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This paper introduces a novel approach named VGAEE (Variational Graph
AutoEncoder Embedding), an innovative deep-learning framework for
detecting communities in attributed social networks. By synergistically
integrating node content with network topology, VGAEE aims to enhance the
quality of community identification. Initially, we computed the modularity
and Markov matrices of the input graph. These matrices were then
concatenated and used as the input for the VGAEE to create a meaningful
representation of the graph. In the decoder component of VGAEE, two layers
of Graph Convolutional Networks (GCN) are employed. Subsequently, a K-
Nearest Neighbors (KNN) algorithm was used for clustering communities
based on the embeddings generated previously. We conducted experiments
on three benchmark datasets—Cora, Citeseer, and PubMed—and compared
the results with various baseline and state-of-the-art methods using Accuracy
(ACC) and Normalized Mutual Information (NMI) as evaluation metrics. The
findings demonstrate that VGAEE significantly improves community
detection performance, achieving an accuracy of 84.5% on Cora , 80.5% on
PubMed, and 75.6% on Citeseer. In terms of NMI, VGAEE reached 70.46%
on Cora, 55.60% on PubMed, and 57.06% on Citeseer, consistently
outperforming existing methods. These results confirm the superiority of
VGAEE in accurately capturing community structures within large, complex
networks, making it a highly effective tool for unsupervised community
detection.
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l.introduction

The study of community structures within
networks has advanced significantly since the early
days of sociological research, evolving into a
critical field that employs complex mathematical
tools for large-scale data analysis. Since the
groundbreaking work of Girvan and Newman in
2002, identifying and understanding these
structures has become essential for analyzing the
composition and function of various networks,
with applications spanning diverse fields such as
epidemiology and marketing.

Despite advancements in topological, content-
based, and graph-theoretical approaches to
community detection, existing methods still face
several challenges—especially in the quality of
vector representations for network nodes. Many
current techniques fail to fully capture both the
structural and contextual information of nodes. As
a result, they often struggle with tasks like
clustering and classification and are unable to keep
up with the increasing demands of growing and
more complex networks.

This paper explores the limitations of traditional
community detection methods, particularly when
applied to large-scale or high-dimensional
networks constrained by computational power and
data volume. These challenges significantly hinder
the effectiveness of conventional approaches in
analyzing modern, complex relational data. To
address these issues, this study leverages graph
neural networks (GNNS), a specialized branch of
deep learning tailored for graph data. By reducing
network dimensions and enhancing node
representations, this approach accelerates the
community detection process. Additionally, this
research integrates the modularity matrix with the
Markov matrix to improve detection accuracy,
making the proposed methods more efficient and
suitable for complex network structures. The
contributions and innovations of this study are
summarized as follows:

e Integration of Node Content and
Network Topology: The VGAEE
(Variational Graph AutoEncoder
Embedding) framework uniquely
combines node content with network
topology to enhance community detection
in attributed social networks. This
integration provides a more
comprehensive understanding of both
network structure and content.

e Use of Modularity and Markov
Matrices: The approach introduces an

innovative step by computing modularity
and Markov matrices from the input graph.
These matrices are then concatenated and
used as inputs for VGAEE, enabling a
more nuanced representation of the graph
structure.

e Graph Convolutional Networks in the
Decoder: The application of two layers of
Graph Convolutional Networks (GCN)
within the VGAEE decoder is a novel
feature. This technique leverages GCNSs'
capabilities to learn and generate high-
quality embeddings that accurately reflect
the true community structure.

e Community Clustering via KNN: After
generating embeddings, VGAEE utilizes
the K-Nearest Neighbors (KNN) algorithm
for clustering. This innovative step
effectively combines a traditional machine
learning algorithm with a deep learning
framework to improve community
identification.

e Benchmark Dataset Experiments: The
paper conducts extensive experiments
using three widely recognized benchmark
datasets—Cora, Citeseer, and PubMed.
These rigorous tests validate the model's
effectiveness and provide a strong basis for
comparison with baseline and state-of-the-
art methods.

e Superior Performance Metrics: The
VGAEE framework outperforms existing
algorithms in  both accuracy and
Normalized Mutual Information (NMI),
demonstrating its superior ability to
identify and differentiate community
structures in complex networks.

Community detection is widely recognized as an
NP-hard problem that presents a range of
computational challenges. This paper addresses
these issues by focusing on both computational
efficiency and detection accuracy in attributed
social networks. By utilizing GNNSs, the study
introduces innovative embedding techniques and
improved graph representation learning strategies,
ultimately providing a more effective approach to
community detection.

We structure the remainder of this paper as follows:
Section 2 surveys the existing literature on graph
convolutional networks and dual embedding
techniques, outlining fundamental advances and
identifying the gaps that our study aims to address.
Section 3 introduces the necessary concepts and
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notations,  providing the foundation for
understanding the methodologies discussed later.
Section 4 presents a detailed description of the
proposed algorithm, VGAEE, along with its
pseudocode. Section 5 offers a comprehensive
overview of the datasets used for testing, explains
the evaluation metrics employed to assess
performance, and describes the chosen parameters
and experimental setup. Finally, Section 6 presents
the conclusion and discusses directions for future
work.

2. Literature review

With recent advances in information technology
and the digital world, complex network theory has
found applications in various fields, including
social networks, biological networks, and internet
networks. One of the key challenges in complex
network research is community detection, which
aims to identify the structural properties of
networks. Communities in a network are formed by
groups of nodes that have stronger internal
connections and fewer connections with external
nodes. Early community detection methods
primarily relied on the topological characteristics
of networks, and numerous approaches have been
proposed based on different criteria for similarity
and proximity among groups. Before the
development of deep learning techniques,
community detection methods were broadly
categorized into two main groups: Hierarchical
methods and Partitioning methods. Hierarchical
methods begin with either a partition where each
node is considered an independent cluster or a
partition where all nodes belong to a single
community. Clusters are then iteratively merged or
divided based on a quality measurement criterion,
forming a hierarchical structure. While hierarchical
methods do not require prior knowledge of the
number of communities, they do depend on a
specific criterion to determine meaningful
partitions.

On the contrary, partitioning methods identify
clusters through iterative member allocation. These
methods assess the quality of partitions by
optimizing one or more objective functions. Some
commonly used partitioning techniques include
finding the largest number of cliques in a graph [1],
modularity maximization [2]. matrix
decomposition [3], seed expansion [4], linear
sparse coding [5], sparse linear coding [5], and
evolutionary algorithms [1]. Both hierarchical and
partitioning methods involve high computational
costs, making them inefficient for large-scale
networks. In other words, these approaches

struggle to find optimal solutions within a
reasonable timeframe. To address this issue, more
adaptive local methods have been introduced to
detect separate and overlapping communities more
efficiently [6]. One such example is label
propagation-based methods, which use the local
expansion of node labels to identify communities
in linear time [7].

Deep learning (DL) techniques are widely applied
in various fields, including computer and social
sciences, economics, agriculture, healthcare, and
medicine [8]. Network representation learning
(NRL) converts complex network structure data
into a low-dimensional, manageable space, making
it useful across these diverse applications. This
approach includes learning network
representations [9], network embedding [10], and
graph embedding [11], all designed to preserve the
network’s typological structure, vertex content,
and auxiliary information.

