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study’s findings indicate that the suggested functional link-based neural 

network achieves greater accuracy in comparison to some traditional 

methods for solving fractional partial differential equations  
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INTRODUCTION 

   Fractional calculus, a branch of Applied 

Mathematics, focuses on non-integer order 

differentiation and integration. This discipline 

presents numerous advantages and has found 

applications in a wide range of scientific and 

engineering fields (Chávez-Vázquez et al., 2022; 

 Diethelm et al., 2022). It provides a more 

accurate representation of complex systems, 

particularly those characterized by memory and 

hereditary effects, than traditional integer 

calculus. Additionally, fractional calculus enables 

the modeling and analysis of anomalous 

phenomena, allowing for a deeper understanding 

of intricate systems and their behavior. 

Time-delay systems, often referred to as delay 

differential equations (DDEs), represent a distinct 

category of differential equations that incorporate 

time delays. These equations have been 

extensively utilized across diverse scientific 

domains, including economics, physics, ecology, 

and engineering control. While only a limited 

number of DDEs possess explicit analytical 

solutions, a surge in the development of numerical 

techniques has emerged recently to compensate 

for the existing gap in theoretical research. The 

study of delay fractional differential equations 

(DFDEs) has taken on increased significance in 

light of the growing relevance of fractional 

calculus. Prior research has introduced a range of 

both analytical and numerical methodologies to 

address DFDEs (Kumar & Erturk, 2022; Hattaf, 

2022). 

The dynamics described by variable-order 

fractional partial differential equations are finding 

increasing relevance in a variety of scientific and 

engineering domains. These include modeling the 

dynamics of the anomalous diffusion, synthesis of 

multifractional Gaussian noises, developing 

statistical mechanics models, and a predictive 

model of the spread of COVID-19 (Sheng et al., 

2011; Singh et al., 2021). Deriving analytical 

solutions for problems that involve variable-order 

fractional derivatives poses significant 

challenges. Consequently, many researchers have 

turned to the development of numerical methods 

as viable alternatives. For example, a robust three-

level explicit spline finite difference scheme has 

been proposed for a specific class of nonlinear 

time variable-order fractional partial differential 

equations (Moghaddam & Machado, 2017). 

Furthermore, a study in (Tayebi et al., 2017) 

explored a meshless approach to solve two-

dimensional variable-order time-fractional 

advection-diffusion equations. Additionally, 

(Heydari & Avazzadeh, 2018).  introduced the 

Legendre wavelets optimization technique for 

solving variable-order fractional Poisson 

equations. 

While time-varying delay partial differential 

equations have attracted the attention of 

numerous researchers, there appears to be a 

limited exploration in the field of time-varying 

delay fractional partial differential equations with 

variable-order based on our current 

understanding. In this article, we introduce a 

neural network based model to solve the 

following category of variable-order fractional 

time-varying delay partial differential equations 

(VOFTVDPDEs). The equation is as follows 
𝜕𝑞(𝑡)𝑢(𝑥,𝑡)

𝜕𝑡𝑞(𝑡) − 𝜂
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 = 𝑓 (𝑡, 𝑢(𝑥, 𝑡), 𝑢(𝑥, 𝑡 −

𝑠(𝑡))),           

 𝑎 < 𝑥 < 𝑏, 0 < 𝑡 ≤ 𝑇,                                    (1) 

𝑢(𝑥, 𝑡) = 𝜓(𝑥, 𝑡), 𝑥 ∈ (𝑎, 𝑏), 𝑡 ∈ [−𝑠, 0],                                                               
(2) 
𝑢(𝑎, 𝑡) = 𝜓(𝑎, 𝑡), 𝑢(𝑏, 𝑡) = 𝜓(𝑏, 𝑡), 𝑡 ∈
(0, 𝑇],                                                                            (3) 

where 𝑞(𝑡), is the fractional variable-order 

derivative, 𝑠(𝑡) > 0 is the time-varying delay, 

𝑠 = max
0≤𝑡≤𝑇

{𝑠(𝑡)}, 𝜓(𝑥, 𝑡) is a known function, and 

0 < 𝑞(𝑡) < 1. 𝑓 is a continuous function, 𝜂 > 0 

is the diffusion coefficient. 

In the VOTVFDPDEs (1)-(3), both the order of 

the derivative and the time delay are functions of 

time, which can introduce additional complexity 

to the problem. Moreover, the VOTVFDDE (1)-

(3) can be considered a broader framework 

encompassing some previously discussed 

research. For example, with considering variable-

order 𝑞(𝑡) and time-varying delay 𝑠(𝑡) > 0 as 

constant values, the VOTVFDPDEs (1)-(3) are 

reduced to fractional order partial differential 

equations with time delay .To the best of our 

knowledge, this is the first time that this problem 
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has been considered in the literature. Given the 

absence of an analytical solution, we aim to 

introduce a neural network (ANN) for solving the 

problem (1)-(3). ANNs, widely adopted in 

fractional calculus studies (Bijiga & Ibrahim, 

2021). One of the primary advantages of 

employing ANN is the ability to acquire solutions 

in an analytical form, which is highly desirable in 

practical situations where continuous and 

differentiable functions are needed for a 

comprehensive study of solution properties. In 

addition to the analytical form of solutions, ANNs 

offer various other benefits. For instance, they 

consistently provide precise results throughout 

the entire domain, even when only a few data 

points are available. This enables researchers to 

effectively adjust the numerical technique based 

on initial conditions and simplifies the solving of 

complex problems due to the architecture and 

simplicity of ANN. Furthermore, ANNs prove to 

be valuable when there is a requirement to 

analytically integrate or differentiate the obtained 

solutions. By employing ANNs, one can 

conveniently perform these operations and study 

the properties of the solutions more effectively. 

ANNs are widely recognized and frequently used 

techniques in the field of machine learning. This 

is primarily due to their global approximation 

capability, which allows them to approximate and 

model various functions accurately. As a result, 

ANNs have gained significant popularity and find 

extensive applications in different fields. 

To reference more recent works, refer to (Al-

Janabi et al., 2020; Al-Janabi et al., 2020; Al-

Janabi and Alkaim, 2020). Based on the previous 

discussion, we investigate the solutions of 

VOTVFDPDEs (1)-(3) through a novel class of 

artificial neural networks called functional link-

based neural networks (FLNN). These networks 

offer advantages over multilayer neural networks 

(Pao, 1989). Unlike traditional neural networks, 

FLNNs do not include a hidden layer, resulting in 

a reduced number of unknown parameters 

compared to classical multilayer perceptrons 

(MLPs). Consequently, the computational burden 

is lessened with a single-layer FLNN structure. 

Recent studies have focused on classical 

polynomials within the FLNN framework (Zou et 

al., 2010; Peterson and Larin, 2008; Patra et al., 

2008), particularly the Lagrange polynomial basis 

functions known for their rapid convergence and 

high accuracy. Hence, we propose a single-layer 

FLNN employing Lagrange polynomials to 

expand the input pattern for solving problem (1)-

(3). By collocating the time domain, the 

VOTVFDPDEs problem can be transformed into 

an optimization problem, an essential aspect of 

neural network design (Mohammed & Al-Janabi, 

2020; Kadhuim & Al-Janabi, 2023; Syah et al., 

2022). Consequently, a backpropagation 

algorithm is applied to determine the unknown 

parameters of Lagrange functional link-based 

neural networks (LFLNN). Numerous iterative 

techniques, including gradient descent, Newton’s 

method, and conjugate gradient, are available for 

this purpose. However, for the training of our 

neural network, we will utilize a modified version 

of the Newton-Raphson method and examine its 

convergence properties. The structure of the paper 

is as follows: Section 2 provides a review of the 

fundamental concepts of fractional variable-order 

operators and basis functions. The architecture of 

the LFLNN and the corresponding learning 

algorithm are detailed in Section 3. In order to 

assess the effectiveness of different activation 

functions and the proposed framework, several 

numerical examples are discussed in Section 4. 

