 2.880, 3.723) (2.524, 2.954, 3.804) (2.582, 3.012, 3.868)
(2.637, 3.067, 3.928) (2.654, 3.084, 3.947) (2.660, 3.090, 3.954) (2.666, 3.096, 3.960)
(2.968, 3.128, 3.996) (2.803, 3.233, 4.111) (3.003, 3.433, 4.331) (3.155, 3.585, 4.498)
(3.155, 3.585, 4.498)

Table 5: Data Set 2 (gauge lengths of 10 mm)

(1.255, 1.901, 2.556) (1.486, 2.132, 2.786) (1.557, 2.203, 2.858) (1.582, 2.228, 2.883)
(1.611, 2.257, 2.912) (1.704, 2.350, 2.912) (1.704, 2.361, 3.005) (1.750, 2.396, 3.016)
(1.751, 2.397, 3.016) (1.799, 2.445, 3.052) (1.808, 2.454, 3.100) (1.799, 2.474, 3.109)
(1.808, 2.518, 3.129) (1.828, 2.522, 3.173) (1.872, 2.525, 3.177) (1.886, 2.532, 3.180)
(1.929, 2.575, 3.187) (1.968, 2.614, 3.230) (1.970, 2.616, 3.269) (1.972, 2.618, 3.271)
(1.978, 2.624, 3.273) (2.013, 2.659, 3.279) (2.029, 2.675, 3.314) (2.092, 2.738, 3.330)
(2.092, 2.740, 3.393) (2.094, 2.856, 3.395) (2.210, 2.917, 3.511) (2.271, 2.928, 3.372)
(2.282, 2.937, 3.583) (2.291, 2.937, 3.592) (2.291, 2.977, 3.592) (2.331, 2.996, 3.632)
(2.350, 3.030, 3.651) (2.384, 3.125, 3.985) (2.479, 3.139, 3.780) (2.493, 3.145, 3.794)
(2.499, 3.220, 3.800) (2.574, 3.223, 3.875) (2.577, 3.235, 3.878) (2.589, 3.243, 3.890)
(2.597, 3.264, 3.898) (2.618, 3.272, 3.919) (2.626, 3.294, 3.924) (2.648, 3.332, 3.949)
(2.686, 3.346, 3.987) (2.700, 3.377, 4.001) (2.731, 3.408, 4.032) (2.762, 3.435, 4.063)
(2.789, 3.493, 4.090) (2.847, 3.501, 4.148) (2.855, 3.537, 4.156) (2.891, 3.554, 4.192)
(2.908, 3.562, 4.209) (2.916, 3.628, 4.217) (2.982, 3.852, 4.283) (3.206, 3.871, 4.507)
(3.225, 3.886, 4.526) (3.240, 3.971, 4.541) (3.325, 4.024, 4.626) (3.378, 4.027, 4.679)
(3.381, 4.225, 4.682) (3.579, 4.395, 4.880) (3.749, 5.020, 5.050)

the results reveal that the H-B estimator achieves significantly lower MSE and smaller average values (AV)
compared to the Bayesian and E-B estimators. Across various scenarios, the H-B estimator consistently
demonstrates superior efficiency relative to the other two estimators.
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