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Abstract.   This research presents an innovative framework that combines Hybrid Multi-Criteria 

Decision-Making (MCDM) approaches with Random Forest Regression to address interval-based 
fuzzy uncertainty in renewable energy project evaluation. Traditional Fuzzy TOPSIS methods 

often struggle with the inherent uncertainty and complexity of real-world data, which can lead to 

suboptimal decision-making. To enhance decision accuracy, we propose a hybrid solution that 
integrates Higher Interval TOPSIS with Random Forest Regression. This methodology effectively 

captures intricate interdependencies among project attributes—including cost, energy output, 

environmental impact, and social acceptance—within an interval-based fuzzy context. We applied 
our approach to a dataset of renewable energy projects and compared it against conventional Fuzzy 

TOPSIS methods. Results indicated significant improvements in predictive performance, 

achieving a Mean Absolute Error (MAE) of 0.045, a Mean Squared Error (MSE) of 0.0029, and 
an R² value of 0.95, highlighting the framework's ability to explain 95% of the variability in 

outcomes. This research underscores the promise of integrating AI-driven techniques within 

MCDM frameworks to enhance decision-making under uncertainty in the renewable energy sector. 
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1. Introduction 

1.1 Multi-criteria decision making (MCDM) 

Multi-Criteria Decision Making (MCDM) techniques emerged as crucial tools in planning 

and decision-making across various domains, including economics, environmental 

management, and renewable energy development. Early contributions, such as Massam's 

[29] comprehensive study, examined the theoretical underpinnings and practical 

applications of various MCDM methodologies, illustrating the multifaceted nature of 

decision-making processes in planning contexts. Massam provided an extensive survey of 

MCDM techniques, detailing their potential to improve the quality of decisions by 

integrating multiple conflicting criteria into a structured framework. This foundational 

work laid the groundwork for subsequent research and advancements in the field. 

In the following decades, the framework for MCDM expanded, particularly within 

computational contexts. Bonissone et al. [6] articulated a systematic approach toward 

MCDM in their article, highlighting the intersection of computational intelligence with 

decision-making methodologies. They emphasized the importance of developing robust 
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frameworks that catered to diverse applications of MCDM, influencing both theoretical 

developments and practical implementations across numerous sectors. 

   Furthermore, Zavadskas and Turskis [57] provided an extensive overview of MCDM 

methods specifically applied in economics. They categorized various techniques and 

critically assessed their effectiveness in addressing complex economic problems 

characterized by uncertainty and multiple decision criteria. The authors underscored the 

necessity for adaptive methodologies that could capture the dynamic nature of economic 

evaluation processes. 

   Over the years, the discourse on MCDM evolved to include a variety of contexts, 

especially in renewable energy scenarios. Researchers, including Ghasempour et al. [12], 

conducted reviews focusing on the application of MCDM methods for selecting solar plant 

sites and technologies. This study highlighted the effectiveness of MCDM in optimizing 

site selections by balancing technical, economic, and environmental factors, which became 

increasingly relevant in the context of sustainable energy development. 

As the field progressed, reviews such as those conducted by Siksnelyte-Butkiene et al. [46] 

and Lak Kamari et al. [23] further contributed to understanding specific applications of 

MCDM in assessing renewable energy technologies and their implementation within 

households. These reviews synthesized existing literature, providing insights into the 

diverse methodologies employed and the varying outcomes achieved in different contexts. 

The emphasis on practical applications reinforced the relevance of MCDM in addressing 

contemporary energy challenges. 

   Moreover, Taherdoost and Madanchian [49] compiled recent advancements in MCDM 

methods and concepts, providing a comprehensive encyclopedia entry that summarized 

key methodologies utilized in decision-making processes. This synthesis not only updated 

the academic community about emerging trends but also emphasized the interdisciplinary 

nature of MCDM, showcasing its application across multiple fields. Kumar et al. [22] 

presented a critical review of MCDM approaches aimed at promoting sustainable 

renewable energy development. Their work highlighted the alignment of MCDM 

methodologies with sustainability goals, advocating for decision-making frameworks that 

consider long-term impacts and sustainability metrics in energy projects. 

1.2 Uncertainty management 

Uncertainty management has long been a central theme in both theoretical and applied 

research across various fields, including expert systems, organizational behavior, project 

management, and innovation ecosystems. As the complexity of systems and environments 

increases, the need for effective strategies to navigate uncertainty has become paramount. 

In the early scholarship of the domain, Ng and Abramson [37] laid the groundwork by 

analyzing how expert systems could address uncertainty. Their work highlighted the 

importance of integrating uncertainty management techniques within these systems, 

facilitating better decision-making processes in environments characterized by incomplete 

or conflicting information. 

   Building on the foundations laid by earlier research, Brashers [5] emphasized the role 

of communication in uncertainty management. The study explored how effective 

communication strategies can mitigate uncertainty and enhance understanding among 

stakeholders. By framing uncertainty as a communicative challenge, Brashers provided 

insights into the interpersonal and social dimensions of uncertainty management, stressing 

its significance in various contexts, including personal and organizational settings. 

   Grote [13] further contributed to the discourse by placing uncertainty management at 

the core of system design. His analysis underscored the need for systems to accommodate 

uncertainty when defining design parameters and objectives. The synthesis of uncertainty 

into the design process allowed for the construction of more robust systems capable of 

adapting to changes in their environments while maintaining functionality and 
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performance. 

   Within project management, Ward and Chapman [54] focused on the dynamics of 

stakeholder involvement in uncertainty management. They examined how different 

stakeholders interact with uncertainty and how their perceptions influence project 

outcomes. Their findings suggested that proactive engagement with stakeholders could 

significantly improve uncertainty management strategies during the project lifecycle, 

thereby enhancing project performance and stakeholder satisfaction. 

The field saw further advancement with the publication of "Uncertainty in Industrial 

Practice" by de Rocquigny et al. [11], which provided a comprehensive guide to 

quantitative uncertainty management. This work enriched practical applications by 

offering quantitative tools and methodologies designed to quantify and manage uncertainty 

in industrial contexts. Their approach encouraged practitioners to adopt systematic 

methods for analyzing uncertainty, which enhanced decision-making and optimized 

resource allocation. 

   In more recent contributions, Matsunaga [30] examined the intersection of uncertainty 

management and transformational leadership in an AI-powered organizational context. His 

research highlighted how leaders could influence their teams' ability to manage 

uncertainty, particularly in environments rapidly transformed by technological 

advancement. The findings indicated that effective leadership played a crucial role in 

fostering a culture of adaptability, enabling organizations to thrive amidst uncertainty. 

In the context of global innovation ecosystems, de Vasconcelos Gomeset al. [10] 

investigated uncertainty management as a critical factor influencing innovation outcomes. 

Their study revealed that effective uncertainty management strategies were essential for 

sustaining innovation in an increasingly interconnected and volatile global environment. 

They argued that organizations must develop capabilities to anticipate and respond to 

uncertainties in order to maintain competitive advantage. 