We give the discussion of results and conclusion 

in Sections 5 and 6, respectively. 

 

MATHEMATICAL PRELIMINARIES 
   In this section, we will present definitions 

related to variable-order calculus and basic 

functions, which will be utilized in the subsequent 

sections of the paper. For more on the subject, we 

refer the reader to (Patnaik et al., 2020).  

Fractional variable-order calculus 

Definition 2.1 The Riemann-Liouville fractional 

variable-order integral is defined as follows  

 0
𝐶 𝐼𝑡

𝑞(𝑡)
𝑓(𝑡) =

1

𝛤(𝑞(𝑡))
∫

𝑡

0
(𝑡 − 𝑠)𝑞(𝑡)−1𝑓(𝑠)𝑑𝑠,  

                                0 < 𝑞(𝑡) < 1,                (4) 

 where 𝑓 ∈ 𝐶1(0, 𝑇).  
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Definition 2.2 The Caputo fractional variable-

order derivative is characterized by the following 

definition  

 

 0
𝐶 𝐷𝑡

𝑞(𝑡)
𝑓(𝑡) =

1

𝛤(1−𝑞(𝑡))
∫

𝑡

0
(𝑡 − 𝑠)−𝑞(𝑡)𝑓′(𝑠)𝑑𝑠,  

                             0 < 𝑞(𝑡) < 1,                         (5) 

where 𝑓 ∈ 𝐶1(0, 𝑇).  

Definition 2.3 The Caputo fractional variable-

order partial differential operator of order 0 <
𝑞(𝑡) < 1 with the lower limit 𝑡0 = 0 is defined as 

(Zúniga-Aguilar et al., 2019).  
 

𝜕𝑞(𝑡)𝑢(𝑥,𝑡)

𝜕𝑡𝑞(𝑡) =

{

1

𝛤(1−𝑞(𝑡))
∫

𝑡

0
(𝑡 − 𝑟)−𝑞(𝑡) 𝜕𝑢(𝑥,𝑟)

𝜕𝑟
𝑑𝑟, 0 < 𝑞(𝑡) < 1,

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
, 𝑞(𝑡) = 1.

  

                                                                                         (6) 

When the value of 𝑞(𝑡) is a fixed constant 𝑞, it 

results in the 𝑞th-order Caputo fractional 

derivative. It is feasible to compute the variable-

order fractional derivative for polynomial 

expressions, especially when 0 < 𝑞(𝑡) < 1, as 

described by the following formula (Akgül et al., 

2017). 

𝜕𝑞(𝑡)𝑡𝑛𝑔(𝑥)

𝜕𝑡𝑞(𝑡) = {
0, 𝑛 = 0,

Γ(𝑛+1)

Γ(𝑛+1−𝑞(𝑡))
𝑡𝑛−𝑞(𝑡)𝑔(𝑥), 𝑛 ∈ ℕ.              

                                                                          (7) 

Legendre polynomials 

   Here, the foundation of our discussion includes 

an overview of Legendre polynomials. The basis 

functions of Legendre, applicable within the 

range [−1,1], can be derived through the use of 

Legendre’s differential equation as (Patra et al., 

2008)  
𝑑

𝑑𝑥
[(1 − 𝑥2)

𝑑

𝑑𝑥
𝑈𝑛(𝑥)] + 𝑛(𝑛 + 1)𝑈𝑛(𝑥) = 0. 

 They satisfy the following recurrence relation  

𝑈𝑖+1(𝑥) =
2𝑖 + 1

𝑖 + 1
𝑥𝑈𝑖(𝑥) −

𝑖

𝑖 + 1
𝑈𝑖−1(𝑥),    

                                                        𝑖 = 1,2, …, 
In the scenario where 𝑈0(𝑥) = 1 and 𝑈1(𝑥) = 𝑥, 

we can create the translated Legendre 

polynomials spanning the range [0, 𝑇] by 

applying the linear transformation 𝑥 =
2

𝑇
𝑡 − 1. In 

this context, 𝐿𝑚(𝑡) represents the translated 

Legendre polynomials of degree 𝑚 and they can 

be derived using the subsequent recurrence 

relation. 

𝐿𝑚+1(𝑡) =
2𝑚+1

𝑚+1
(

2

𝑇
𝑡 − 1) 𝐿𝑚(𝑡) −

                   
𝑚

𝑚+1
𝐿𝑚−1(𝑡),             𝑚 = 1,2, …,  

where 𝐿0(𝑡) = 1 and 𝐿1(𝑡) =
2

𝑇
𝑡 − 1. For any 

polynomial 𝐿𝑚(𝑡), with 𝑚 ∈ {0,1, … }, its 

orthogonality in relation to the weight function 

ℎ(𝑡) = 1 is described as  

∫
𝑇

0
𝐿𝑚(𝑡)𝐿𝑛(𝑡)𝑑𝑡 = {

𝑇

2𝑛+1
𝑚 = 𝑛,

0 𝑚 ≠ 𝑛.
             (8) 

The shifted Legendre polynomial of degree 𝑛, 

denoted as 𝐿𝑛(𝑡), over the interval [0, 𝑇] can be 

characterized by its analytical representation 

given by  

𝐿𝑛(𝑡) = ∑𝑛
𝑘=0 (−1)𝑛+𝑘 (𝑛+𝑘)!

(𝑛−𝑘)!(𝑘!)2
(

𝑡

𝑇
)𝑘.           (9) 

Next, we move forward to introduce the concept 

of shifted Legendre-Gauss nodes and the 

associated quadrature weights.  

Let 𝑡𝑘 , 𝑘 = 1,2, … , 𝑁 − 1, represent the 

conventional Legendre-Gauss nodes over the 

interval (−1,1), which are identified as the roots 

of 𝐿𝑁−1(𝑡). One pivotal characteristic of the LG 

points can be described as  

∫
1

−1
𝑓(𝑡)𝑑𝑡 ≃ ∑𝑁−1

𝑘=1 𝑐𝑘𝑓(𝑡𝑘).                         (10) 

This definite integral is accurate for polynomials 

with a maximum degree of 2𝑁 − 3, and the 

weights for numerical integration can be 

computed as (Canuto and Hussaini, 2012)  

𝑐𝑘 =
2

(1 − 𝑡𝑘
2)[𝑈𝑁−1

′ (𝑡𝑘)]2
,     

  𝑘 = 1, … , 𝑁 − 1. 
Let the Legendre-Gauss nodes, transformed to the 

interval [0, 𝑇], be represented by 𝜂𝑘 for 𝑘 =

1, … , 𝑁 − 1. One can derive that 𝜂𝑘 =
𝑇

2
(𝑡𝑘 + 1). 