These advanced learning methods have
transformed the way complex classification,
clustering, and prediction models are constructed
through effective graph data representation. They
simplify the execution of analytical tasks that
would traditionally require more complex models.
Network  Representation  Learning  (NRL)
techniques focus on reducing the dimensionality of
network vertices representations while preserving
essential topological and content features of the
network [9]. These representations are then utilized
as vector inputs for machine learning tasks such as
node classification and link prediction, fostering
the creation of more refined and effective NRL
strategies for complex networks [10]. Methods for
graph representation learning are generally divided
into three main categories: probabilistic models,
deep learning-based algorithms, and matrix
decomposition algorithms. Each category will be
further discussed to highlight their unique
approaches and applications.

Probabilistic Models: Techniques such as LINE
[12] and Node2vec [13] are designed to extract
varied graph patterns to enhance embedding
learning. Node2vec efficiently maps nodes into a
vector space, which significantly boosts the
performance of link prediction and node
classification tasks. LINE is notable for its large-
scale application, utilizing edge sampling strategies
to address the typical challenges associated with
stochastic gradient descent. This adaptation
improves the graph embedding process while
maintaining high efficiency.
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Deep Learning-Based Algorithms: DeepWalk
[14] is a prime example of integrating deep
learning with graph theory. It excels at encoding
the complete structural information of graphs by
leveraging the local structural information of
vertices and incorporating the Skip-Gram model
within the framework of random walks. This
approach has been particularly successful in social
networks for tasks like multilabel classification.
Deep learning models capture the nonlinear
dynamics of complex, extensive networks by
analyzing various relational data, including nodes,
neighbors, edges, subgraphs, and community
features. These models are particularly effective in
handling sparse networks and excel in
unsupervised learning contexts. Algorithms like
DNGR, SNDE, and ANRL [15] use deep
autoencoder models for representing high-
dimensional data. Conversely, end-to-end
network-based methods like SNE [16] and
DeepGL [17] blend structural and attribute data to
enhance graph representation learning.
Additionally, MGAE [18] utilizes a single-layer
autoencoder, simplifying clustering tasks, while
HNE [19] merges deep autoencoder neural
networks with convolutional networks to process
adjacent vectors and images.

Matrix Decomposition  Algorithms:  This
category includes techniques like M-NMF [20] and
TADW [21], which are focused on matrix
decomposition to effectively learn node
representations. These methods are crucial for
untangling complex network structures, enabling
deeper insights into network dynamics and
interactions.

Together, these methods establish a solid
framework for managing and analyzing complex
networks across diverse domains, accommodating
a broad spectrum of applications from theoretical
research to practical, real-world problem-solving.
This comprehensive approach ensures that insights
derived from graph theory and network analysis are
not only theoretically sound but also applicable in
solving actual challenges in fields such as social
networking, bioinformatics, and
telecommunications.

Wang et al. [22] effectively utilized a graph
autoencoder to achieve deep representations, which
were then applied in a spectral clustering algorithm
to enhance graph clustering. In a similar vein, He
et al. [23] developed a nonlinear restructuring
approach for modularity matrices using deep neural
networks, which they further adapted into a semi-
supervised community detection algorithm by
incorporating constraints on paired graph nodes.

Both approaches address significant challenges
associated with high computational demands and
the need for extensive parameter tuning, such as
determining the number of clusters, which often
remains undefined in large and heterogeneous
networks globally. More recently, advancements in
graph neural networks (GNNSs), including graph
convolutional networks (GCNs), have been
introduced to address community detection issues
[24, 25]. GCNs amalgamate the information from
neighboring nodes through deep convolutional
layers in graphs, employing convolutional
operations similar to those used in convolutional
neural networks to extract and represent complex
community features based on network topology
and node characteristics [26].

Originally, Graph Convolutional  Networks
(GCNs) were not designed with community
detection in mind, meaning they did not
specifically target community structures during
node embedding learning, nor did they impose
constraints on the structural relationships between
communities and nodes. Addressing this limitation,
Jin et al. [27] introduced a semi-supervised
community detection model named MRFasGCN.
This model integrates a GCN with the Markov
Random Fields (MRF) statistical model to enhance
community detection capabilities. The innovation
lies in extending the Markov Random Field into a
new convolutional layer within the GCN
framework, thereby allowing MRFasGCN to
effectively oversee and refine the overall outcomes
of the GCN's community detection efforts.

Sun et al. [28] developed a framework to enhance
network embedding for clustering nodes in
attributed graphs. This innovative framework
concurrently learns graph-based and cluster-
oriented representations. It consists of three key
components: a graph autoencoder module, a soft
modularity maximization module, and a self-
clustering module. The graph autoencoder module
is tasked with learning node embeddings that
incorporate both the topological structure and the
node properties.

Jin et al. [29] introduced an unsupervised model for
community detection using GCN embedding,
employing the GCN as the primary structure of the
encoder to reconcile two types of information:
topology and property. This model utilizes a dual
encoder setup to extract distinct embeddings from
these two data sources.

Luo et al. [30] presented a deep-learning model that
aims to simultaneously identify communities and
structural holes using a GCN-based encoder. This
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approach leverages the GCN's ability to integrate
network topology and node properties for
community detection. However, the model faces
challenges as it (1) learns representations through
encoding topological features and node properties
without considering community-specific features,
resulting in embeddings that are not community-
centric, and (2) operates as a semi-supervised
rather than a fully unsupervised model.

Wang et al. [31, 32] proposed a novel approach
involving nonnegative matrix decomposition,
introducing a community membership matrix and a
community characteristic matrix. They also
developed several efficient updating rules that
ensure convergence. This method enhances
community detection by incorporating node
attributes, which also provide a semantic
interpretation of the communities.

Efforts have also been made to develop semi-
supervised methods for community detection by
integrating network representations with data
labels through graph-based regulation to identify
unlabeled nodes. Young et al. [33] utilized node
representations to predict network backgrounds
and applied node labels to facilitate various transfer
and inductive learning strategies. Recent
advancements include the introduction of graph
convolutional networks for network analysis, with
GCN-based methods enhancing both network
topology and attribute data analysis. Unlike most
semi-supervised approaches that predominantly
focus on network structure, these methods require
a substantial number of node labels to classify
unlabeled nodes. Sun et al. also introduced a graph
convolutional  autoencoder  framework  for
clustering nodes, and several unsupervised
methods have been recently proposed to advance
this field.

In [34], a supervised model within the CNN
framework was introduced for typological defect
networks. This model incorporates two CNN layers
with max-pooling operators to represent the
network structure and a fully connected DNN layer
dedicated to community  detection. The
convolutional layers are designed to capture the
local attributes of each node from multiple
perspectives. Testing on Topological Interference
Networks (TINs), with a configuration of 10%
labeled nodes and 90% unlabeled nodes, this model
achieved an impressive 80% accuracy in
community  detection, highlighting  that
incorporating high-order neighbor representation
can significantly enhance the accuracy of detecting
communities.

In [35], a model named the Linear Graph Neural
Network (LGNN) was proposed to enhance the
efficiency of the Stochastic Block Model (SBM) in
community detection while also reducing
computational costs. The LGNN effectively learns
the represented attributes of nodes in directed
networks by employing a combination of non-
backtracking operators and messaging rules,
streamlining the process and optimizing
performance.

In [36], the CommDGI model was introduced,
which optimizes graph representation and
clustering  concurrently  through mutual
information on nodes and communities while
aiming to maximize graph modularity. This
approach  utilizes k-means clustering to
strategically align nodes with cluster centers,
enhancing the clarity and effectiveness of
community detection.