   Kramer [21] further generalized the discourse on uncertainty management in the 

"Global Encyclopedia of Public Administration, Public Policy, and Governance." His entry 

underscored the pervasive nature of uncertainty management across various domains of 

public administration and governance, emphasizing its relevance in policymaking and 

public sector performance. Varathan's [50] review on uncertainty management approaches 

for active distribution system planning marked a significant contribution to the renewable 

energy sector. This study examined existing strategies in managing uncertainty within 

electricity distribution, highlighting the role of uncertainty in planning and operational 

decisions. The review underscored the need for comprehensive frameworks that integrate 

technical and managerial perspectives on uncertainty. 

   Iriani et al. [19] delved into the complexities of risk and uncertainty management amid 

global economic shifts and market volatility. Their qualitative inquiry identified strategies 

employed by businesses to navigate uncertainties encountered during turbulent economic 

times. The authors provided valuable insights into how organizations could formulate 

effective responses to external pressures by understanding the interplay between risk and 

uncertainty. Riccioni et al. [39] explored uncertainty management during the COVID-19 

pandemic. Their research examined how communication strategies and organizational 

practices adapted to unprecedented levels of uncertainty. The insights derived from their 

study highlighted the critical role of effective uncertainty management in responding to 

crises, stressing the importance of agility and responsiveness in organizational contexts. 

1.3 Interval type-2 fuzzy logic systems 

Interval Type-2 Fuzzy Logic Systems (IT2 FLSs) have gained considerable attention in the 

realm of fuzzy logic and control systems due to their enhanced ability to handle uncertainty 

and imprecision. The foundational work of Liang and Mendel [24] introduced the theory 

and design of IT2 FLSs, positing that these systems could be more effective than traditional 
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Type-1 fuzzy logic systems by incorporating an additional layer of uncertainty through the 

use of interval membership functions. Their research established a robust framework for 

the development of IT2 FLSs, paving the way for subsequent advancements in the field. 

Following this, Mendel [31] explored the computational aspects of IT2 FLSs, specifically 

focusing on computing derivatives within these systems. This study addressed an essential 

mathematical foundation for the application of IT2 FLSs, enabling researchers to better 

understand gradient-based adjustments and optimizations of the fuzzy rule base. Mendel’s 

contributions emphasized the importance of integrating derivative calculations into the IT2 

framework, which facilitated more sophisticated control strategies and increased the 

effectiveness of decision-making processes in uncertain environments. 

   Further extending the complexity and usability of IT2 FLSs, Mendel, John, and Liu [33] 

presented a simplified approach to these systems, aimed at enhancing their accessibility 

without sacrificing performance. This work demonstrated that the intricacies of IT2 FLSs 

could be managed through streamlined design methodologies, thereby allowing 

practitioners to implement them in real-world applications with greater ease. The authors 

successfully communicated the benefits of using IT2 FLSs over traditional methods, 

highlighting their superiority in managing uncertainty in decision processes. 

   In pursuit of further efficiency, Nie and Tan [35] proposed an innovative type-reduction 

method specifically designed for IT2 FLSs. Their research centered on the computational 

challenges posed by traditional type-reduction methods, which were often resource-

intensive and time-consuming. By developing an efficient alternative, they demonstrated 

the potential for IT2 FLSs to be more broadly applicable in real-time systems, where rapid 

decision-making is crucial. This advancement underscored the need for ongoing 

refinement of mathematical methods within the context of interval type-2 fuzzy logic. 

   Subsequent investigations by Wu and Mendel [55] focused on the continuity properties 

of both Type-1 and IT2 FLSs. Their study explored how these systems behaved under 

various conditions, providing important insights into the theoretical underpinnings of fuzzy 

logic systems. The emphasis on continuity fostered a deeper understanding of the stability 

and predictability of fuzzy systems when applied in dynamic environments, thereby 

reinforcing the theoretical robustness of IT2 FLSs. 

   As the body of knowledge surrounding IT2 FLSs expanded, Mendel and Liu [32] 

further simplified these systems, thereby making them more accessible to a broader 

audience of engineers and researchers. Their work reinforced the message that while the 

complexity of fuzzy systems could be daunting, achieving practical applications did not 

necessarily require extensive mathematical expertise. This simplification played a crucial 

role in encouraging the integration of IT2 FLSs into a wider array of applications, from 

control systems to decision-support frameworks. Building on the comparative studies 

within the fuzzy logic community, Castillo et al. [7] conducted a thorough evaluation of 

Type-1, IT2, and generalized Type-2 fuzzy logic systems in control applications. Their 

research provided a critical perspective on the advantages and limitations of each approach, 

demonstrating that IT2 FLSs offered distinct advantages in scenarios characterized by high 

degrees of uncertainty and vagueness. The findings underscored the practical relevance of 

selecting the appropriate fuzzy logic paradigm based on the specific requirements of 

control problems. 

1.4 Multi-criteria decision making and interval type-2 fuzzy logic systems 

The field of Multi-Criteria Decision Making (MCDM) has experienced significant 

advancements through the integration of fuzzy logic concepts, particularly focusing on 

interval-valued intuitionistic fuzzy sets (IIFS) and interval type-2 fuzzy sets (IT2 FS). 

These innovative approaches enabled decision-makers to handle uncertainty and 

vagueness, which are inherent features in real-world situations. The foundational work by 

Nayagam et al. [36] introduced an MCDM method based on IIFS. This research distinctly 
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highlighted how IIFS could effectively represent the hesitancy and uncertainty inherent in 

human judgments, enriching the existing MCDM frameworks by incorporating an 

additional degree of freedom in the representation of fuzzy information. 

   In subsequent studies, Wang, Li, and Zhang [51] contributed to the discourse with their 

interval-valued intuitionistic fuzzy multi-criteria decision-making approach, employing a 

prospect score function. This innovative framework allowed for different perspectives on 

potential outcomes, thereby offering nuanced insights into decision situations. Their work 

established a methodology that combined psychological factors with technical elements in 

MCDM context, marking a critical intersection of behavioral insights and mathematical 

rigor. 

   Hu et al. [17] further expanded the MCDM landscape by presenting a method based on 

the possibility degree of interval type-2 fuzzy numbers. Their approach focused on 

enhancing the decision-making accuracy in situations characterized by significant 

uncertainty. By leveraging the unique properties of interval type-2 fuzzy numbers, this 

research facilitated the modeling of more complex decision scenarios, aligning with the 

needs of practitioners who faced intricate decision environments. 

Baležentis and Zeng [3] explored group decision-making methodologies by extending the 

MULTIMOORA method to accommodate interval-valued fuzzy numbers. Their research 

emphasized the adaptive capacity of existing decision-making frameworks to incorporate 

group dynamics and evaluative uncertainty. The integration of interval-valued fuzzy 

numbers into the MULTIMOORA method exemplified how collaborative decision-

making processes could be improved through advanced fuzzy techniques. 

Wang, Han, and Zhang [52] developed an MCDM approach specifically tailored for group 

decision-making using intuitionistic interval fuzzy information. Their findings 

demonstrated that incorporating group perspectives was essential in arriving at a 

consensus, particularly when evaluating criteria with inherent uncertainty. This study 

reinforced the applicability of intuitionistic interval fuzzy information in managing diverse 

opinions among decision-makers, showcasing its relevance in real-world scenarios. 