The associated quadrature weights can be 

expressed as �̃�𝑘 =
𝑇

2
𝑐𝑘. Introducing two distinct 

points, 𝜉0 = 0 and 𝜉𝑁 = 𝑇, the Lagrange 

polynomials can be subsequently defined as  

𝑃𝑖(𝑡) = ∏𝑁
𝑙=0,𝑙≠𝑖

𝑡−𝜂𝑙

𝑡𝑖−𝜂𝑙
, 𝑖 = 0,1, … , 𝑁.   (11) 

Consider the shifted Legendre-Gauss nodes over 

the interval [𝑎, 𝑏] represented by 𝜉𝑟 for 𝑟 =

1, … , 𝑁 − 1. We have 𝜉𝑟 =
𝑏−𝑎

2
𝑡𝑘 +

𝑏+𝑎

2
. 
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Accordingly, the corresponding Lagrange 

polynomials are defined over the interval [𝑎, 𝑏] as  

𝑃𝑖(𝑥) = ∏𝑁
𝑙=0,𝑙≠𝑖

𝑥−𝜉𝑙

𝑥𝑖−𝜉𝑙
,      𝑖 = 0,1, … , 𝑁,       (12) 

where, 𝜉0 = 𝑎 and 𝜉𝑁 = 𝑏. 

Design of neural network model 

   The exploration of mathematical research in 

biological nervous systems has paved the way for 

the development of artificial neural networks 

(ANNs) (Haykin, 1998). Figure 1 shows a 

simplified model of the neuron as an inspiration 

for mathematical model. Inspired by the intricate 

workings of the human brain, ANNs aim to create 

machines capable of learning and adapting. This 

research has sparked fascinating advancements in 

the field of machine learning, where algorithms 

and models strive to replicate the cognitive 

processes of human intelligence. By delving into 

the complexities of biological nervous systems, 

researchers have unlocked new possibilities for 

designing intelligent machines that can 

understand, reason, and learn from data. These 

artificial machines, mimicking biological 

neurons, are termed as nodes or artificial neurons. 

Every artificial neuron has multiple inputs but 

only one output, linking it to numerous other 

synthetic neurons. ANNs are widely utilized in 

the realm of approximation theory. Drawing on 

the Kolmogorov existence theorem, a suitable 

neural network can be utilized to approximate any 

continuous function of 𝑛 variables (Chen et al., 

1995). ANNs have emerged as a powerful 

instrument in both mathematics and engineering, 

offering the potential to approximate solutions to 

a wide range of challenges. Neurons are 

commonly arranged in several layers. Each 

neuron produces its output by determining the 

weighted sum of its input values, which also 

includes a bias. This particular sum, often termed 

the net input, undergoes a transformation via an 

activation function to yield the final output (as 

shown in Fig. 1). There can be none or multiple 

hidden layers sandwiched between the input and 

output layers. If we exclude these hidden layers, 

we obtain a distinct category of neural networks 

known as FLNN. Subsequently, we focus on 

using an FLNN to solve (1)-(3). 

   
Fig. 1. Model of the biological neuron. 

 Architecture of Lagrange functional link-

based neural network 

   The FLNNs, often referred to as single-layered 

neural networks, function without hidden layers. 

In such configurations, the input data undergoes 

nonlinear functional expansion for enhancement. 

This strategy leads to a decrease in computational 

complexity and offers better approximation 

capabilities relative to back-propagation 

techniques (Ghazali et al., 2009). It is important 

to note that the FLNN models can be trained faster 

than MLP (Multi-Layer Perceptron) while 

maintaining computational efficiency. 

Moreover, the effectiveness of the LFLNN 

enhances its attractiveness. With its single-layer 

design, the model streamlines the learning 

process, making it faster and more 

computationally efficient compared to more 

complex neural network architectures. This 

makes the LFLNN an attractive choice for 

applications where computational time is a crucial 

factor.  
 

 
(a) Architecture of the neural network 

 
(b) LFLNN design 
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Fig. 2. Schematic representation of the traditional 

ANN and the LFLNN. 

   

Formulation of LFLNN for VOFTVDPDEs 

   The architecture of the LFLNN features a block 

dedicated to the Lagrange polynomial, connecting 

a single input node directly to an output node 

(refer to Fig. 1). The mathematical representation 

of this relationship can be described using input 

vectors  

𝑡 = [(𝑥0, 𝑡0), (𝑥0, 𝑡1), … , (𝑥0, 𝑡𝑁), …, 
(𝑥𝑁 , 𝑡0), (𝑥𝑁 , 𝑡1), … , (𝑥𝑁 , 𝑡𝑁)], 

and weights  

𝑤 = [𝑢0,0, 𝑢0,1, … , 𝑢0,𝑁 , … , 𝑢𝑁,0, 𝑢𝑁,1 

          , … , 𝑢𝑁,𝑁] 
as follows  

𝑁(𝑥, 𝑡, 𝑤) = 𝜗(𝑞), 
𝑞 = ∑𝑁

𝑚=0 ∑𝑁
𝑛=0 𝑢𝑚𝑛 𝑃𝑚(𝑥)𝑃𝑛(𝑡).  

The output function 𝑁(𝑥, 𝑡, 𝑤) can be formulated 

by introducing the input 𝜋 to several activation 

functions. In (Kheyrinataj and Nazemi, 2020), the 

authors employed the activation function 𝜗(𝑧) =

𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑥𝑝(2𝑧)−1

𝑒𝑥𝑝(2𝑧)+1
 in their FLNN model. This 

specific activation function has garnered attention 

in numerous applications (Kheyrinataj & Nazemi, 

2019). 

The sigmoid function, defined as 𝜗(𝑧) =
1

1+𝑒𝑥𝑝(−𝑧)
, is also a frequently utilized activation 

function. However, for our current problem, these 

functions might not be optimal due to the 

computational burden introduced by the 

exponential terms. Through numerical 

demonstrations, we will illustrate that the linear 

activation function 𝜗(𝑧) = 𝑧 serves as an 

effective solution for the problem defined by (1)-

(3).  

Let 𝑢𝑃(𝑥, 𝑡, 𝑤) represent the neural-based 

solution to the equations (1)-(3). Hence, it can be 

expressed as  

𝑢𝑃(𝑥, 𝑡, 𝑤) = 𝜓(𝑡, 𝑥) + 

                    𝑡(𝑥 − 𝑎)(𝑥 − 𝑏)𝑁(𝑥, 𝑡, 𝑤),       (13) 

The initial conditions are met by incorporating the 

first term. The second term represents a single-

layer LFLNN with tunable parameters. 