Additionally, while Spectral GCNs adeptly reveal
all hidden attributes of a node's neighborhood, they
can lead to over-smoothing, which may obscure
distinct community structures. To counter this
effect, graph  convolutional ladder-shaped
networks have been developed as a novel GCN
architecture. Inspired by the U-Net model in the
CNN domain, this unsupervised community
detection approach [37] aims to mitigate the over-
smoothing issue, ensuring more distinct and
actionable community detection outcomes.

In scenarios where various types of links are treated
as simple edges, GCNs typically represent each
link separately and then aggregate them, which can
lead to redundancy in representation. To address
this, IPGDN [38] introduces a methodology that
segments neighborhoods into different sections and
autonomously identifies independent hidden
attributes of a graph. This approach simplifies the
process of community detection. The IPGDN
model is enhanced by the use of the Hilbert—
Schmidt independence criterion in neighborhood
routing, facilitating more precise and effective
community detection. Moreover, adaptive graph
convolution has been developed to identify
communities within attributed graphs. This
technique relies on both structural data and
representational features, categorizing neighboring
nodes and nodes with similar attributes into the
same community cluster. In this process, two graph
signals are combined, necessitating the filtering of
high-frequency noise, which is achieved through
the design of a low-pass graph filter with a specific
frequency response function.
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In [39], a sophisticated method using Cayley
polynomials was introduced to achieve high-order
approximations within the spectral convolutional
framework of graph neural networks. Although the
exploration of GCN filters is relatively limited,
CayleyNets are distinguished by their use of low-
pass filters that effectively utilize extensive
community data for precise community
identification.

In [40], challenges associated with graph
convolutional neural networks in processing
complex relational graphs, such as excessive
smoothing during node classification, are
addressed. The newly developed SM-GCN model
strives to enhance node categorization accuracy by
reducing dependency on individual node features
and incorporating scattering embeddings. This
innovation is specifically designed to mitigate the
over-smoothing effect, ensuring more distinct and
accurate node classifications in complex network
structures.

In [41], a new model known as the Graph
Convolutional Fusion Model (GCFM) was
introduced for enhancing community detection in
multiplex networks, which are composed of
multiple layers, each representing a different type
of relationship among the same set of nodes. The
GCFM utilizes a graph convolutional autoencoder
for each layer to capture and encode the structural
features specific to each layer while considering
the connections between neighboring nodes. This
approach allows for a more nuanced and accurate
detection of communities across the complex
interlayer dynamics of multiplex networks.

In [42], the Temporal Attributed Network
Matrix Factorization (TANMF) algorithm was
developed to detect dynamic modules within
cancer temporal-attributed networks, incorporating
both genomic data and temporal network changes.
The experimental results showed that TANMF not
only surpasses existing methods in accuracy but
also enriches identified modules with known
biological pathways and demonstrates correlations
with patient survival outcomes, providing valuable
insights into cancer progression.

In [43], the Joint Learning Dynamic Edge
Community (JLDEC) algorithm was proposed for
identifying dynamic communities within temporal
networks. This algorithm integrates graph
representation learning with community detection
and the dynamics of network edges into a unified
framework, significantly enhancing the precision
of community detection. The JLDEC algorithm has
been shown to perform better than traditional

methods, particularly in accurately capturing the
changing dynamics of community structures within
temporal networks.

In [44], the Network Embedding to Nonnegative
Matrix  Factorization (NE2NMF) algorithm
addresses the challenge of detecting dynamic
communities by combining network embedding
with  nonnegative matrix factorization. It
incorporates a third-order smoothness strategy that
accounts for previous, current, and subsequent
network snapshots, thereby providing a more
comprehensive characterization of community
dynamics. Experimental validations confirm that
NE2NMF not only improves accuracy but also
enhances the robustness of community detection
compared to conventional approaches, making it
particularly effective in dynamic network
environments.

In [45], the Joint Learning of Multidimensional
Clustering (jJLMDC) algorithm was presented for
dynamic community detection in temporal
networks. This approach integrates feature
extraction and clustering into a single framework,
significantly enhancing both the accuracy and
efficiency of detecting dynamic communities.
Compared to traditional methods, jLMDC shows
marked improvements in computational speed and
accuracy, making it highly effective for managing
large-scale networks and their complex community
dynamics.

In [46], the Deep Autoencoder-like Nonnegative
Matrix Factorization for Multi-View Learning
(DANMF-MRL) was introduced, employing a
deep encoding process to create a representation
matrix. This matrix is subsequently decoded to
reconstruct the original data. Utilizing the DANMF
framework, the method addresses the challenges of
maintaining consistency and complementarity in
multi-view data, greatly enriching the depth and
comprehensiveness of data representations.

In [47], a Nonnegative Matrix Factorization-based
Multi-View Learning (MRL) framework was
proposed, which considers two critical
components: an exclusivity term to leverage
diverse intra-view information and a consistency
term to ensure unified representations across
multiple views. Additionally, a local manifold
component is included to preserve the local
geometric structure of the data. An alternating
optimization algorithm based on multiplicative
updates was introduced to solve this problem, with
proven convergence.

Review studies have shown that graph embedding
methods can substantially improve efficiency and
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reduce the time needed for community detection in
social networks. Variational Graph AutoEncoder
(VGE), a deep Ilearning-based embedding
technique, is utilized for network representation
learning. However, a significant challenge with
GCNs is their lack of inherent community
orientation, which can result in node
representations that may not be sufficiently precise
for effective community detection. To address this,
the k-core algorithm is used first to filter the graph
and eliminate less significant nodes, thereby
reducing the graph's size and enhancing the
distinctiveness of its communities. Subsequently,
the modularity matrix and the Markov matrix,
which represent the graph's structure and content
respectively, are concatenated and used as input for
the VGE. The VGE encoder processes this input
through two layers of the graph convolution
network, producing a reduced-dimensional
representation for each node. This representation is
then normalized and utilized as the input for the k-
nearest neighbors clustering algorithm to identify
communities.

3. Preliminaries and Notation

This section provides a concise introduction to the
foundational  concepts, including essential
notations and the formal problem statement. These
preliminaries establish the groundwork necessary
for understanding the proposed approach.

3.1. Attributed graph

Suppose that G = (V,E,A,X) is an attributed
network where V is a set of vertices
{vi,v,, ..., v}, E is a set of edges between nodes,
A is the adjacency matrix, and X is the attribute
matrix where an element X;,, represents the value
of the p-th attribute for the vertex v;. In adjacency
matrix A, if there is an edge between the two
vertices of v; and v; then a;; > 0. For weightless
networks, if there is an edge, a;; =
1; otherwise, a;; = 0. if the network is not direct,
a;j = aj; also holds [50].

3.2. Community and community detection

Consider that we have the community set C =
{C1,C,, ...,C.}. Each community is a network
partition with regional structures and shared cluster
attributes. The node v; that is clustered in the
community C; It should meet the condition that the
internal degree of every node is greater than its
external degree. In this paper, community detection
is considered in the attributed graph. The graph has
G attributes and the number of r communities. This
paper aims to find the function f:v — {1,2,3, ..., 7}
such that r is true for all f(v;) = r nodes of the r

community. Function partitions should follow the
following principles: (1) Nodes of a group are
connected, while the nodes are not connected in
different groups. (2) Nodes in the same community
tend to have similar attribute values, while those
from different communities may vary relatively,
even if they are neighbors at the graph level. (3)
The function can adequately maintain the attributed
graph's node attributes and structural information.
Finally, we can find the groups separate from the
nodes and their inductive subnodes, i.e.,
communities.