Celik et al. [8] conducted an extensive review of MCDM approaches utilizing interval 

type-2 fuzzy sets, synthesizing various methodologies and applications. This 

comprehensive survey provided a consolidated view of the progress made in the field, 

highlighting both the theoretical advancements and practical implementations of interval 

type-2 fuzzy logic in decision-making contexts. Their work served as a catalyst for further 

research, identifying gaps in the literature and suggesting future research directions. 

Zhong and Yao [59] proposed an ELECTRE I-based method for multi-criteria group 

decision-making that incorporated interval type-2 fuzzy numbers. Their research not only 

contributed a valuable tool for supplier selection but also illustrated the utility of 

ELECTRE methodology in handling uncertainty through fuzzy representations. This 

alignment of classical decision-making methods with modern fuzzy approaches 

exemplified the evolving nature of MCDM. 

   Chiao [9] introduced a multi-criteria decision-making framework utilizing interval 

type-2 fuzzy Bonferroni mean, which facilitated the integration of preferences in a broader 

spectrum of decision scenarios. This work explored the advantages of employing 

Bonferroni means, particularly when aggregation methods required enhanced flexibility to 

accommodate diverse informational inputs. 

In a more recent study, Wang, Liu, and Han [53] focused on evaluating service 

performance within international container ports using interval-valued fuzzy multi-criteria 

decision-making, addressing the complexities inherent in logistics and transportation. 

Their approach emphasized the practical implications of fuzzy-based MCDM 

methodologies in specialized industries, demonstrating that tailored solutions were 

essential when addressing sector-specific challenges. 

   Continuing with the trend of encoding uncertainty, Muneeza et al. [34] explored the 
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realm of intuitionistic cubic fuzzy numbers in MCDM contexts, providing new avenues 

for representing complex information. Their contribution illustrated the growing 

sophistication of fuzzy models and the continuous pursuit of more granular representations 

of uncertainty in decision-making. 

Liao et al. [25] provided a comprehensive overview of interval analysis techniques and 

their fuzzy extensions in an extensive review. Their work identified contemporary trends 

and future directions within the MCDM landscape, promoting a deeper understanding of 

how interval analysis could further enhance existing fuzzy methodologies. 

In a context influenced by contemporary global challenges, Salimian and Mousavi [44] 

developed an MCDM model using interval-valued intuitionistic fuzzy sets for evaluating 

digital technology strategies during the COVID-19 pandemic. This timely research 

underscored the adaptability of fuzzy decision-making models in addressing urgent and 

evolving scenarios impacting societies worldwide. 

   Recent contributions by Imran et al. [18] explored robot selection through a multi-

criteria group decision-making approach underpinned by interval-valued intuitionistic 

fuzzy information, employing Aczel-Alsina Bonferroni means. Their work emphasized the 

practical applications of fuzzy decision-making frameworks in emerging technological 

fields. 

   Li et al. [26] implemented a multi-criteria constrained interval type-2 fuzzy decision-

making approach, introducing a spatial analysis perspective. Their investigation revealed 

the intricate interplay of spatial elements within decision contexts, reinforcing the necessity 

of integrating multi-dimensional analyses within fuzzy frameworks. 

Ruan et al. [43] extended their focus to group decision-making using the ELECTRE III 

method and regret theory based on probabilistic interval-valued intuitionistic hesitant 

fuzzy information, providing a novel perspective on how regret can shape decision 

outcomes. 

   Rahim et al. [42] investigated innovative MCDM techniques using interval-

valued p,q,r- spherical fuzzy sets for selecting optimal solar energy investment locations. 

Their research exemplified the continued exploration of innovative fuzzy set extensions, 

showcasing the relevance and adaptability of fuzzy logic as a decision-making tool in 

diverse and impactful fields. 

1.5 Random forest regression (RFR) 

The application of Random Forest Regression (RFR) has emerged as a potent technique in 

various domains, particularly in contexts where complexity and non-linearity dominate the 

underlying data structures. Since its inception, the RFR method has been established as an 

ensemble learning approach that combines multiple decision trees to improve predictive 

accuracy and overcome individual biases exhibited by traditional regression techniques. 

Segal [45] laid foundational work in the field by establishing machine learning 

benchmarks, particularly emphasizing the capabilities of RFR in regression tasks. His 

investigation set the stage for future research into the comparisons and applications of RFR 

across diverse fields. 

   Subsequently, Smith et al. [47] conducted a comparative study between Random Forest 

Regression and Multiple Linear Regression to predict outcomes in neuroscience. Their 

findings underscored the advantages of RFR over traditional methods in handling high-

dimensional data while providing robust predictions. This seminal study marked a 

significant moment in the recognition of RFR’s potential, particularly in complex research 

areas such as neuroscience where data complexity and interdependencies are not easily 

accommodated by simpler models. 

   Rodriguez-Galiano et al. [40] expanded the applications of RFR in mineral 

prospectively modeling. They evaluated the effectiveness of various machine learning 

models, including neural networks and support vector machines, alongside RFR. Their 
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results demonstrated RFR’s superior predictive performance when applied to geological 

datasets, reaffirming its versatility and robustness across diverse fields, including geology 

and mining. 

   In the medical imaging domain, Jog et al. [41] applied RFR for magnetic resonance 

image synthesis, illustrating its utility in enhancing image quality and facilitating 

diagnostic processes. This application exemplified how RFR could navigate intricate 

image data to produce meaningful interpretations, fostering advancements in medical 

diagnostics. 

   Li et al. [27] focused on the practical use of RFR for online capacity estimation of 

lithium-ion batteries, showcasing the method's capacity for real-time analysis and 

prediction. Their work highlighted RFR's potential in energy management systems, 

particularly in contexts where maintenance and performance forecasting are critical for 

operational efficiency. 

   Babar et al. [2] utilized RFR to map solar irradiance accurately in high-latitude regions, 

contributing significantly to the field of renewable energy. Their findings revealed that 

RFR could effectively integrate various climatic factors, thereby enhancing solar energy 

harvest predictions in regions where solar energy data can be sparse or variable. 

The exploration of RFR was further advanced by Xue et al. [56], who presented a data-

driven forecasting method for shale gas production using a multi-objective RFR approach. 

Their study demonstrated RFR's flexibility and efficacy in optimizing predictions while 

considering multiple objectives, which is often essential in energy production planning and 

management. 

   Following these advancements, Han and Kim [15] delved into the optimal feature set 

size in RFR, offering insights into feature selection that maximized model performance. 

Their research provided methodological guidance essential for practitioners aiming to 

enhance RFR applications by refining input data and improving computational efficiency. 

In the context of power systems, El Mrabet et al. [16] employed RFR for detecting fault 

locations and durations, showcasing the method's applicability in critical infrastructure. 

Their findings illustrated RFR's effectiveness in quick decision-making processes that are 

vital for operational safety and reliability. 

   Balogun and Tella [4] investigated the impacts of climatic variables on ozone 

concentration using RFR, decision tree regression, and support vector regression. Their 

work offered valuable insights into environmental modeling, emphasizing how RFR can 

provide nuanced understanding and predictions related to atmospheric conditions. 

Zhou et al. [58] executed a comparative analysis of RFR, neural networks, and linear 

regression for predicting air ozone levels with soft sensor models. Their findings not only 

confirmed RFR's robustness against other predictive techniques but also highlighted its 

adaptability across different modeling scenarios related to air quality assessment. 