Accordingly, the solutions from the neural 

network meet the criteria in Eq. (1), allowing us 

to express it as  

𝜕𝑞(𝑡)𝑢𝑃(𝑥,𝑡,𝑤)

𝜕𝑡𝑞(𝑡) − 𝜂
𝜕2𝑢𝑃(𝑥,𝑡,𝑤)

𝜕𝑥2
=

𝑓(𝑡, 𝑢𝑃(𝑥, 𝑡, 𝑤), 𝑢𝑃(𝑥, 𝑡 − 𝑠(𝑡)), 𝑤),   
            𝑎 < 𝑥 < 𝑏,      0 < 𝑡 ≤ 𝑇.             (14) 

Based on the definition of the variable-order 

fractional derivative, we obtain  
𝜕𝑞(𝑡)𝑢𝑃(𝑥,𝑡,𝑤)

𝜕𝑡𝑞(𝑡)
=

1

𝛤(1−𝑞(𝑡))
∫

𝑡

0
(𝑡 −

𝑟)−𝑞(𝑡) 𝜕𝑢𝑃(𝑥,𝑟,𝑤)

𝜕𝑟
𝑑𝑟,      0 < 𝑞(𝑡) < 1,    (15) 

 We also notice that  

𝑢𝑃(𝑥, 𝑡 − 𝑠(𝑡), 𝑤) =

{
𝜓(𝑥, 𝑡),     𝑥 ∈ (𝑎, 𝑏),     𝑡 < 𝑠(𝑡),

𝑢𝑃(𝑥, 𝑡 − 𝑠(𝑡), 𝑤), 𝑥 ∈ (𝑎, 𝑏), 𝑠(𝑡) ≤ 𝑡 < 𝑇.
                                                                             

(16) 

To solve Eq. (14), we initially define the 

subsequent squared error function  

𝐸(𝑥, 𝑡, 𝑤) = [
𝜕𝑞(𝑡)𝑢𝑃(𝑥,𝑡,𝑤)

𝜕𝑡𝑞(𝑡) − 𝜂
𝜕2𝑢𝑃(𝑥,𝑡,𝑤)

𝜕𝑥2 −

𝑓(𝑡, 𝑢𝑃(𝑥, 𝑡, 𝑤), 𝑢𝑃(𝑥, 𝑡 − 𝑠(𝑡)), 𝑤)]2.(17) 

To minimize Eq. (17), we present an 

unconstrained optimization approach using a 

uniform discretization as described below  

min 𝜈(𝑤) =
1

2
∑𝑀

𝑚=1 ∑𝑁
𝑛=1 (

𝜕𝑞(𝑡)𝑢𝑃(𝑥𝑚,𝑡𝑛,𝑤)

𝜕𝑡𝑞(𝑡) −

𝜂
𝜕2𝑢𝑃(𝑥𝑚,𝑡𝑛,𝑤)

𝜕𝑥2  −𝑓(𝑡, 𝑢𝑃(𝑥𝑚, 𝑡𝑛, 𝑤), 𝑢𝑃(𝑥𝑚, 𝑡𝑛 −

𝑠(𝑡𝑛)), 𝑤)))2,                                    (19) 

where 

𝑥𝑚, 𝑚 = 1,2, … , 𝑀,  
and𝑡𝑛, 𝑛 = 1,2, … , 𝑁,                               (20) 

are shifted Legendre-Gauss nodes. For 

approximating the variable-order fractional 

partial derivative at collocation points, we utilize 

the Gaussian quadrature technique as described  
𝜕𝑞(𝑡)𝑥𝐺(𝑥𝑚,𝑡𝑛,𝑤)

𝜕𝑡𝑞(𝑡) =  

1

Γ(1−𝑞(𝑡𝑛))
∫

𝑡𝑛

0
(𝑡 − 𝑟)−𝑞(𝑡𝑛) 𝜕𝑥𝐺(𝑥𝑚,𝑟,𝑤)

𝜕𝑟
𝑑𝑟, (20) 

Through this approach, the initial problem (1)-(3) 

is transformed into an unconstrained optimization 

problem. This can be solved using established 

mathematical optimization methods or heuristic 

strategies like particle swarm optimization, and 

genetic algorithms (Dabiri et al., 2018). In our 

study, we employ the modified Newton method to 

adjust the weights of the LFLNN during the 

learning phase.  

Remark 3.1 When utilizing the linear activation 

function ϑ(z) = z  in conjunction with a 
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polynomial initial condition ϕ(t), we can directly 

determine the variable-order fractional derivative 

from Eq. (7), eliminating the need for 

approximating the variable-order derivative.  

Training process and convergence analysis 

   The initial step in neural network training 

involves establishing a starting weight vector. 

Subsequently, a series of weight vectors is 

produced. The training process is concluded upon 

the fulfillment of a predetermined condition, often 

referred to as the termination criterion. For our 

learning and weight updating processes, we 

employ the backpropagation algorithm. Though 

various iterative approaches such as gradient 

descent, Newton’s method, and the Conjugate 

gradient are available, we have opted for the 

modified Newton-Raphson technique to train the 

neural network (Susanto and Karjanto, 2009). It’s 

pertinent to note that the applicability of the 

modified Newton-Raphson method is due to the 

continuous differentiability of the error function. 

In order to solve the optimization issue presented 

in (18), we let 𝐵(𝛿) = ∇𝜈(𝛿) = 0. Given 𝑢(𝛿) =
𝐽𝐵

−1(𝛿)𝐵(𝛿), with 𝐽 symbolizing the Hessian 

matrix associated with the cost function 𝜈(𝛿), the 

weights can be obtained as follows  
𝛿𝑗+1 = 𝛿𝑗 − 𝐽𝑢

−1(𝛿𝑗)𝑢(𝛿𝑗),                         (21) 

where, 𝑗 represents the iteration step employed to 

update the weights. Subsequently, we will explain 

the learning process in the following steps. 

  • Start by setting the initial values for the weights 

and the input vector 𝑡 = [𝑡0, 𝑡1, … , 𝑡𝑚]. Use 𝜖 >
0 as the threshold for error tolerance. 

  • Calculate the output of the LFLNN model 

𝑁(𝑥, 𝑡, 𝑤) and determine the weights through a 

backpropagation method. 

𝛿𝑗+1 = 𝛿𝑗 − 𝐽𝑢
−1(𝛿𝑗)𝑢(𝛿𝑗), 

  • If |𝛿𝑗+1 − 𝛿𝑗| ≤ 𝜖,, proceed to the subsequent 

step. If not, evaluate the error function and initiate 

a new training iteration. 

  • After completing the desired learning process 

and achieving the intended results, the final 

network parameters can be saved. 

The flowchart for the learning process is depicted 

in Fig. 3. We show that this learning method 

reaches the best solution for the given 

unconstrained optimization problem as expressed 

by (18).  

Theorem 1. Given a sequence {δj, j = 1,2, … } as 

described by Eq. (21), and a continuously 

differentiable function u: ℝn → ℝn in the vicinity 

of the optimal solution δ∗ where ∇ν(δ∗) = 0, it 

follows that limj→∞δj = δ∗.  

Proof. See (Golpour Lasaki, Ebrahimi, & Ilie, 

2023). 

  
Fig. 3. Diagram illustrating the LFLNN structure’s 

learning algorithm. 