3.3. Decomposition k-core:

Assume a graph G = (V, E) of |V | = n vertices and
|E| = e edges; a k-core is defined as follows: A
subgraph H = (C, E|C) induced by the set C <V is
a k-core or a core of order k iff v € C: degree H
(v) >k, and H is the maximum subgraph with this
property. Therefore, a k-core of G can be obtained
by recursively removing all the vertices of degrees
less than k until all vertices in the remaining graph
have at least degree k.

3.4. Modularity and normalization cut:

Assume that network G = (A, S) is undirected and
attributed to n nodes, where A = [a;;] € R™" is
the adjacency matrix. In this matrix a;; = 1 if there
is an edge between nodes i and j; otherwise, a;; =
0. Here, ; = ¥j a;; is the degree of node i, and
m= %Ziﬁi is the total number of network edges.
S = [s4j] € R™™ isasimilarity matrix in which s;;
is the cosine similarity value between the
corresponding content vectors of nodes i and j.

According to these explanations, the normalized
cut and modularity models are defined as follows:

3.4.1. Modularity Model:

The modularity function Q was first introduced by
Newman and Girvan in [51] and is widely
recognized as one of the most prominent quality
functions for community detection. Due to its
effectiveness, optimizing Q-modularity has
become a fundamental approach in community
detection. Equation (1) formally defines this
function for two communities:

1 BiBj
0=~ (aij - 2_m;) Wiy;) oy
Where y; is equal to 1 (or -1) if node v; Belongs to
community 1 (or 2). Modularity can be easily
optimized using specific vectors and values by

defining a modularity matrix, as shown in equation

(2):
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B = [bU] € R™™, with entries b,:j = a;j —% (2)

Therefore, the modularity @ can be rewritten as
equation (3):

0 =_—yTBY )

Where ¢ = [;] € {—1,1}"represents
membership in a community node. However,
maximizing modularity is an NP-hard problem. By
simplifying the problem and allowing variables ;
to take any integer value, the problem can be easily
solved as equation (4):

max ® = max Tr(¢TBY) 4)

Where ¥ = [1;;] € R™P is the matrix that hints at
membership in the community, and Tr (0) is the
trace function. The solution is to obtain p of the
most significant specific vector of modularity
matrix B. In addition, the solution space allows ¥
reconstruction of network topology from a
community structure viewpoint. Therefore, any
row of the ¥ matrix can be assumed to be a good
representation of the corresponding node in the
hidden space to detect the community.

3.4.2-Normalize cut model:

This model calculates the ratio of external edges to
internal edges, providing a measure of community
separation. To compute a normalized cut, the cut
between clusters A and B, denoted as Cut (A, B),
represents the total number of edges that connect
nodes in different clusters. The volume of cluster
AA, represented as Vol (A), is the sum of the
degrees of all nodes within cluster A [52]. These
values are determined using equations (5) and (6):

cut(A, B) = Yiea jeg Wij ®)

Vol(A) = Yieaki (6)
Given equations (5) and (6), the objective

function of the normalized cut for two clusters, A

and B, will be equation (7) or equation (8) when

there are k clusters Cy, C; ... Ci.

cut(4A,B) , cut(4,B)

Ncut(4,B) = vol(A) ' vol(B) "

link(Ct,C‘t)

Ncut(Cy, Cy, .., Ci) = Yoy vol(Cy) ®)

Where link(C,,C,) = %Ziect,jec_tsij is the total
connection from nodes in C; to all nodes in C;, (not
inC;) and vol(C;) = Yiec, d; is the total internal
connection in Cy.

To achieve the minimum objective function, the
normalized cut is wrapped in an optimization
problem as per Equation (9), where L is the
Laplacian graph matrix of similarity and its
normalized form DL =D *(D —-S)=1-D"1Sis
the identity matrix (I). Equation (10) is known as
the Markov matrix:

min Tr(@TLO)

@ € Rn*k
St L=D-S
D= diag(dy,d,, ..., dy) (9)
ifvi € C_]
Bij =1 [vol(C;)
0 otherwise
M=D"1s§ (10)

In the case of this problem, the solution matrix @

of the specific vectors of k is the minimum nonzero
particular value of the normalized Laplacian
matrix D~1L. In other words, k is the most
significant specific value M covers, representing
the solution in the hidden space. More importantly,
the solution matrix @ provides a perfect
representation for obtaining the clustering.

Given the above, a higher modularity leads to a
better partition structure; conversely, a lower
normalized cut value enhances the two critical
principles of graph classification, namely
maximum integrity and minimum connection.

3.5. Graph embedding:

Let G= (V, E, X), whereV ={v;}i =1,2,..,nis
formed of a set of graph nodes and e;; =< v;, v; >
€ E represents a connection between the nodes.
The topological structure of graph G is illustrated
by adjacency matrix A, where A;; =1 if e;; EE
and otherwise 4;; =0. X € R™? is the node
attribute matrix, and d is the number of attributes.
In addition, x; € X shows the attributes of the
content of each node v;. The objective of the
embedding problem is to map nodes v; € V to low-
dimensional vectors z, € R4, with a formal
format f: (4,X) - Z, where z;T is the-i row of the
Z € R™% matrix (n is the number of nodes, and d
is the packing dimension). We assume that Z is the
packing matrix, so the packings should preserve A's
topology and content information, X.

3.6. Notations:
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Table 1 consolidates the essential symbols used
throughout this paper, encompassing various
matrices, graph properties, and representation
details relevant to the discussed methods. This
table serves as a reference for understanding the
notations and  mathematical  formulations
employed in our approach.

4. The proposed method: VGAEE

Our proposed model is designed to detect
communities within attributed social networks by
utilizing a parallel dual graph convolutional neural
network (GCN) for an efficient and interpretable
embedding process. The model is structured into
four distinct phases:

1. Graph Filtering: This initial phase filters
the graph to prepare it for further
processing, enhancing the clarity of the
underlying structures within the network.

2. Modularity and Markov Matrices
Calculation: The second phase calculates
modularity and Markov matrices, which
are crucial for understanding the
community structure and the transition
probabilities between nodes.

3. Network Embedding: During the third
phase, a Variational Graph AutoEncoder
is employed to generate a new and
meaningful representation of the network.
This step is pivotal for capturing the
essence of community structures in a
lower-dimensional space.

4. Clustering: The final phase involves
clustering the embedded representations
to identify distinct communities within
the network. This step categorizes nodes
into groups based on the learned
embeddings.

The output from each phase is meticulously
designed to feed into the subsequent phase as input,
ensuring a smooth transition and integration of data
throughout the model. Fig. 1 provides a detailed
schematic of the proposed method, visually
outlining each phase and their interconnections.
The upcoming sections will explore the intricacies
and functionalities of each phase in greater detail,
offering a comprehensive understanding of our
approach.

4.1. Graph Filtering

By implementing the k-core algorithm, we
strategically streamline the graph by removing
nodes of lesser significance, typically those with

low degrees. This method significantly reduces the
graph’s size and complexity, enhancing the
efficiency of community detection algorithms
applied thereafter. The k-core algorithm highlights
the graph’s most prominent regions, facilitating
more focused and faster computations. Essentially,
a k-core represents a maximal subset of a graph’s
nodes where each node maintains at least k
connections within that subset. For inclusion in the
k-core, a node’s degree within the subset must be
no less than k. The process involves calculating the
k-core by first removing nodes with degrees less
than k, then recalculating the degrees, and
iteratively repeating this removal process until all
nodes satisfy the k-core condition. Each iteration
carries a computational complexity of O(E), where
E denotes the total number of edges.