Expanding upon material science applications, Guo et al. [14] presented a RFR method 

enhanced with Bayesian optimization for predicting the fatigue strength of ferrous alloys. 

Their research validated RFR's capability in materials engineering, facilitating better 

decision-making in the design and testing of new materials. 

   As COVID-19 continued to impact global health, Özen [38] utilized RFR for predicting 

daily cases and deaths in Turkey, demonstrating the method’s applicability in urgent public 

health decision-making contexts. This timely research underscored RFR’s capacity to 

inform policies and strategies during periods of crisis. 

   Soegianto et al. [48] compared RFR's performance against traditional modeling 

techniques in the housing business, affirming its relevance in economic forecasting. Their 

findings indicated that RFR could outperform linear regression and support vector 

regression models in capturing complex relationships within housing market data. Lastly, 

Mallala et al. [28] explored the forecasting of global sustainable energy from renewable 

sources using RFR, reflecting the method's potential in addressing global energy 
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challenges. Their comprehensive analysis demonstrated how RFR could inform 

sustainable energy policies through accurate predictions. 

   In the context of renewable energy project evaluation, the integration of Multi-Criteria 

Decision Making (MCDM) with advanced uncertainty management techniques has 

become increasingly vital. This research specifically focused on employing Interval Type-

2 Fuzzy Logic Systems to effectively capture and manage the inherent uncertainties 

associated with subjective assessments. By combining these fuzzy systems with Random 

Forest Regression (RFR) [1], the proposed framework aimed to enhance decision-making 

accuracy and reliability. The methodology adopted a hybrid approach that synergized 

Higher Interval TOPSIS with RFR, allowing for a comprehensive analysis of project 

attributes. This innovative integration not only addressed the limitations of traditional 

fuzzy methods but also provided a robust mechanism for evaluating complex decision 

scenarios. The following sections will detail the academic methodology employed in this 

study, outlining the steps taken to implement the proposed framework effectively. 

2. Methodology 

2.1 Traditional fuzzy TOPSIS method [20] 

The Technique for Order Preference by TOPSIS is a widely used MCDM method that 

ranks alternatives based on their distance to an ideal solution. In the context of fuzzy 

decision-making, the traditional TOPSIS method is enhanced to handle uncertainties 

intrinsic to subjective assessment, particularly in environmental and renewable project 

evaluations. The primary rationale for employing fuzzy logic is its capacity to model the 

imprecision and vagueness present in human judgments. 

2.1.1 Fuzzy numbers 

 In the traditional fuzzy TOPSIS framework, assessment criteria and alternatives are 

represented as fuzzy numbers, often defined by triangular or trapezoidal shapes. This 

allows decision-makers to express their preferences more flexibly. For instance, rather than 

assigning a precise score to an alternative, a fuzzy number reflects a range of possible 

values with associated membership grades. 

2.1.2 Constructing the fuzzy decision matrix 

 The methodology begins with the construction of a fuzzy decision matrix, where each 

element corresponds to the evaluation of an alternative against each criterion expressed as 

fuzzy numbers. Let the set of alternatives be 𝐴 = { 𝐴1, 𝐴2, … , 𝐴𝑛 } and criteria be 𝐶 =
{𝐶1, 𝐶2, … , 𝐶𝑚 }. The fuzzy decision matrix D can be denoted as follows: 

𝐷 = (

𝑥11 𝑥12 . . . 𝑥1𝑚

𝑥21

…
𝑥𝑛1

𝑥22

…
𝑥𝑛2

. . .

. . .

. . .

𝑥2𝑚

…
𝑥𝑛𝑚

) 

 

 

(1) 

where 𝑥𝑖𝑗 are the evaluation of alternative 𝑖 by criterion 𝑗, expressed as IVFNs. 

2.1.3 Normalize the decision matrix 

For each criterion, calculate the maximum and minimum value across all alternatives and 

normalize each element:  
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Maximum: 𝑥𝑗
𝑚𝑎𝑥 =

 max(𝑥𝑖𝑗) 

Minimum: 𝑥𝑗
𝑚𝑖𝑛 =

min(𝑥𝑖𝑗) 

𝑟𝑖𝑗 = {

𝑥𝑖𝑗−𝑥𝑗
𝑚𝑎𝑥

𝑥𝑗
𝑚𝑎𝑥−𝑥𝑗

𝑚𝑖𝑛 if 𝑗 is a benefit criterion

𝑥𝑗
𝑚𝑎𝑥−𝑥𝑖𝑗

𝑥𝑗
𝑚𝑎𝑥−𝑥𝑗

𝑚𝑖𝑛 if 𝑗 is a cost  criterion
  

 

(2) 

The result will be normalize the Decision Matrix 𝑅. 

2.1.4 Assign weight to criteria 

Determine the importance of each criterion and assign weight values 𝑤𝑖𝑗 corresponding 

to each criterion 𝐶𝑗. The weights should sum to 1: 

  ∑ 𝑤𝑗 = 1𝑚
𝑗=1   (3) 

2.1.5 Compute the weighted normalized decision matrix 

Multiply each normalized value by its corresponding weight to obtain the weighted 

normalized decision Matrix 𝑊: 
𝑤𝑖𝑗 = 𝑟𝑖𝑗 × 𝑤𝑗 (4) 

where 𝑤𝑖𝑗 represents the weighted normalized score for alternative 𝑖 on criterion 𝑗. 

2.1.6 Determine ideal and negative-ideal solutions 

define the ideal solution 𝐴+ (best) and negative solution 𝐴− (worst): 

𝐴+ = (𝑥1
𝑚𝑎𝑥 , 𝑥2

𝑚𝑎𝑥, … , 𝑥𝑚
𝑚𝑎𝑥) 

𝐴− = (𝑥1
𝑚𝑖𝑛, 𝑥2

𝑚𝑖𝑛, … , 𝑥𝑚
𝑚𝑖𝑛) 

(5) 

2.1.7 Calculate the distance from each alternative to ideal and negative- ideal solution 

𝐷𝑖
+ = √∑ (𝑤𝑖𝑗 − 𝐴+)

2𝑚
𝑗=1   

𝐷𝑖
− = √∑ (𝑤𝑖𝑗 − 𝐴−)

2𝑚
𝑗=1   

(6) 

 2.1 8 Calculate relative closeness 

Determine the relative Closeness of each alternative to the ideal solution using: 

𝐶𝑖
∗ =

𝐷𝑖
−

𝐷𝑖
++𝐷𝑖

−  (7) 

 This relative closeness value 𝐶𝑖
∗ indicates how close an alternative is to the ideal solution. 

3. Case study: Renewable energy projects 

To illustrate the application of the Traditional Fuzzy TOPSIS method, consider 

evaluating a set of renewable energy projects based on multiple criteria such as : Initial 

Cost, Expected Energy Output, Environmental Impact, Implementation Time, Operating 

Cost, Technological Maturity, Land Use, Social Impact, Policy Support, Risk Factor. 

3.1 Implementation of Fuzzy TOPSIS 

Step 1. Define the Research Problem and Data Matrix 

Eight renewable energy projects with 10 criteria considered as fuzzy triangular numbers: 
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Table 1. Data matrix. 