 

Theorem 2. We assume that up(x, t, w) is an 

approximate solution to the equations (1)-(3), and 

for the derivative operators, we have  

∥ uxx(x, t) − vxx(x, t) ∥≤ λx ∥ u(𝑥, 𝑡) −
𝑣(𝑥, 𝑡) ∥,                                                     (22) 
∥ 𝑢𝑡(𝑥, 𝑡) − 𝑣𝑡(𝑥, 𝑡) ∥≤ 𝜆𝑡 ∥ 𝑢(𝑥, 𝑡) − 𝑣(𝑥, 𝑡) ∥, 

(23) 

where 𝜆𝑥 and 𝜆𝑡 are positive real numbers. For 

𝜆𝑡𝐼 − |𝜂|𝜆𝑥 − 2𝐿 > 1, we have ∥ 𝐸 ∥≤ 𝐾 ∥

𝑟(𝑥, 𝑡) ∥, where 𝐾 =
1

𝜆𝑡𝐼−|𝜂|𝜆𝑥−2𝐿
, and as a result, 

we obtain  

𝑙𝑖𝑚
𝑁→∞

𝑢𝑝(𝑥, 𝑡, 𝑤) = 𝑢(𝑥, 𝑡),                      (24) 

where  
𝑢𝑝(𝑥, 𝑡, 𝑤) = 𝜓(𝑥, 𝑡) + 

               𝑡(𝑥 − 𝑎)(𝑥 −
𝑏)𝑁(𝑥, 𝑡, 𝑤),                                                   (25) 
∥ 𝐸 ∥= max

(𝑥,𝑡)∈(𝑎,𝑏)×[−𝑠,𝑇]
{∥ 𝑒(𝑥, 𝑡) ∥, ∥ 𝑒(𝑥, 𝑡 −

𝑠(𝑡)) ∥}.                                                 (26) 

Proof. Considering the exact solution 𝑢(𝑥, 𝑡) and 

the approximate solution 𝑢𝑝(𝑥, 𝑡, 𝑤), substituting 

into the differential equation (1), we have  
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𝜕𝑞(𝑡)𝑢(𝑥,𝑡)

𝜕𝑡𝑞(𝑡)
− 𝜂

𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2
− 𝑓(𝑡, 𝑢(𝑥, 𝑡), 𝑢(𝑥, 𝑡 −

𝑠(𝑡))) = 0,              (27) 
 
𝜕𝑞(𝑡)𝑢𝑝(𝑥,𝑡,𝑤)

𝜕𝑡𝑞(𝑡) − 𝜂
𝜕2𝑢𝑝(𝑥,𝑡,𝑤)

𝜕𝑡2 −

𝑓(𝑡, 𝑢𝑝(𝑥, 𝑡, 𝑤), 𝑢(𝑥, 𝑡 − 𝑠(𝑡), 𝑤)) = 𝑟(𝑥, 𝑡).                                                
(28) 

 By subtracting equation (28) from (27), we get  
𝜕𝑞(𝑡)𝑢(𝑥,𝑡)

𝜕𝑡𝑞(𝑡)
−

𝜕𝑞(𝑡)𝑢𝑝(𝑥,𝑡,𝑤)

𝜕𝑡𝑞(𝑡)
+ 𝜂(

𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2
−

𝜕2𝑢𝑝(𝑥,𝑡,𝑤)

𝜕𝑡2
) + 𝑓(𝑡, 𝑢(𝑥, 𝑡), 𝑢(𝑥, 𝑡 − 𝑠(𝑡))) −

𝑓(𝑡, 𝑢𝑝(𝑥, 𝑡, 𝑤), 𝑢𝑝(𝑥, 𝑡 − 𝑠(𝑡), 𝑤)) = −𝑟(𝑥, 𝑡).                                  
(29) 

Now, by considering the Lipschitz condition for 

the function 𝑓, we have  
∥ 𝑓(𝑡, 𝑢(𝑥, 𝑡), 𝑢(𝑥, 𝑡 − 𝑠(𝑡))) −
    𝑓(𝑡, 𝑢𝑝(𝑥, 𝑡, 𝑤), 𝑢𝑝(𝑥, 𝑡 − 𝑠(𝑡), 𝑤)) ∥  

≤ 𝐿1(𝑥, 𝑡) ∥ 𝑢(𝑥, 𝑡) − 𝑢𝑝(𝑥, 𝑡, 𝑤) ∥ + 

  𝐿2(𝑥, 𝑡) ∥ 𝑢(𝑥, 𝑡 − 𝑠(𝑡)) − 𝑢𝑝(𝑥, 𝑡 − 𝑠(𝑡), 𝑤) ∥ 

= 𝐿1(𝑥, 𝑡) ∥ 𝑒(𝑥, 𝑡) ∥ + 

     𝐿2(𝑥, 𝑡) ∥ 𝑒(𝑥, 𝑡 − 𝑠(𝑡)) ∥,                  (30) 

where 𝐿𝑖(𝑥, 𝑡), 𝑖 = 1,2 are positive functions over 

the domain of the equation. Assuming 𝐷 =
(𝑎, 𝑏) × [−𝑠, 𝑇] and  

∥ 𝐸 ∥= max
(𝑥,𝑡)∈𝐷

{∥ 𝑒(𝑥, 𝑡) ∥, ∥ 𝑒(𝑥, 𝑡 − 𝑠(𝑡)) ∥},

                                                           (31) 

𝐿 = max
(𝑥,𝑡)∈𝐷

{𝐿1(𝑥, 𝑡), 𝐿2(𝑥, 𝑡)}.               (32) 

Equation (30) can be written as  

||𝑓 (𝑡, 𝑢(𝑥, 𝑡), 𝑢 (𝑥, 𝑡 − 𝑠(𝑡))) −

𝑓 (𝑡, 𝑢𝑝(𝑥, 𝑡, 𝑤), 𝑢𝑝(𝑥, 𝑡 − 𝑠(𝑡), 𝑤)) ∥≤ 2𝐿 ∥ 𝐸 ∥                                                       

  (33) 

Also, considering the assumption of the theorem, 

we have  

∥
𝜕𝑞(𝑡)𝑢(𝑥,𝑡)

𝜕𝑡𝑞(𝑡) −
𝜕𝑞(𝑡)𝑢𝑝(𝑥,𝑡,𝑤)

𝜕𝑡𝑞(𝑡) ∥  

≤
1

Γ(1−𝑞(𝑡))
∫

𝑡

0
|𝑡 − 𝑠|𝑞(𝑡) ∥

𝜕𝑢(𝑥,𝑠)

𝜕𝑠
−

𝜕𝑢𝑝(𝑥,𝑠,𝑤)

𝜕𝑠
∥

𝑑𝑠  

≤
1

Γ(1−𝑞(𝑡))
∫

𝑡

0
|𝑡 − 𝑠|𝑞(𝑡)𝜆𝑡 ∥

𝜕𝑢(𝑥,𝑠)

𝜕𝑠
−

      
𝜕𝑢𝑝(𝑥,𝑠,𝑤)

𝜕𝑠
∥ 𝑑𝑠  

≤
𝜆𝑡∥𝐸∥

Γ(1−𝑞(𝑡))
∫

𝑡

0
|𝑡 − 𝑠|𝑞(𝑡)𝑑𝑠 ≤ 𝜆𝑡𝐼 ∥ 𝐸 ∥,   (34) 

where  

𝐼 = max
𝑡∈[−𝑠,𝑇]

{∫
𝑡

0
|𝑡 − 𝑠|𝑞(𝑡)𝑑𝑠}.  