Through successive iterations, the graph is
methodically reduced by excluding nodes lacking
sufficient connectivity, ultimately vyielding a
simplified core that depicts the most interconnected
nodes. As delineated in this section, the k-core
algorithm inherently defines a community based on
its density, thereby reducing the overall graph
size—this accelerates the community detection
process in subsequent phases and bolsters the
community-centric focus of graph neural networks.
The choice of k in this algorithm is contingent upon
the specific dataset being analyzed; in this study, a
k-value of 3 was selected based on a trial-and-error
method to optimize the balance between
simplification and structural integrity.

4.2. Calculation of the modularity matrix and
normalized cut matrix

This section details the calculation of the
modularity matrix (Matrix B) and the Markov
matrix (Matrix M) for the filtered graph, a product
of applying the 3-core algorithm. These
calculations are fundamental for understanding the
structural and transitional properties of the graph
and are crucial for subsequent analyses, such as
community detection or dynamic behavior studies.
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Table 1: List of notations used in this paper

Symbols Descriptions Symbols Descriptions
A Graph adjacency matrix S A similarity matrix
X Graph attribute matrix Bij The modularity value of (vi; v;)
N Number of nodes in the graph Q The modularity evaluation metric
z Representations of nodes Sij The pairwise node similarity
value of (vi; vj)
H Hidden dimensions D A degree matrix
A Reconstructed graph adjacency matrix L A Laplacian matrix
K Number of communities in the graph B A modularity matrix
Hl+1 Feature representation at layer i+1 M A Markov matrix
a(0) The Activation function Hi Feature representation at layer i
wt Weight at layer i bt Based on layer i
Graph
attributed
1 i
Graph
[ Ehase] < Filtering
~
- / \
modularity(Q) ’ Normalize cut(Ncut) ‘
v : v
Calculation of the modularity matrix Calculation of the normalized cut matrix
@ < (Matrix B) (Markov Matrix M)
[6 16 To Tx[olol To To e [1To To] 1
~
'd
A 4
|—> One Encoder with 4-layer GCN
| Phase3 o ’ ' Encoding > Embedding
optimization +
A ‘ One Decoder
L4
~
( v
‘ Normalized Embedding
| Phase 4 i
‘ KNN
~

Fig. 1: Flowchart of the proposed method VGAEE
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4.3. Network embedding

The learning phase aims to achieve a robust
embedding of the data graph G= (V, E, A, X). To
accomplish this, we employ a Variational Graph
Autoencoder (VGA), which processes the entire
graph to learn an effective embedding. As depicted
in Figure 2, the workflow for this processing
method involves two primary components: the
encoder and the decoder.

Encoder: In a Variational Graph Autoencoder, the
encoder's role is pivotal. It takes two inputs: the
adjacency matrix A, representing the graph's
structure, and the node features matrix X. The
encoder's task is to map this high-dimensional
input data into a lower-dimensional latent
representation Z. This latent space Z captures the
essential features of the nodes while preserving the
structural and feature-based relationships inherent
in the graph. Typically, the encoder uses layers of
graph convolution to aggregate and transform the
input data into this compact representation. This
step is crucial as it determines how well the encoder
can identify and encode community-specific
features into the latent space.

Decoder: Following the encoding process, the
decoder takes the latent representation Z and aims
to reconstruct the original graph's structure. The
primary objective of the decoder is to validate the
effectiveness of the learned embeddings by
attempting to regenerate the adjacency matrix A
from Z. This process tests the encoder's ability to
embed nodes in such a way that the original graph
structure can be predicted from the embeddings. A
successful reconstruction indicates that the latent
space Z contains meaningful and comprehensive
information about the graph's structure and node
interactions.

The Variational Graph Autoencoder's effectiveness
hinges on its ability to reduce the dimensionality of
the graph data while retaining significant structural
and feature-related information. This capability is
crucial for tasks such as community detection,
where the goal is to cluster similar nodes more
effectively. By embedding nodes into a lower-
dimensional space that emphasizes community-
specific  features, the Variational Graph
Autoencoder facilitates more accurate and efficient
community clustering. This method not only
streamlines computations but also enhances the
interpretability of the results, allowing for clearer
insights into the underlying community structure of
the graph.
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4.3.1. Encoder Model

The encoder (inference model) of VGAE consists
of graph convolutional networks (GCNs) [51]. It
takes an adjacency matrix Aand a feature

matrix X as inputs and generates the latent
variable Zas output. The first GCN layer
transforms the feature matrix into a lower-
dimensional form as defined by Equation 11:
X = GCN(X,A) = ReLU(A XW,) (11)
~ 1 1
A=Dz2AD =

A-tilde is the symmetrically normalized adjacency
matrix. The second GCN layer generates p and
logo?, which are defined by Equation 12:

1= GCN,(X,A) = AXW, (12)

logo? = GCN,(X,A) = AXW,

Now if we combine the math of two-layer GCN as
defined in Equation 13, yields:
GCN(X,A) = AReLU(A XW,)W, (13)
Which generates p and logo®. Subsequently, Z can
be determined using the parameterization trick, as
specified in Equation 14:

Z=pu+ox&

Where e ~N (0, 1). (14)

4.3.2. Decoder Model

The decoder (generative model) is defined by an
inner product between latent variable Z. The output
of our decoder is a reconstructed adjacency
matrix A-hat, which is defined as Equation 15:

~

A=o0(zz") (15)
Where o(¢) is the logistic sigmoid function. In
summary, the encoder is represented as Equation
16:

q(z|X, A) = N(z|u;, diag(c?)) (16)


https://tkipf.github.io/graph-convolutional-networks/
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Fig. 2: The workflow scheme of the Variational graph autoencoder in the proposed method
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The decoder is represented in Equation 17:

p(4ij = 1|z;,2) = 0 (2" z) 17)

In this paper, the encoder, a linear combination of
the matrices Q and M is initially computed, which
can be considered as the new input feature matrix
Xnew:

Xnew =aQ + M (18)
Where a and P are coefficients for the combination.
This Xnew is then fed into Graph Convolutional
Networks (GCN): The first GCN layer produces a

lower-dimensional feature representation:
X'"=GCN XX ., ,A)=ReLU (AX W)
where Ais the symmetrically normalized

adjacency matrix.
The second GCN layer generates the values p and

logo?: 4 =GCN (X ,A)=AX W,
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logo? = GCN,(X,A) =AX W,

The decoder then uses these parameters to
reconstruct the adjacency matrix:

A’ =sigmoid (AX W,) Where W are the

weights associated with the decoder. Using the
reparameterization trick: Z = u+0o o ~N (0,1)
is a random variable from the standard normal
distribution. These adjustments ensure that the
combined inputs are accurately reflected in the
model, allowing for more precise and complex
community structure identification.

4.3.3. Loss function and Optimization

The loss function for the Variational Graph
Autoencoder remains largely unchanged and is
defined in Equation 18. It comprises primarily of
the reconstruction loss between the input adjacency
matrix and the reconstructed adjacency matrix.
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More specifically, this involves the binary cross-
entropy between the target (A) and the output (A")
logits. The second part is the KL divergence
between q(Z | X, A) and p (Z), where p (Z) =N (0,
1). It measures how closely our g(Z | X, A) matches
p (2).