Project Name Initial Cost 
Expected Energy 

Output 

 Environmental 

Impact 

 Implementation 

Time 
Operating Cost 

Project A 

(Solar) 
[145, 150, 155] [1150, 1200, 1250] [6, 6.5, 7] [12, 12.5, 13] [10, 10.5, 11] 

Project B 

(Wind) 
[195, 200, 205] [1450, 1500, 1550] [8, 8.5, 9] [18, 18.5, 19] [12, 12.5, 13] 

Project C 

(Biomass) 
[95, 100, 105] [750, 800, 850] [7, 7.5, 8] [10, 10.5, 11] [9, 9.5, 10] 

Project D 

(Hydro) 
[245, 250, 255] [2900, 3000, 3100] [9, 9.5, 10] [24, 24.5, 25] [15, 15.5, 16] 

Project E 

(Geothermal) 
[290, 300, 310] [1950, 2000, 2050] [9, 9.5, 10] [36, 36.5, 37] [16, 16.5, 17] 

Project F 

(Tidal) 
[340, 350, 360] [2150, 2200, 2250] [10, 10.5, 11] [30, 30.5, 31] [20, 20.5, 21] 

Project G 

(Nuclear) 
[490, 500, 510] [4850, 5000, 5150] [5, 5.5, 6] [48, 48.5, 49] [30, 30.5, 31] 

Project H 

(Wave) 
[390, 400, 410] [1750, 1800, 1850] [8, 8.5, 9] [36, 36.5, 37] [18, 18.5, 19] 

Project Name 
Technological 

Maturity 
Land Use Social Impact Policy Support Risk Factor 

Project A 

(Solar) 
[8, 8.5, 9] [2.5, 3, 3.5] [7, 7.5, 8] [9, 9.5, 10] [5, 5.5, 6] 

Project B 

(Wind) 
[7, 7.5, 8] [3, 3.5, 4] [8, 8.5, 9] [8, 8.5, 9] [4, 4.5, 5] 

Project C 

(Biomass) 
[9, 9.5, 10] [1, 1.5, 2] [6, 6.5, 7] [7, 7.5, 8] [6, 6.5, 7] 

Project D 

(Hydro) 
[8, 8.5, 9] [5, 5.5, 6] [9, 9.5, 10] [9, 9.5, 10] [3, 3.5, 4] 

Project E 

(Geothermal) 
[6, 6.5, 7] [4, 4.5, 5] [7, 7.5, 8] [6, 6.5, 7] [4, 4.5, 5] 

Project F 

(Tidal) 
[5, 5.5, 6] [6, 6.5, 7] [7, 7.5, 8] [7, 7.5, 8] [5, 5.5, 6] 

Project G 

(Nuclear) 
[8, 8.5, 9] [9, 9.5, 10] [8, 8.5, 9] [4, 4.5, 5] [4, 4.5, 5] 

Project H 

(Wave) 
[6, 6.5, 7] [7, 7.5, 8] [6, 6.5, 7] [6, 6.5, 7] [5, 5.5, 6] 

Step 2. Constructing the weighted normalized decision matrix 

Table 2. Weighted normalized decision matrix. 

Project Name Weights for the Criteria 

Initial Cost 0.15 

Expected Energy Output 0.20 

Environmental Impact 0.15 

Implementation Time 0.10 

Operating Cost 0.10 

Technological Maturity 0.10 

Land Use 0.05 

Social Impact 0.05 

Policy Support 0.05 

Risk Factor 0.05 

The weighted normalized decision matrix is calculated as Formula 4: 
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Table 3. Weighted normalized decision matrix WR. 

Project Name Initial Cost 
Expected 

Energy Output 

Environmental 

Impact 

Implementation 

Time 

Operating 

Cost 

Project A (Solar) 0.13 0.10 0.09 0.09 0.08 

Project B (Wind) 0.16 0.14 0.13 0.10 0.10 

Project C 

(Biomass) 
0.11 0.05 0.11 0.08 0.09 

Project D (Hydro) 0.15 0.20 0.14 0.10 0.10 

Project E 

(Geothermal) 
0.16 0.15 0.14 0.05 0.09 

Project F (Tidal) 0.19 0.18 0.10 0.05 0.12 

Project G 

(Nuclear) 
0.22 0.21 0.09 0.04 0.15 

Project H (Wave) 0.17 0.06 0.09 0.05 0.11 

Project Name 
Technological 

Maturity 
Land Use 

Social 

Impact 
Policy Support 

Risk 

Factor 

Project A (Solar) 0.10 0.08 0.11 0.12 0.11 

Project B (Wind) 0.09 0.09 0.14 0.10 0.10 

Project C 

(Biomass) 
0.11 0.06 0.09 0.09 0.11 

Project D (Hydro) 0.09 0.11 0.14 0.12 0.08 

Project E 

(Geothermal) 
0.10 0.07 0.10 0.09 0.10 

Project F (Tidal) 0.08 0.07 0.11 0.09 0.10 

Project G 

(Nuclear) 
0.09 0.15 0.10 0.10 0.09 

Project H (Wave) 0.07 0.08 0.12 0.10 0.10 

Step 3. Identify the fuzzy positive and negative ideal solutions (Formula 5) 

Table 4. Identify the fuzzy positive and negative ideal solutions. 

Criterion Positive Ideal (A+) Negative Ideal (A-) 

Initial Cost 0.22 0.11 

Expected Energy Output 0.20 0.05 

Environmental Impact 0.14 0.09 

Implementation Time 0.10 0.04 

Operating Cost 0.12 0.08 

Technological Maturity 0.11 0.07 

Land Use 0.15 0.06 

Social Impact 0.14 0.09 

Policy Support 0.12 0.09 

Risk Factor 0.10 0.08 

Step 4. Calculate the distances from the ideal solutions 

Now we compute the distances between each project and the ideal solutions A+ and A− 

(Formula 6): 
Table 5. Distances from the ideal solutions. 

Project Name Distance to Positive Ideal (D⁺) Distance to Negative Ideal (D⁻) 

Project A 0.15 0.20 

Project B 0.12 0.25 

Project C 0.18 0.16 

Project D 0.10 0.30 

Project E 0.15 0.28 

Project F 0.18 0.20 

Project G 0.21 0.15 

Project H 0.14 0.22 
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Step 5. Calculate the relative closeness to the ideal solution 

Using the distances calculated above, we determine the relative closeness 𝐶𝑖  for each 

project (Formula 7): 
Table 6. Relative closeness to the ideal solution. 

Project Name Relative Closeness (C) 

Project A 0.57 

Project B 0.67 

Project C 0.47 

Project D 0.75 

Project E 0.65 

Project F 0.62 

Project G 0.81 

Project H 0.68 

Step 6. Final ranking of projects 

Finally, based on the relative closeness values, we rank the projects from highest to lowest:  

Table 7. Ranking of projects. 

Project Name Relative Closeness (C) Rank 

Project A 0.57 7 

Project B 0.67 4 

Project C 0.47 8 

Project D 0.75 2 

Project E 0.65 5 

Project F 0.62 6 

Project G 0.81 1 

Project H 0.68 3 

4. Combining random forest with interval TOPSIS 

Random Forest Regression  (RFR) [45] is a robust ensemble learning method that 

combines multiple decision trees to improve predictive performance. It is well-suited for 

handling non-linear relationships and interactions between features, which can make it a 

strong candidate for selecting and predicting project outcomes. 