Now, considering equations (27) to (34), we have  

∥
𝜕𝑞(𝑡)𝑢(𝑥,𝑡)

𝜕𝑡𝑞(𝑡) −
𝜕𝑞(𝑡)𝑢𝑝(𝑥,𝑡,𝑤)

𝜕𝑡𝑞(𝑡) ∥  

≤ |𝜂| ∥
𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2 −
𝜕2𝑢𝑝(𝑥,𝑡,𝑤)

𝜕𝑡2 +

     ||𝑓(𝑡, 𝑢(𝑥, 𝑡), 𝑢(𝑥, 𝑡 − 𝑠(𝑡))) −
      𝑓(𝑡, 𝑢𝑝(𝑥, 𝑡, 𝑤), 𝑢𝑝(𝑥, 𝑡 − 𝑠(𝑡), 𝑤)) ∥ +  

       ∥ 𝑟(𝑥, 𝑡) ∥.                                      (35) 

Then 

𝜆𝑡𝐼 ∥ 𝐸 ∥≤ |𝜂|𝜆𝑥 ∥ 𝐸 ∥ +2𝐿 ∥ 𝐸 ∥ +∥ 𝑟(𝑥, 𝑡) ∥, 

⇒ (𝜆𝑡𝐼 − |𝜂|𝜆𝑥 − 2𝐿) ∥ 𝐸 ∥≤∥ 𝑟(𝑥, 𝑡) ∥. (36) 

Considering that 𝜆𝑡𝐼 − |𝜂|𝜆𝑥 − 2𝐿 > 0, we have  
∥ 𝐸 ∥≤ 𝐾 ∥ 𝑟(𝑥, 𝑡) ∥, 

 where 𝐾 =
1

𝜆𝑡𝐼−|𝜂|𝜆𝑥−2𝐿
. Now, if 𝑁 → ∞, we have 

∥ 𝑟(𝑥, 𝑡) ∥→ 0, and consequently  

∥ 𝐸 ∥→ 0 ⇒ 𝑙𝑖𝑚
𝑁→∞

𝑢𝑝(𝑥, 𝑡, 𝑤) = 𝑢(𝑥, 𝑡). 

NUMERICAL EXAMPLES 

 In this section, we assess the effectiveness of the 

introduced neural network model using multiple 

numerical examples. The simulations were 

executed on an X64-based PC equipped with an 

Intel(R) Core i7 CPU, clocked at 3.10 GHz and 

4.0GB RAM, using MAPLE 18 with precision up 

to 25 decimal digits. For the learning phase, we 

set a tolerance of 𝜖 = 10−4. The numerical 

method’s performance is evaluated by computing 

the absolute error as follows  

𝜂(𝑥, 𝑡) = |𝑢(𝑥, 𝑡) − 𝑥𝐺(𝑥, 𝑡, 𝑤)|. 
 

Example 1.  For the first example, we examine 

the following VOFTVDPDEs  
𝜕𝑞(𝑡)𝑢(𝑥,𝑡)

𝜕𝑡𝑞(𝑡)
−

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
= −𝑢(𝑥, 𝑡 − 𝑠(𝑡)) +

Γ(3)(2𝑥−𝑥2)𝑡2−𝑞(𝑡)

Γ(3−𝑞(𝑡))
+ 2𝑡2 +                              (37) 

𝑥(2 − 𝑥)(𝑡 − 𝑠(𝑡))2,       0 < 𝑥 < 2, 0 < 𝑡 ≤ 1,  
𝑢(𝑥, 𝑡) = 𝑡2(2𝑥 − 𝑥2), 𝑥 ∈ (0,2), 𝑡 ∈ [−𝑠, 0],
                                                (38) 

𝑢(0, 𝑡) = 0, 𝑢(2, 𝑡) = 0, 𝑡 ∈ (0,1),  (39) 

where 𝑠 = max
0≤𝑡≤𝑇

{𝑠(𝑡)}. The exact solution for this 

problem is 𝑢(𝑥, 𝑡) = 𝑡2(2𝑥 − 𝑥2). The solution 

can be approximate as  
𝑢𝑝(𝑥, 𝑡, 𝑤) = 𝑡2(2𝑥 − 𝑥2) + 𝑡𝑥(𝑥 − 2)𝑁(𝑥, 𝑡, 𝑤). 

This problem has been solved for for 𝑠(𝑡) = 1 

and constant fractioanl-order 𝑞(𝑡) = 𝑞 in 
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(Dehestani et al., 2019). In Fig. 4, the numerical 

solution using the suggested method for 𝑞(𝑡) =

1 −
𝑒𝑥𝑝(𝑡)

4
 and 𝑠(𝑡) = 0.05𝑒𝑥𝑝(𝑡) with 𝑁 = 3, 

𝑀 = 10 are plotted. Figure 5 shows the absolute 

error function for 𝑞(𝑡) = 0.5 and 𝑠(𝑡) = 1 with 

𝑁 = 3, 𝑚 = 10. Table 1 shows the comparison of 

the results for the proposed methods and the 

method described in (Dehestani et al., 2019). The 

numerical results indicate that the method we 

proposed exhibits superior performance 

compared to the approach detailed in (Dehestani 

et al., 2019). 

  
Table 1: A comparative analysis of the absolute error 

for the suggested method and method (Dehestani et 

al., 2019). for 𝑞(𝑡) = 0.5 and 𝑠(𝑡) = 1 in Example 1. 

(𝒙, 𝒕) Suggested method 
Method 

(Dehestani et al., 2019). 

(0, 0) 0 4.31 × 10 −17 

(0.2, 0.1) 0 6.12 × 10 −16 

(0.4, 0.2) 0 1.36 × 10 −15 

(0.6, 0.3) 0 2.35 × 10 −15 

(0.8, 0.4) 0 3.62 × 10 −15 

(1, 0.5) 0 5.21 × 10 −15 

(1.2, 0.6) 5.551115 × 10 −17 7.18 × 10 −15 

(1.4, 0.7) 0 9.57 × 10 −15 

(1.6, 0.8) 1.110223 × 10 −16 1.24 × 10 −14 

(1.8, 0.9) 5.551115 × 10 −17 1.58 × 10 −14 

(2, 1) 7.731641 × 10 −24 1.97 × 10 −14 

Fig. 4. Approximate solution for 𝑞(𝑡) = 1 −
𝑒𝑥𝑝(𝑡)

4
 

and 𝑠(𝑡) = 0.05𝑒𝑥𝑝(𝑡) with 𝑁 = 3, 𝑀 = 10 in 

Example 1. 

 

  
Fig. 5. Absolute error of the proposed method for 

𝑞(𝑡) = 0.5 and 𝑠(𝑡) = 1 with 𝑁 = 3, 𝑀 = 10 in 

Example 1. 

  

Example 2. We consider the following 

VOFTVDPDEs  
𝜕𝑞(𝑡)𝑢(𝑥,𝑡)

𝜕𝑡𝑞(𝑡) −
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 = 𝑢(𝑥, 𝑡 − 𝑠(𝑡)) − 2𝑡2 +

Γ(3)𝑡2−𝑞(𝑡)

Γ(3−𝑞(𝑡))
𝑥2 − 𝑥2(𝑡 − 𝑠(𝑡))2,                     (40) 

  0 < 𝑥 < 1, 0 < 𝑡 ≤ 2, 
𝑢(𝑥, 𝑡) = 𝑥2𝑡2, 𝑥 ∈ (0,1), 𝑡 ∈ [−1,0],     
                                                                       (41) 

𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 𝑡2, 𝑡 ∈ (0,2), 
                                                                       (42) 

The exact solution for this problem is 𝑢(𝑥, 𝑡) =
𝑥2𝑡2. The solution derived from the neural 

networks approach can be expressed as  
𝑢𝑝(𝑥, 𝑡, 𝑤) = 𝑥2𝑡2 + 𝑡𝑥(𝑥 − 1)𝑁(𝑥, 𝑡, 𝑤). 