After we get the latent variable Z, we want to find
a way to learn the similarity of each row in the
latent variable (because one row represents one
vertex) to generate the output adjacency matrix.
The inner product could calculate the cosine
similarity of two vectors, which is useful when we
want a distance measure that is invariant to the
magnitude of the vectors. Therefore, by applying
the inner product on the latent variable Z and Z/T,
we can learn the similarity of each node inside Z to
predict our adjacency matrix.

L =Ez\x, a)llogp(AlZ)] = KL[q(Z]X, A)|Ip(2)]

The proposed decoding model is used to
reconstruct graph data. We can reconstruct a graph
structure, content information X, or both. Here,
reconstruction of the graph structure s
recommended, which gives us a higher level of
flexibility so our algorithm preserves its
functionality even if content information X is
unavailable. Decoder p(A4|Z) predicts whether
there is a connection between the two nodes of a
connection. Specifically, we trained a connection
prediction layer based on graph embedding as per
Equation Y4 and Equation Y.

p(A|2) =TT My p(Aijlzi z)  (09)
p(4;; = 1|z z;) = sigmod(z;T,z;) (20)

The embedding of Z and A Reconstructed graphs
are given in Equation Y):

A = sigmod(ZZ"), here Z = q(Z|X, A) (YY)

The graph data reconstruction error for a self-
encoder graph is minimized using Equation YY.

Ly = Eq(zi(xay[logp(42) (22)

4.4. Node clustering:

In this phase of processing, min-max scaling is
applied to normalize the Z_final feature vectors
that were obtained in the previous phase. This
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normalization technique adjusts the data values so
that they range between zero and one. The
objective of using min-max scaling in this context
is to standardize the range of the feature vectors,
thus ensuring that no single feature dominates due
to its scale. This uniform scaling across all features
is essential for several reasons:

1. Enhanced  Algorithm  Performance:
Uniformity in feature scale helps machine
learning algorithms converge more
quickly. This is particularly important for
algorithms like K-nearest neighbors
(KNN), which rely on distance
calculations between points. If the scales
are not uniform, features with larger ranges
could disproportionately influence the
outcome, leading to biased results.

2. Improved Stability: Algorithms that
depend on distance measurements or
gradients are less likely to exhibit erratic
behavior during learning when all features
contribute equally. Stability in algorithm
performance leads to more reliable and
reproducible results.

3. Optimized Learning Efficiency: When all
features are scaled uniformly, each feature
has an equal opportunity to influence the
learning process, potentially increasing the
efficiency and effectiveness of the model.

Applying min-max scaling to the Z_final feature
vectors ensures that the subsequent steps,
especially those involving algorithms like KNN for
clustering or classification, operate under optimal
conditions. This preprocessing step is crucial for
achieving accurate and efficient outcomes in the
analysis of data, particularly in complex machine-
learning tasks that involve large and diverse
datasets. The decoder is represented in Equation
17:

p(4ij = 11z, z)) = 0(2" z) (17)
Fig. 4 illustrates the architecture of our proposed
community detection model using VGAEE.

5. Experiment

In this section, we describe the comprehensive
experiments  conducted to evaluate the
performance of the Variational Graph Autoencoder
Embedding Enhancer (VGAEE) against state-of-
the-art methods in real-world scenarios using valid
datasets. These experiments are designed to
provide a fair and rigorous comparison, focusing
on several critical aspects:
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5.1. Experimental settings

5.1.1. Datasets

In our study, we utilized datasets derived from
real-world applications to test our community
detection methods, ensuring a thorough evaluation.
Statistical information about the three datasets
employed is presented in Table 4, reference [57].
These datasets comprise citation networks where
the nodes symbolize papers and the edges denote
the citations between them. Each node is associated
with attributes that represent word packet
summaries of the paper abstracts, while the labels
indicate the topics of the papers.

5.1.2. Evaluation metrics

This section presents various qualitative metrics for
evaluating community detection approaches,
classified into performance and goodness
measures. Performance measures assess the quality
of the communities identified by the algorithm
relative to real-world communities. Additionally,
goodness measures focus on the structural
characteristics of the communities that have been
detected [60]. Our evaluation of the proposed
method utilized two key metrics: normalized
mutual information and accuracy. Higher values in
these metrics signify better performance.
Subsequent sections will provide a detailed
discussion of these measures.

-Normalized Mutual Information

The normalized mutual information, calculated
using equation (26), measures the similarity
between the community set identified by the
proposed algorithm and the actual community [60].

k vk
Titq Zfea nijin(nn/ning)

NMI = (26)

J ey (N EL, n tn(nd/m)

Where k is the number of communities, n is the
number of nodes, n;j is the number of nodes in the
optimized community set i such that the proposed
community set is in community j, n{ is the number
of nodes in the community i, which is in the
optimized community set, and n; is the number of
nodes in community j.

-Accuracy

It assesses the authenticity of the community
structure. Similar to NMI, computing this measure
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necessitates the use of an optimal community
setting, as outlined in equation (27) [60].

Acc =HeMGPHED)

(27)

Where n is the number of groups, and for a specific
group, i and C; <C; are the communities of node i in
optimum and recommended community settings.
K(x, y) is a function equal to 1 when x=y and 0
otherwise.

5.1.3. Parameter Settings:

For our study, we structured the training set by
selecting 20 nodes from each class, resulting in a
total of 500 nodes for the validation set and 1,000
nodes for the test set. Our experiments were
conducted using a two-layer Graph Convolutional
Network (GCN) setup. The initial layer included 64
neurons, with each subsequent layer in the
contracting path halving the neuron count from the
previous layer. The training was facilitated using
the Adam optimizer, a popular choice due to its
efficiency, and the experiments were carried out
using both TensorFlow and PyTorch frameworks.

The learning rate was initially set at 0.01, adjusted
dynamically by a scheduler that reduced the rate
upon encountering a loss plateau, which helped
achieve more stable convergence. We implemented
a dropout rate of 0.5 to prevent overfitting and
capped the training at a maximum of 200 epochs.
The Relu activation function was applied following
each graph convolutional operation. Training was
halted if there was no decrease in the loss function
over 10 consecutive epochs.

Initialization of the initial weights for the two GCN
layers was done randomly, selected from a uniform
distribution. To ensure the robustness of our
results, each experiment was repeated ten times,
with the average scores reported subsequently.
Detailed parameter settings for these experiments
are summarized in Table 5, which includes
parameter names and their respective values.

5.1.4. Experimental results and analysis

This subsection presents the experimental results
analyzed from various evaluation angles to validate
the efficiency of our proposed model. We
conducted experiments using medium-scale
datasets including Cora, Citeseer, and PubMed,
and compared our model against three established
baseline categories to provide a thorough analysis.
The comparison categories are detailed as follows:
1. Node Feature-Based Methods: This
category focuses on the unique attributes
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or characteristics of individual nodes.
Methods such as k-means and spectral
clustering, referred to here as spectral_f,
are prominent in this category. These
methods construct a similarity matrix
primarily using a linear kernel based on
node features.

2. Graph Structure-Based Methods: This
category emphasizes the intrinsic structure
of the graph. Techniques like spectral
clustering (Spectral_g) utilize the node
adjacency matrix to build the similarity
matrix. Notable methods in this group
include DeepWalk [14], which excels in
learning graph embeddings, and DNGR
[62], which merges spectral graph
clustering with deep neural networks for
complex graph representation.
Additionally, vGraph [63] is a probabilistic
generative model that learns community
membership and node representation
collaboratively, while Graph Encoder [64]
focuses on learning graph embedding for
spectral graph clustering.