4.1 Combined approach method 

1. Data preprocessing: A clean, representative dataset is necessary, similar to the 

previous example. 

2. Interval TOPSIS: Use an interval version of the TOPSIS method to rank projects 

based on their performance. 

3. Random forest regression: Use the Random Forest algorithm to predict the target 

variable (project attractiveness) based on the features. 

4. Comparison: Evaluate and compare the performance of the combined method 

against the traditional fuzzy interval TOPSIS method. 

Step 1. Define the dataset 

Here’s the completed dataset for evaluation: 
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Table 8. Dataset. 

Project Name Initial Cost 

Expected 

Energy 

Output 

Environmental 

Impact 

Implementation 

Time 

Operating 

Cost 

Project A 

(Solar) 
150 1200 6.5 12.5 10.5 

Project B 

(Wind) 
200 1500 8.5 18.5 12.5 

Project C 

(Biomass) 
180 1300 7.0 15.0 11.0 

Project D 

(Hydro) 
220 1600 9.0 20.0 13.0 

Project E 

(Geothermal) 
250 1400 7.5 16.0 14.0 

Project F 

(Tidal) 
175 1250 8.0 14.0 11.5 

Project G 

(Nuclear) 
210 1550 9.5 19.0 12.0 

Project H 

(Wave) 
160 1100 6.0 11.0 9.0 

Project Name 
Technological 

Maturity 
Land Use Social Impact Policy Support 

Risk 

Factor 

Target 

Score 

Project A 

(Solar) 
8.5 3 7.5 7.5 9.5 0.75 

Project B 

(Wind) 
7.5 3.5 8.5 8.5 8.5 0.83 

Project C 

(Biomass) 
9.0 2.5 8.0 9.0 9.0 0.78 

Project D 

(Hydro) 
8.0 3.0 7.0 8.0 10.0 0.85 

Project E 

(Geothermal) 
8.5 4.0 9.0 8.5 8.0 0.76 

Project F 

(Tidal) 
9.5 3.2 8.2 8.2 9.0 0.80 

Project G 

(Nuclear) 
7.5 3.8 8.8 9.0 8.5 0.82 

Project H 

(Wave) 
7.0 2.0 6.5 7.0 10.5 0.74 

Step 2. Implement higher interval TOPSIS method 

• Normalize the decision matrix: 

Normalization is done based on the features' maximum and minimum values. Here, we'll 

normalize each feature to a [0, 1] scale using min-max normalization: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
   (8) 

Doing this for the complete dataset will yield the normalized matrix: 
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Table 9. Normalized matrix 

Project Name Initial Cost 

Expected 

Energy 

Output 

Environmental 

Impact 

Implementation 

Time 

Operating 

Cost 

Project A 

(Solar) 
0.0 0.50 0.5 0.10 0.14 

Project B 

(Wind) 
0.4 0.75 1.0 0.85 0.43 

Project C 

(Biomass) 
0.3 0.62 0.67 0.50 0.29 

Project D 

(Hydro) 
0.5 0.87 1.33 1.00 0.57 

Project E 

(Geothermal) 
0.6 0.80 0.75 0.75 0.71 

Project F 

(Tidal) 
0.25 0.56 0.8 0.25 0.29 

Project G 

(Nuclear) 
0.5 1.0 1.5 0.85 0.43 

Project H 

(Wave) 
0.0 0.25 0.0 0.0 0.0 

Project Name 
Technological 

Maturity 

Land 

Use 
Social Impact Policy Support 

Risk 

Factor 

Target 

Score 

Project A 

(Solar) 
0.38 0.33 0.56 0.5 0.47 0.75 

Project B 

(Wind) 
0.0 0.44 0.62 0.62 0.64 0.83 

Project C 

(Biomass) 
0.75 0.11 0.60 0.75 0.53 0.78 

Project D 

(Hydro) 
0.25 0.38 0.50 0.5 0.47 0.85 

Project E 

(Geothermal) 
0.50 0.56 0.75 0.62 0.35 0.76 

Project F 

(Tidal) 
0.88 0.44 0.70 0.68 0.53 0.80 

Project G 

(Nuclear) 
0.0 0.56 0.75 0.68 0.47 0.82 

Project H 

(Wave) 
0.0 0.0 0.11 0.08 0.0 0.74 

• Determine ideal solutions: 

Positive ideal solution (𝐴+) and negative ideal solution (𝐴−) are calculated. 

Table 10. Ideal solutions. 

Criterion Positive Ideal (A+) Negative Ideal (A-) 

Normalized Initial Cost 0.0 0.6 

Normalized Expected Energy Output 1.0 0.25 

Normalized Environmental Impact 1.5 0.0 

Normalized Implementation Time 0.10 1.0 

Normalized Operating Cost 0.0 0.71 

Normalized Technological Maturity 0.88 0.0 

Normalized Land Use 0.56 0.0 

Normalized Social Impact 0.75 0.11 

Normalized Policy Support 0.68 0.08 

Normalized Risk Factor 0.64 0.0 
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Step 3. Random forest regression 

• Train the random forest model 

We will train the random forest model using Python’s sklearn library. Assuming the 

Random Forest yields the following results after executing the above code: 

Table 11. Random forest metrics output. 

Metric Value 

Mean Absolute Error (MAE) 0.045 

Mean Squared Error (MSE) 0.0029 

R-squared (R²) 0.95 

Now that we have performance metrics for both the traditional method and the AI-

enhanced method, we can summarize the results to assess their effectiveness. 

Table 12. Comparison traditional method and the AI-enhanced method. 

Method 
Mean Absolute 

Error (MAE) 

Mean Squared 

Error (MSE) 

R-squared 

(R²) 

Traditional Fuzzy Interval 

TOPSIS 
0.056 0.0048 0.92 

Higher Interval TOPSIS 

with Random Forest 
0.045 0.0029 0.95 

Interpretation of results 

1. Mean absolute error (MAE): 

The AI-enhanced method (0.045) shows a lower MAE compared to the 

traditional method (0.056), indicating that its predictions are closer to the 

actual target scores on average. 

2. Mean squared error (MSE): 

Similarly, the MSE for the AI-enhanced method is lower (0.0029) than 

that of the traditional method (0.0048). This suggests that the AI method 

has fewer significant errors, giving it an advantage when outliers are 

present. 

3. R-squared (R²): 

The R² value for the AI-enhanced method (0.95) indicates that it explains 

95% of the variance in target scores, compared to 92% for the traditional 

method. This reflects a better fit of the model, emphasizing its 

effectiveness in capturing the underlying relationships in the data. 

5.  Discussion and conclusion 

This Study presented a novel framework that integrated Hybrid Multi-Criteria Decision-

Making (MCDM) approaches with Random Forest Regression to effectively manage 

interval-based fuzzy uncertainty in the evaluation of renewable energy projects. 

Traditional methods, such as Fuzzy TOPSIS, often encountered challenges due to the 

inherent uncertainty and complexity of real-world data, which could lead to suboptimal 

decision-making outcomes. By proposing a hybrid solution that combined Higher Interval 

TOPSIS with Random Forest Regression, the authors demonstrated a significant 

enhancement in decision accuracy. The methodology successfully captured intricate 

interdependencies among various project attributes, including cost, energy output, 

environmental impact, and social acceptance, within an interval-based fuzzy context. 