In Fig. 6, the numerical results using the 

suggested method for 𝑞(𝑡) = 1 −
𝑒𝑥𝑝(𝑡)

4
 and 

𝑠(𝑡) = 0.05𝑒𝑥𝑝(𝑡) with 𝑁 = 3, 𝑀 = 10 are 

depicted. Figure 7 illustrates the absolute error 

function for the 𝑞(𝑡) = 1 −
𝑒𝑥𝑝(𝑡)

4
 and 𝑠(𝑡) =

0.05𝑒𝑥𝑝(𝑡) with 𝑁 = 3, 𝑀 = 10. Table 2 

reported the value of the min 𝜈(𝑤) for different 

values of 𝑞(𝑡). As can be seen from the results, 

the min 𝜈(𝑤) is close to zero with respect to 

different values of 𝑞(𝑡) which demonstrates the 

effectiveness of the numerical method. 
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Fig. 6. Approximate solution for 𝑞(𝑡) = 1 −

𝑒𝑥𝑝(𝑡)

4
 

and 𝑠(𝑡) = 0.05𝑒𝑥𝑝(𝑡) with 𝑁 = 3, 𝑀 = 10 in 

Example 2. 

  

  
Fig. 7: Absolute error of the 𝑞(𝑡) = 0.5 and 𝑠(𝑡) =
0.05𝑒𝑥𝑝(𝑡) with 𝑁 = 3, 𝑀 = 10 in Example 4.2. 

  
Table 2: Value of min ν(w) for different values of 

q(t) in Example 2. 

𝒒(𝒕) 𝐦𝐢𝐧 𝝂(𝒘) 

1 −
𝑒𝑥𝑝(𝑡)

4
 8.317647 × 10−38 

1 −
𝑐𝑜𝑠(𝑡)2

4
 5.704133 × 10−34 

1 − 0.25𝑡 6.134233 × 10−38 

 
Example 3.  As the third example, consider the 

following VOFTVDPDE  
𝜕𝑞(𝑡)𝑢(𝑥,𝑡)

𝜕𝑡𝑞(𝑡) −
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
= 𝑢(𝑥, 𝑡 − 𝑠(𝑡)) +

    
2𝑥𝑡1−𝑞(𝑡)

Γ(2−𝑞(𝑡))
+

Γ(3)𝑡2−𝑞(𝑡)

Γ(3−𝑞(𝑡))
− (𝑥 + 𝑡 − 𝑠(𝑡))2 −

      2,         0 < 𝑥 < 2, 0 < 𝑡 ≤
1,                                                                          (43) 

𝑢(𝑥, 𝑡) = (𝑥 + 𝑡)2, 𝑥 ∈ (0,2), 𝑡 ∈ [−1,0],                                                
(44) 

𝑢(0, 𝑡) = 𝑡2, 𝑢(2, 𝑡) = (2 + 𝑡)2, 𝑡 ∈ (0,1),                                                
(45) 

   The exact solution for this problem is 

represented by the equation 𝑢(𝑥, 𝑡) = (𝑥 + 𝑡)2. 
In terms of a neural-based approach, the solution 

can be expressed as 𝑢𝑝(𝑥, 𝑡, 𝑤) = (𝑥 + 𝑡)2 +

𝑡𝑥(𝑥 − 2)𝑁(𝑥, 𝑡, 𝑤).   where 𝑞(𝑡) = 1 −
𝑐𝑜𝑠(𝑡)2

2
 

and 𝑠(𝑡) = 𝑐𝑜𝑠(𝑡)𝑒𝑥𝑝(𝑡). In Fig. 8, the 

numerical solution using the suggested method 

for 𝑞(𝑡) = 1 −
𝑐𝑜𝑠(𝑡)2

2
 and 𝑠(𝑡) = 𝑐𝑜𝑠(𝑡)𝑒𝑥𝑝(𝑡) 

with 𝑁 = 4, 𝑀 = 10 are shown. Figure 9 shows 

the absolute error function for the 𝑞(𝑡) = 1 −
𝑐𝑜𝑠(𝑡)2

2
 and 𝑠(𝑡) = 𝑐𝑜𝑠(𝑡)𝑒𝑥𝑝(𝑡) with 𝑁 = 4, 

𝑀 = 10. Table 4.3 presents a comparison based 

on different values of 𝑁 for absolute error of the 

suggested method. The results indicate the 

absolute error decreases with increasing the value 

of the 𝑁. The minimum values of the cost function 

𝜈(𝑤) for different values of 𝑁 have been reported 

in Table 4. The results also show that the 

minimum of 𝜈(𝑤) decreases as the value of 𝑁 

increases. 

  

Fig. 8. Approximate solution for 𝑞(𝑡) = 1 −
𝑐𝑜𝑠(𝑡)2

2
 

and 𝑠(𝑡) = 𝑐𝑜𝑠(𝑡)𝑒𝑥𝑝(𝑡) with 𝑁 = 4, 𝑀 = 10 in 

Example 3. 
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Fig. 9. Absolute error of the 𝑞(𝑡) = 1 −
𝑐𝑜𝑠(𝑡)2

2
 and 

𝑠(𝑡) = 𝑐𝑜𝑠(𝑡)𝑒𝑥𝑝(𝑡) with 𝑁 = 4, 𝑀 = 10 in 

Example 3. 

 

Table 3: Absolute errors for different values of 𝑁 in 

Example 1. 
Points 𝑵 = 𝟒 𝑵 = 𝟓 𝑵 = 𝟔 

(0, 0) 0 0 0 

(0.2, 0.1) 4.446443 10-14 0 0 

(0.4, 0.2) 1.845191 10-13 0 0 

(0.6, 0.3) 4.543033 10-13 1.110223 10-16 1.110223 10-16 

(0.8, 0.4) 8.772982 10-13 0 0 

(1, 0.5) 1.433076 10-12 0 0 

(1.2, 0.6) 2.023715 10-12 4.440892 10-16 4.440892 10-16 

(1.4, 0.7) 2.467360 10-12 8.881784 10-16 8.881784 10-16 

(1.6, 0.8) 2.498446 10-12 1.776357 10-15 0 

(1.8, 0.9) 1.788791 10-12 8.881784 10-16 0 

(2, 1) 1.776357 10-15 0 0 
  

 

Table 4: Value of 𝑚𝑖𝑛 𝜈(𝑤) for different values of N 

in Example 3. 
 𝑵 𝐦𝐢𝐧 𝝂(𝒘) 

𝑁 = 4  2.311611 × 10−25  

𝑁 = 5  5.125486 × 10−37  

𝑁 = 6  3.916432 × 10−37  
 

Example 4.  Now, we consider the following 

VOFTVDPDE  
∂q(t)u(x,t)

∂tq(t) −
∂2u(x,t)

∂x2 = u(x, t − 𝑠(𝑡)) +

Γ(3)𝑡2−𝑞(𝑡)

Γ(3−𝑞(𝑡))
(𝑥 + 1)3 − 6𝑡2(𝑥 + 1) − (𝑡 −

𝑠(𝑡))2(𝑥 + 1)3, 0 < 𝑥 < 1, 0 < 𝑡 ≤ 1,  (46) 

𝑢(𝑥, 𝑡) = 𝑡2(𝑥 + 1)3, 𝑡 ∈ [−1,0],         (47) 

𝑢(0, 𝑡) = 𝑡2, 𝑢(2, 𝑡) = 8𝑡2, 
  𝑡 ∈ (0,1),                                                   (48) 

The exact solution to this problem is given by 

𝑢(𝑥, 𝑡) = 𝑡2(𝑥 + 1)3. The neural-based solution 

can be expressed as  

𝑢𝑝(𝑥, 𝑡, 𝑤) = 𝑡2(𝑥 + 1)3 

                         +𝑡𝑥(𝑥 − 1)𝑁(𝑥, 𝑡, 𝑤). 

where 𝑞(𝑡) = 1 − 0.5𝑡 and 𝑠(𝑡) =
|𝑐𝑜𝑠(𝑡)|

2
. In Fig. 