3. Hybrid Methods: These methods
integrate both node attributes and graph
structure, typically resulting in enhanced
community detection outcomes despite
increased  computational  complexity.
Various graph autoencoder variants fall
within this category, including:

o GAE [65]: Utilizes neural networks
for learning graph representations.
o VGAE [65]: Advances GAE by

implementing a  Variational
inference framework.
o MGAE [18]: Enhances

representation by marginalizing
specific graph properties.

o ARGA [66] and ARVGA [66]:
Employ adversarial and vibrational
regularization, respectively, to
refine graph embeddings.

o DAEGC [67]: Uses  deep
autoencoders to reconstruct the
graph's adjacency matrix.

o AGE [56]: Enhances graph-based
learning tasks through a two-stage
process.

o AGC [55]: Leverages high-order graph
convolution to effectively understand a
graph's global structure.

o DBGAN [68] and GALA [69]: New
approaches using graph neural networks
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for clustering and embedding node
features.
o CommDGI [11] and GC-VGE [70]:

Optimize the simultaneous learning of
node embeddings and cluster assignments.

o TADW [71]: Employs matrix
factorization for network representation
learning.

o RMSC [72] and RTM [72]: Focus on
robust multi-view spectral clustering and
learning topic distributions from text and
citations, respectively.

o GMIM [73]: Utilizes a mutual information

maximization  approach  for  node
embedding.

o DGVAE [74]: Introduces a graph
Variational — generative  model  with
Dirichlet distributions as priors on latent
variables.

o BernNet GCN [75] and WC-GCN [76]:
Utilize graph convolutional network
frameworks, with the former based on
Bernstein polynomial approximation.

o LGNN [35] and MRFasGCN [27]:
Specialized neural network models for
graph data, with MRFasGCN combining
GCN with a Markov random field model
for community detection.

These methods provide a broad spectrum of
approaches for analyzing and detecting community
structures  within  networks, facilitating a
comprehensive comparison against our proposed
model.

Tables 6-8 comprehensively compare the proposed
method with baseline community detection
methods based on their performance metrics. These
metrics include accuracy (ACC %) and normalized
mutual information (NMI %). The compared
approaches are often categorized into three groups
based on the type of learning: supervised, semi-
supervised, and unsupervised. Furthermore, these
strategies are classified into three groups based on
the input type: Features, graph topology, or a
hybrid of both.

Table 6 presents a comprehensive comparison of
various graph-based learning methods used for
community detection in the Cora dataset,
highlighting their performance in terms of accuracy
(ACC %) and normalized mutual information
(NMI %). Among the methods listed, the proposed
VGAEE stands out with the highest performance
metrics, achieving an ACC% of 84.5 and an NMI1%
of 70.46. This represents a significant improvement
over both supervised and unsupervised approaches.
For instance, the closest competitors, MRFasGCN
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and AGE, which are also unsupervised, recorded
ACC% of 84.3 and 76.8 and NMI% of 66.2 and
60.7, respectively. VGAEE's superior performance
suggests that its methodology for integrating graph
topology in an unsupervised learning framework
effectively captures the nuanced structures within
the community more accurately than other
methods. Furthermore, the results from VGAEE
are particularly notable when compared to
supervised methods such as LGNN and WC-GCN,
which, despite their structured learning paradigms,
do not achieve the same level of ACC or NMI.
Overall, the data underscores the efficacy of
VGAEE in community detection, setting a new
benchmark for future studies in this area.

To make a fair comparison with other related
works, we repeated the experiments on two
different datasets, the PubMed dataset and the
Citeseer dataset. We present the results and figures
of this new evaluation in Tables 7 and 8,
respectively.

In Table 7, the proposed VGAEE method outshines
both unsupervised and supervised learning
algorithms for the PubMed dataset, registering an
ACC% of 80.50 and an NMI% of 55.60. This
significantly  distances it from traditional
unsupervised methods like K-means, Spectral-F,
and Spectral-G, which show considerable
variability in their results. When comparing
VGAEE with other advanced graph-based
methods, it still maintains a leading position. For
example, the semi-supervised MRFasGCN
achieves a higher NMI% at 40.7 but falls short in
ACC%, illustrating that while it effectively
captures mutual information within the data, it does
not necessarily translate to outright accuracy.
Similarly, the supervised BernNet GCN scores an
impressive NMI% of 51.40 but with a lower
ACC% of 61.25, indicating potential overfitting to
mutual information at the cost of general accuracy.
Among unsupervised competitors, AGE and
GMIM perform well, with AGE reaching an
ACC% of 71.1 and GMIM peaking at 70.87, yet
neither approaches the combined performance
metrics of VGAEE. Additionally, methods like
AGC and CommDGI, while competitive, do not
achieve the same balance between ACC and NMI,
suggesting that VGAEE's method of integrating
features and graph topology potentially offers a
more robust model for understanding complex
network structures. Overall, the superiority of
VGAEE in this dataset underscores its
effectiveness in handling the nuances of
community detection in large, complex networks.
Its ability to outperform existing algorithms,
particularly in unsupervised settings, sets a new
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benchmark and indicates promising directions for
future research and application in social network
analysis and beyond.

Based on the analysis presented in Table 8, the
table showcases the performance of the VGAEE
method relative to other community detection
algorithms across various learning paradigms for
the Citeseer dataset. VGAEE, an unsupervised
method, stands out with an ACC% of 75.60 and an
NMI% of 57.06. Notably, VGAEE surpasses
popular unsupervised algorithms like K-means,
Spectral-F, and DeepWalk, which present
considerably lower metrics in both accuracy and
mutual information. Even when compared to the
semi-supervised MRFasGCN and supervised
methods such as BernNet GCN and WC-GCN,
VGAEE demonstrates competitive or superior
performance, particularly in accuracy. This
highlights VGAEE's efficacy in effectively
capturing and preserving the intrinsic community
structures in complex networks without requiring
labeled data. Positioned as a robust tool in the
unsupervised learning landscape for graph-based
community detection, VGAEE excels in handling
unlabeled and complex datasets while maintaining
a balance between accuracy and information
preservation.

The proposed VGAEE method demonstrated
outstanding results across all three datasets: Cora,
PubMed, and Citeseer, with its performance being
particularly notable on the Citeseer dataset. On
Citeseer, it achieved the highest accuracy and NMI
percentages among all methods evaluated, with
scores of 75.60% and 57.06% respectively. While
it also ranked among the top performers on the
Cora and PubMed datasets, with accuracies of
84.5% and 80.5% respectively, the Citeseer results
highlight its superior capability in community
detection within various network analyses. This
underscores the VGAEE method's robust
adaptability and effectiveness across diverse and
complex datasets, marking it as a potent tool for
intricate network analysis tasks. Figures 4, 5, and 6
illustrate the performance of the proposed method
on the Cora, PubMed, and Citeseer datasets,
respectively, based on the ACC (classification
accuracy) and NMI  (normalized mutual
information) metrics, compared to baseline
methods. In all three figures, the ACC and NMI
values for the proposed method are highlighted in
bold above the corresponding bars to clearly
demonstrate its superiority over other methods.
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Table 4: Summary of real-world benchmarks on datasets.