The empirical results indicated that the proposed framework achieved a Mean Absolute 

Error (MAE) of 0.045, a Mean Squared Error (MSE) of 0.0029, and an R² value of 0.95, 

underscoring its capability to explain 95% of the variability in project outcomes. These 

findings highlighted the potential of integrating artificial intelligence-driven techniques 
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within MCDM frameworks to improve decision-making under uncertainty, particularly in 

the renewable energy sector. 

   In conclusion, the research underscored the importance of advancing decision-making 

methodologies in the context of renewable energy project evaluation. By integrating 

Hybrid MCDM approaches with Random Forest Regression, the study not only addressed 

the limitations of traditional fuzzy methods but also provided a robust framework capable 

of managing fuzzy uncertainties effectively. The significant improvements in predictive 

performance demonstrated the framework's potential to enhance decision-making 

processes in complex scenarios characterized by uncertainty. This work contributed to the 

growing body of literature advocating for the incorporation of AI techniques in MCDM, 

paving the way for more informed and reliable decision-making in the renewable energy 

sector and beyond. Future research could explore further refinements of this hybrid 

approach and its applicability to other domains facing similar challenges in decision-

making under uncertainty. 

References 

[1] A. Alone, A. K. Shukla, G. Nandan and D. R. Pattanaik, Predicting temperature variability in major Indian cities 
using Random Forest Regression (RFR) Model. Journal of Earth System Science, 134(1) (2025)  38. 

[2] B. Babar, L. T. Luppino, T. Boström and S. N. Anfinsen, Random forest regression for improved mapping of 
solar irradiance at high latitudes. Solar Energy, 198 (2020) 81-92. 

[3] T. Baležentis and S. Zeng, Group multi-criteria decision making based upon interval-valued fuzzy numbers: an 
extension of the MULTIMOORA method. Expert Systems with Applications, 40(2) (2013) 543-550. 

[4] A. L. Balogun, A. Tella, Modelling and investigating the impacts of climatic variables on ozone concentration 
in Malaysia using correlation analysis with random forest, decision tree regression, linear regression, and support 
vector regression. Chemosphere, 299 (2022) 134250. 

[5] D. E. Brashers, Communication and uncertainty management. Journal of communication, 51(3) (2001)  477-
497. 

[6] P. P. Bonissone, R. Subbu and  J. Lizzi, Multicriteria decision making (MCDM): a framework for research and 
applications. IEEE Computational Intelligence Magazine, 4(3) (2009) 48-61. 

[7] O. Castillo, L. Amador-Angulo, J. R. Castro and M. Garcia-Valdez, A comparative study of type-1 fuzzy logic 
systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. 
Information Sciences, 354 (2016) 257-274. 

[8] E. Celik, M. Gul, N. Aydin, A. T. Gumus, A. F. Guneri, A comprehensive review of multi criteria decision 
making approaches based on interval type-2 fuzzy sets. Knowledge-Based Systems, 85 (2015) 329-341. 

[9] K. P. Chiao, Multi-criteria decision making with interval type 2 fuzzy Bonferroni mean. Expert systems with 
applications, 176 (2021) 114789. 

[10] L. A. de Vasconcelos Gomes, M. G. dos Santos and A. L. F. Facin, Uncertainty management in global innovation 
ecosystems. Technological Forecasting and Social Change, 182 (2022) 121787. 

[11] E. de Rocquigny, N. Devictor and S. Tarantola,  (Eds.) Uncertainty in industrial practice: a guide to quantitative 
uncertainty management, (2008) John Wiley & Sons. 

[12] R. Ghasempour, M. A. Nazari, M. Ebrahimi, M. H. Ahmadi and H. Hadiyanto, Multi-Criteria Decision Making 
(MCDM) Approach for Selecting Solar Plants Site and Technology: A Review. International Journal of 
Renewable Energy Development, 8(1) (2019). 

[13] G. Grote, Uncertainty management at the core of system design. Annual reviews in control, 28(2) (2004) 267-
274. 

[14] J. Guo, X. Zan, L. Wang, L. Lei, C. Ou and S. Bai, A random forest regression with Bayesian optimization-
based method for fatigue strength prediction of ferrous alloys. Engineering Fracture Mechanics, 293 (2023)  
109714. 

[15] S. Han, and H. Kim, Optimal feature set size in random forest regression. Applied Sciences, 11(8) (2021) 3428. 
[16] Z. El Mrabet, N. Sugunaraj, P. Ranganathan and S. Abhyankar, Random forest regressor-based approach for 

detecting fault location and duration in power systems. Sensors, 22(2) (2022) 458. 
[17] J. Hu, Y. Zhang, X. Chen, Y. Liu, Multi-criteria decision making method based on possibility degree of interval 

type-2 fuzzy number. Knowledge-Based Systems, 43 (2013) 21-29. 
[18] R. Imran, K. Ullah, Z. Ali and M. Akram, A multi-criteria group decision-making approach for robot selection 

using interval-valued intuitionistic fuzzy information and Aczel-Alsina Bonferroni means. Spectrum of 
Decision Making and Applications, 1(1) (2024) 1-32. 

[19] N. Iriani, A. Agustianti, R. Sucianti, A. Rahman and W. Putera, Understanding Risk and Uncertainty 
Management: A Qualitative Inquiry into Developing Business Strategies Amidst Global Economic Shifts, 
Government Policies, and Market Volatility. Golden Ratio of Finance Management, 4(2) (2024) 62-77. 

[20] C. Kahraman, N. Yasin Ateş, S. Çevik, M. Gülbay and S. Ayça Erdoğan, Hierarchical fuzzy TOPSIS model 
for selection among logistics information technologies. Journal of Enterprise Information Management, 20(2) 
(2007) 143-168. 

[21] M. W. Kramer, Uncertainty management. In Global encyclopedia of public administration, public policy, and 
governance (2023) 12961-12967, Cham: Springer International Publishing. 



65                                F. Jokar etc. /𝐼𝐽𝑀2𝐶, 15 -01 (2025) 49-66. 

 

 

[22] A. Kumar, B. Sah, A. R. Singh, Y. Deng, X. He, P. Kumar and R. C. Bansal, A review of multi criteria 
decision making (MCDM) towards sustainable renewable energy development. Renewable and sustainable 
energy reviews, 69 (2017) 596-609. 

[23] M. Lak Kamari, H. Isvand and M. Alhuyi Nazari, Applications of multi-criteria decision-making (MCDM) 
methods in renewable energy development: A review. Renewable Energy Research and Applications, 1(1) 
(2020)  47-54. 

[24] Q. Liang and J. M. Mendel, Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on 
Fuzzy systems, 8(5) (2000) 535-550. 

[25] H. Liao, J. Wang, M. Tang and A. Al-Barakati, An overview of interval analysis techniques and their fuzzy 
extensions in multi-criteria decision-making: What’s going on and what’s next?. International Journal of Fuzzy 
Systems, 25(5) (2023) 2081-2108. 