10, the numerical solution using the suggested 

method with 𝑁 = 4, 𝑀 = 10 are plotted. Figure 

11 shows the absolute error function for the 

𝑞(𝑡) = 1 − 0.5𝑡 and 𝑠(𝑡) =
|𝑐𝑜𝑠(𝑡)|

2
 with 𝑁 = 4, 

𝑀 = 10. Table 5 presents the minimum values of 

𝜈(𝑤). It shows that as the value of 𝑁 increases, 

the minimum value of 𝜈(𝑤) decreases. 
  

Table 5: Value of 𝑚𝑖𝑛 𝜈(𝑤) for different values of N 

in Example 4. 

𝑵 𝐦𝐢𝐧 𝝂(𝒘) 

𝑁 = 2 2.310241 × 10−35 

𝑁 = 3 1.667555 × 10−35 

𝑁 = 4 7.618161 × 10−36 

 

 
Fig. 10. Approximate solution for 𝑞(𝑡) = 1 − 0.5𝑡 

and 𝑠(𝑡) = 𝑐𝑜𝑠(𝑡)𝑒𝑥𝑝(𝑡) with 𝑁 = 4, 𝑀 = 10 in 

Example 4. 

 

  
Fig. 11. Absolute error of the 𝑞(𝑡) = 1 − 0.5𝑡 and 

𝑠(𝑡) = 𝑐𝑜𝑠(𝑡)𝑒𝑥𝑝(𝑡) with 𝑁 = 4, 𝑀 = 10 in 

Example 4. 
 

Example 5.  As the final example, we consider 

the following time-delay variable-order fractional 

partial differential equation  
𝜕𝛼(𝑡)𝑢(𝑥,𝑡)

𝜕𝑡𝛼(𝑡) =
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 + 𝑢(𝑥, 𝑡 − 𝜏(𝑡)) +

𝑠𝑖𝑛(𝜋𝑥) (
2𝑡2−𝛼(𝑡)

𝛤(3−𝛼(𝑡))
− (𝑡 − 1)2 + 𝜋2𝑡2),    

     0 < 𝑥 < 1,    0 < 𝑡 ≤ 1,                           (49) 

 𝑢(𝑥, 𝑡) = 𝑡2𝑠𝑖𝑛(𝜋𝑥), , 𝑡 ∈ [−1,0],      (50) 

𝑢(0, 𝑡) = 0,    𝑢(1, 𝑡) = 0,    𝑡 ∈
(0,1),                                                                   (51) 

where 𝛼(𝑡) = 0.5 + 0.5𝑡 and 𝜏(𝑡) = 1. The exact 

solution for this problem is 𝑢(𝑥, 𝑡) = 𝑡2𝑠𝑖𝑛(𝜋𝑥). 



Iranian Journal of Optimization, 16(1), 73-87 March 2024 

,2023 

 2022 

 

84 
 

Golpour Lasaki et al. / Developing a Novel Neural Network … 

 
The approximate solution using the proposed 

neural network can be written as  

𝑢𝑝(𝑥, 𝑡, 𝑤) = 𝑡2𝑠𝑖𝑛(𝜋𝑥) + 𝑡𝑥(𝑥 − 1)𝑁(𝑥, 𝑡, 𝑤).                                                    
(52) 

Figures 12 and 13 show the numerical solution 

and the absolute error for 𝛼(𝑡) = 0.5 + 0.5𝑡 and 

𝜏(𝑡) = 1 with 𝑁 = 3 and 𝑀 = 10, respectively. 

Table 6 presents the values of Θ(𝑤) for various 

values of 𝑁. 

   

Fig. 12. Numerical solution for 𝛼(𝑡) = 0.5 + 0.5𝑡 

and 𝜏 = 1 with 𝑁 = 3 and 𝑀 = 10 in Example 5. 

 

  
Fig. 13: Absolute error for 𝛼(𝑡) = 0.5 + 0.5𝑡 and 

𝜏 = 1 with 𝑁 = 3 and 𝑀 = 10 in Example 5. 

 
 

Table 6: Value of min 𝛩(𝑤) for 𝑀 = 10 and various 

values of 𝑁 in Example 4.5. 

𝑵 𝒎𝒊𝒏 𝜣(𝒘) 

𝑁 = 3 5.630073 × 10−17 

𝑁 = 4 4.553892 × 10−17 

𝑁 = 5 3.769620 × 10−17 

DISCUSSION OF RESULTS 

   The findings suggest that the LFLNN is capable 

of effectively solving VOTVFPDEs. The 

capability to solve VOTVFPDEs provides 

solutions to an array of challenges, especially 

those associated with constant derivative order 

and time lags in dynamic models. Such challenges 

are ubiquitous in engineering and science. To 

enhance the outcome quality, we incorporated 

Lagrange basis functions and LG points during 

discretization. Throughout the learning phase, 

preference was given to the modified Newton-

Raphson technique over the typically employed 

gradient descent method, which has shown to be 

proficient for VOTVFPDEs. 

A notable feature of the LFLNN is its ability to 

yield good results with just a few basis functions. 

Furthermore, the integration of Lagrange 

polynomials as foundational functions in the 

LFLNN framework eliminates the need for 

hidden layers. Thus, in comparison to MLP neural 

networks, the LFLNN executes outputs more 

rapidly, leading to a decrease in computational 

burden. 

Prospective explorations can focus on employing 

an FLNN to solve fractional optimal control 

problems with time-varying delay. Furthermore, 

cutting-edge metaheuristic algorithms like 

particle swarm optimization, ant colony 

optimization whale, and lion optimization 

algorithms can be used to solve the optimization 

problem. 

CONCLUSION 

   In the current study, we introduced an advanced 

LFLNN framework complemented by a novel 

optimization approach specifically formulated for 

VOTVFPDEs. Using the Newton-Raphson 

method as a departure from the common gradient 

descent paradigm, our methodology exhibited a 

great accuracy in absolute error metrics. A key 

feature of our work is the attainment of high 

precision using a minimal set of Lagrange 

polynomials within the LFLNN structure, which 

is pivotal, considering the risk of overfitting with 

too many polynomials. Given the accuracy, our 

proposed methodology demonstrates itself as a 

promising framework for solving challenges 

posed by VOTVFPDEs. While this method is 

designed for VOTVFDDEs, it has great potential 

for use in many areas of engineering and science. 
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