Dataset #Nodes #Edges #Node Attributes Num. of Communities
Cora [58] 2,708 5,429 1,433 7
Citeseer [58] 3,312 4,715 3,703 6
PubMed [59] 19,717 44,338 500 3
Table 5: Detailed parameter setting
Datasets Training Learning Activation Weight Optimizer  GCN Dropout #Train/Validation
Epoch rate Function Decay layers rate /Test Node
Cora 200 0.01 Relu 5e-3 Adam 64/32 0.5 140/500/1000
Citeseer 200 0.01 Relu 5e-3 Adam 64/32 0.5 120/500/1000
PubMed 200 0.01 Relu 5e-3 Adam 64/32 0.5 60/500/1000

Table 6: Performance comparison of different community detection methods on the Cora dataset; the best results are in bold.

Name of methods Learning type Input ACC% NMI1%

K-means Unsupervised Feature 49.2 321
Spectral-F [77] Unsupervised Feature 34.7 14.7
Spectral-G [77] Unsupervised Graph 31.46 9.69
DeepWaIk [14] Unsupervised Graph 56.20 39.87
Graph Encoder [78] Unsupervised Graph 325 10.9
vGraph[63] Unsupervised Graph 28.7 34.5
TADW [71] Unsupervised Feature & Graph 55.00 36.59
VGAE [65] Unsupervised Feature & Graph 63.56 47.45
MGAE [18] Unsupervised Feature & Graph 63.43 45.57
ARGE [66] Unsupervised Feature & Graph 60.84 4221
ARVGA [66] Unsupervised Feature & Graph 62.83 45.93
DGVAE [74] Unsupervised Feature & Graph 64.42 47.64
AGC [55] Unsupervised Feature & Graph 68.92 53.68
CommDGI [11] Unsupervised Feature & Graph 69.8 57.9
DAEGC [67] Unsupervised Feature & Graph 70.4 52.8
GC-VGE [70] Unsupervised Feature & Graph 70.67 53.57
GALA [69] Unsupervised Feature & Graph 72.42 53.96
DBGAN [68] Unsupervised Feature & Graph 74.6 57.7
GMIM [73] Unsupervised Feature & Graph 748 56.0
AGE[56] Unsupervised Feature & Graph 76.8 60.7
MRFasGCN[27] Semi-supervised Feature & Graph 84.3 66.2
BernNet GCN[75] Supervised Feature & Graph 41.06 68.78
LGNNI35] Supervised Feature & Graph 79.04 -
WC-GCN[76] Supervised Feature & Graph 79.39 -
VGAEE(proposed method) Unsupervised Feature & Graph 84.5 70.46
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Table 7: Performance comparison of different community detection methods on the PubMed dataset; the best results are in

bold.
Name of methods Learning type Input ACC% NMI1%
K-means Unsupervised Feature 55.59 24.34
Spectral-F [77] Unsupervised Feature 60.20 30.90
Spectral-G [77] Unsupervised Graph 37.98 10.30
DeepWalk [14] Unsupervised Graph 64.98 26.44
Graph Encoder[11] Unsupervised Graph 53.1 20.9
DNGR [62] Unsupervised Graph 25.53 20.11
vGraph [79] Unsupervised Graph 26.00 22.40
TADW [71] Unsupervised Feature & Graph 46.82 9.47
GAE [65] Unsupervised Feature & Graph 64.43 24.85
VGAE [65] Unsupervised Feature & Graph 64.67 23.94
MGAE [18] Unsupervised Feature & Graph 43.88 8.16
ARGA [66] Unsupervised Feature & Graph 65.07 29.23
ARVGA [66] Unsupervised Feature & Graph 62.01 26.62
DGVAE [74] Unsupervised Feature & Graph 67.56 28.72
AGC [55] Unsupervised Feature & Graph 69.78 31.59
CommDGI [11] Unsupervised Feature & Graph 69.90 35.70
DAEGC [67] Unsupervised Feature & Graph 67.10 26.60
GC-VGE [70] Unsupervised Feature & Graph 68.18 29.70
GALA [69] Unsupervised Feature & Graph 69.39 32.73
DBGAN [68] Unsupervised Feature & Graph 69.40 32.40
GMIM [73] Unsupervised Feature & Graph 70.87 32.43
AGE[56] Unsupervised Feature & Graph 71.1 31.6
MRFasGCN[27] Semi-supervised Feature & Graph 79.6 40.7
BernNet GCN[75] Supervised Feature & Graph 61.25 51.40
LGNN[35] Supervised Feature & Graph 72.64 -
WC-GC[76] Supervised Feature & Graph 79.41 -
VGAEE (proposed method) Unsupervised Feature & Graph 80.50 55.60

Table 8: Performance comparison of different community detection methods on the Citeseer dataset. The best results are in

bold.
Name of methods Learning type Input ACC% NMI1%
K-means Unsupervised Feature 54.0 30.5
Spectral-F [77] Unsupervised Feature 23.9 5.6
DeepWalk [14] Unsupervised Graph 32.7 8.8
Graph Encoder[11] Unsupervised Graph 225 3.3
DNGR [62] Unsupervised Graph 32.6 18.0
RTM [72] Unsupervised Graph 451 239
RMSC [72] Unsupervised Graph 29.5 13.9
TADW [71] Unsupervised Feature & Graph 455 29.1
GAE [65] Unsupervised Feature & Graph 40.8 17.6
VGAE [65] Unsupervised Feature & Graph 344 15.6
MGAE [18] Unsupervised Feature & Graph 43.88 8.16
ARGA [66] Unsupervised Feature & Graph 57.3 35.0
ARVGA [66] Unsupervised Feature & Graph 54.4 26.1

18



Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

AGE[56] Unsupervised Feature & Graph 70.2 44.8
MRFasGCN[27] Semi-supervised Feature & Graph 73.2 46.3
BernNet GCN[75] Supervised Feature & Graph 72.32 58.01
LGNN[35] Supervised Feature & Graph 73.15 -
Supervised Feature & Graph 73.2 46.3
WC-GCN[76] Supervised Feature & Graph 75.18 -
VGAEE Unsupervised Feature & Graph 75.60 57.06

(proposed method)
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#. Conclusion and future work

This study introduced VGAEE, an innovative
unsupervised approach leveraging Variational
Graph AutoEncoders to enhance community
detection in attributed social networks. By
integrating node content with network topology,
VGAEE effectively captures complex community
structures, achieving superior performance metrics
across diverse datasets like Cora, Citeseer, and
PubMed. Notably, @ VGAEE consistently
outperformed both traditional and state-of-the-art
methods, demonstrating its robustness and
efficiency in handling large-scale network data
without the necessity for pre-labeled information.
The effectiveness of VGAEE was particularly
evident in its ability to maintain high accuracy and
mutual information scores, thereby providing a
more nuanced understanding of community
dynamics within large and complex networks.
Looking forward, several avenues could further
refine and expand the capabilities of the VGAEE
framework. First, exploring the integration of semi-
supervised learning protocols could potentially
enhance the model's accuracy and applicability to
even broader network types, including those with
sparse or incomplete labeling. Additionally,
adapting the model to dynamically evolving
networks where community structures change over
time would significantly increase its practical
utility in real-world scenarios. Another promising

20

direction involves enhancing the model's
scalability and efficiency through the incorporation
of more advanced graph neural network
architectures or optimization techniques. Lastly,
applying the VGAEE framework to other types of
data, such as multimodal networks or those with
highly heterogeneous attributes, could open new
research areas and applications, further cementing
its utility and impact in network analysis and
beyond.
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