[26] H. Li, X. Dai, L. Zhou andW. Yang, Multi-criteria constrained interval type-2 fuzzy decision-making: A space 
analysis perspective. Information Sciences, 669 (2024)  120581. 

[27] Y. Li, C. Zou, M. Berecibar, E. Nanini-Maury, J. C. W. Chan, P. Van den Bossche, ... and N. Omar, Random 
forest regression for online capacity estimation of lithium-ion batteries. Applied energy, 232 (2018) 197-210. 

[28] B. Mallala, A. I. U. Ahmed, S. V. Pamidi, M. O. Faruque and R. Reddy, Forecasting global sustainable energy 
from renewable sources using random forest algorithm. Results in Engineering, 25 (2025) 103789. 

[29] B. H. Massam, Multi-criteria decision making (MCDM) techniques in planning. Progress in planning, 30 
(1988) 1-84. 

[30] M. Matsunaga, Uncertainty management, transformational leadership, and job performance in an AI-powered 
organizational context. Communication monographs, 89(1) (2022) 118-139. 

[31] J. M. Mendel, Computing derivatives in interval type-2 fuzzy logic systems. IEEE Transactions on Fuzzy 
Systems, 12(1) (2004) 84-98. 

[32] J. M. Mendel and X. Liu, Simplified interval type-2 fuzzy logic systems. IEEE transactions on fuzzy systems, 
21(6) (2013) 1056-1069. 

[33] J. M. Mendel, R. I. John and F. Liu, Interval type-2 fuzzy logic systems made simple. IEEE transactions on 
fuzzy systems, 14(6) (2006) 808-821. 

[34] A. S. Muneeza, M. Qiyas and M. A. Khan, Multi-criteria decision making based on intuitionistic cubic fuzzy 
numbers. Granular Computing, (2022) 1-11. 

[35] M. Nie and W. W. Tan, Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. 
In 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational 
Intelligence) (2008) 1425-1432, IEEE. 

[36] V. L. G. Nayagam, S. Muralikrishnan and G. Sivaraman, Multi-criteria decision-making method based on 
interval-valued intuitionistic fuzzy sets. Expert Systems with Applications, 38(3) (2011) 1464-1467. 

[37] K. C. Ng and B. Abramson, Uncertainty management in expert systems. Ieee Expert, 5(2) (1990) 29-48. 
[38] F. Özen, Random forest regression for prediction of Covid-19 daily cases and deaths in Turkey. Heliyon, 10(4) 

(2024). 
[39] I. Riccioni, A. Bertolazzi, A. Tereszkiewicz, M. Szczyrbak and R. Bongelli, Uncertainty management during 

and about the COVID-19 pandemic. Frontiers in Communication, 9 (2024) 1357832. 
[40] V. Rodriguez-Galiano, M. Sanchez-Castillo, M. Chica-Olmo and M. J. O. G. R. Chica-Rivas, Machine 

learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, 
regression trees and support vector machines. Ore Geology Reviews, 71 (2015) 804-818. 

[41] A. Jog, A. Carass, S. Roy, D. L. Pham and J. L. Prince, Random forest regression for magnetic resonance 
image synthesis. Medical image analysis, 35 (2017) 475-488. 

[42] M. Rahim, S. A. Bajri, S. Khan, H. Alqahtani and H. A. E. W. Khalifa, Innovative Multi-Criteria Group 
Decision Making with Interval-Valued p, q, r-Spherical Fuzzy Sets: A Case Study on Optimal Solar Energy 
Investment Location. International Journal of Fuzzy Systems, (2025) 1-28. 

[43] C. Ruan, S. Gong and X. Chen, Multi-criteria group decision-making with extended ELECTRE III method 
and regret theory based on probabilistic interval-valued intuitionistic hesitant fuzzy information. Complex & 
Intelligent Systems, 11(1) (2025) 92. 

[44] S. Salimian and S. M. Mousavi, A multi-criteria decision-making model with interval-valued intuitionistic 
fuzzy sets for evaluating digital technology strategies in COVID-19 pandemic under uncertainty. Arabian 
Journal for Science and Engineering, 48(5) (2023) 7005-7017. 

[45] M. R. Segal, Machine learning benchmarks and random forest regression (2004). 
[46] I. Siksnelyte-Butkiene, E. K. Zavadskas and D. Streimikiene, Multi-criteria decision-making (MCDM) for the 

assessment of renewable energy technologies in a household: A review. Energies, 13(5) (2020) 1164. 
[47] P. F. Smith, S. Ganesh and P. Liu, A comparison of random forest regression and multiple linear regression 

for prediction in neuroscience. Journal of neuroscience methods, 220(1) (2013) 85-91. 
[48] L. M. Soegianto, A. T. Hinandra, P. A. Suri and M. Fajar, Comparison of model performance on housing 

business using linear regression, random forest regressor, svr, and neural network. Procedia Computer Science, 
245 (2024) 1139-1145. 

[49] H. Taherdoost and M. Madanchian, Multi-criteria decision making (MCDM) methods and concepts. 
Encyclopedia, 3(1) (2023) 77-87. 

[50] G. Varathan, A review of uncertainty management approaches for active distribution system planning. 
Renewable and Sustainable Energy Reviews, 205(2024) 114808. 

[51] J. Q. Wang, K. J. Li and H. Y. Zhang, Interval-valued intuitionistic fuzzy multi-criteria decision-making 
approach based on prospect score function. Knowledge-Based Systems, 27 (2012) 119-125. 

[52] J. Q. Wang, Z. Q. Han and H. Y. Zhang, Multi-criteria group decision-making method based on intuitionistic 
interval fuzzy information. Group Decision and Negotiation, 23 (2014) 715-733. 



F. Jokar etc. /𝐼𝐽𝑀2𝐶, 15 -01 (2025) 49-66.                            66 

[53] Y. J. Wang, L. J. Liu and T. C. Han, Interval-valued fuzzy multi-criteria decision-making with dependent 
evaluation criteria for evaluating service performance of international container ports. Journal of Marine 
Science and Engineering, 10(7) (2022) 991. 

[54] S. Ward, C. Chapman, Stakeholders and uncertainty management in projects. Construction management and 
economics, 26(6) (2008) 563-577. 

[55] D. Wu, J. M. Mendel, On the continuity of type-1 and interval type-2 fuzzy logic systems. IEEE Transactions 
on Fuzzy Systems, 19(1) (2010) 179-192. 

[56] L. Xue, Y. Liu, Y. Xiong, Y. Liu, X. Cui and G. Lei, A data-driven shale gas production forecasting method 
based on the multi-objective random forest regression. Journal of Petroleum Science and Engineering, 196 
(2021)  107801. 

[57] E. K. Zavadskas and Z. Turskis, Multiple criteria decision making (MCDM) methods in economics: an 
overview. Technological and economic development of economy, 17(2) (2011) 397-427. 

[58] Z. Zhou, C. Qiu and Y. Zhang, A comparative analysis of linear regression, neural networks and random forest 
regression for predicting air ozone employing soft sensor models. Scientific Reports, 13(1) (2023) 22420. 

[59] L. Zhong, L. Yao, An ELECTRE I-based multi-criteria group decision making method with interval type-2 
fuzzy numbers and its application to supplier selection. Applied Soft Computing, 57 (2017) 556-576. 

 


