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Abstract 

This paper investigates the free tangential vibration of cracked nanotubes with considering scale parameter under various boundary 

conditions. The cracked nanotube is modeled by dividing it into two segments connected by a linear spring. The stiffness of the spring is 

dependent to the crack severity and obtained using fracture mechanics principles. Governing equations and corresponding boundary 

conditions are derived with the aid of doublet mechanics (DM). The natural frequencies are obtained analytically with solving 

characteristics equation and the influence of the crack severity, boundary conditions, tube chirality, and the dimensions of nanotube on the 

free tangential vibration of cracked nanotubes is studied in detail. It was shown that the frequency decreases with increase of the crack 

severity and scale parameter. This reduction is more apparent when the boundaries of the beam are changed from free end to clamped one. 

In addition, when the crack location is near the support, a larger decrease in the frequency can be observed. To validate accuracy and 

efficiency of the present method, the results obtained herein are compared with the available results in the literatures and good agreement is 

observed. 
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1. Introduction 

The importance of the beam and its engineering 

applications is obvious, and it undergoes different kinds 

of loading. It is well known that presence of crack in a 

beam creates discontinuities varies its dynamic behavior 

and may cause the failure [1]. Cracks are classified base 

on the geometry and its orientation, cracks parallel to 

beam axis are known as longitudinal cracks, cracks that 

close and open when subjected to alternative stresses are 

known as breathing crack, crack which are perpendicular 

to the axis of shaft are known as transverse crack, the 

cracks on surface which is not visible known as sub-

surface crack on the surface are known as surface crack. 

Cracked structures are susceptible to failure depending on 

the vibration mode. Failure is due to the resonance formed 

by the superposition of frequency of periodic force acting 

on structure and the natural frequency of the structure. 

Crack severity is defined by division of crack length to 

crack depth [2]. Natural frequency is the frequency at 

which a system or structure vibrates when subjected to an 

initial excitation in the absence of any driving or damping 

force [3]. Then, to determine natural frequency, free 

undamped vibration must be considered. For any cracked 

structure, the study of resonance is more important 

because it affects the structure in different ways [4]. 

When the frequency of applied load becomes equal to 

associated natural frequency, the structure vibrates 

theoretically at infinite amplitude leading to failure [5]. 

To avoid structural failure due to periodic load, it is 

important to determine resonant frequency. As material 

failure could lead to disastrous results, structures have 

regular costly and time consuming inspections. During the 

last decades, damage detection methods using vibration 

analysis have attracted growing interest because of their 

simplicity for implementation [6]. It is known that 

presence of the crack reduces its natural frequency and 

deviates its mode shape. It should be pointed out that the 

frequency reduction in cracked beam is not due to 

removal of mass rather the reduction of mass would 

increase natural frequency [7]. Indeed, a crack in a 

structure leads to a reduction in the stiffness and an 

increase in the damping of the structure. As frequencies 

are measured more easily than mode shapes, and on the 

other hand, mode shapes also affected by experimental 

errors, the investigation of the natural frequency is more 

significant. Therefore, it is possible to predict the crack 

depth and crack location by measuring changes in the 

vibration parameters.  

In recent years, the study of the beamlike vibration in 

nanoscale devices has been of significant interest to 

researchers due to their use in NEMS [8]. Nowadays, it is 

still a challenge to study the mechanics of nanomaterials 

by means of experimental tests due to the difficulties 

exists in the nanoscale [9]. Furthermore, structures at the 

nanoscale are known to exhibit a size-dependent behavior. 

Therefore, the theoretical methods such as atomistic 

simulations and classical continuum mechanics (CCM) 

theories are often used to analyze the dynamic responses 

of cracked nanostructures [10- 12]. It is known that 

atomistic simulation methods are extremely costly and 
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time-consuming task [13]. On the other hand, CCM 

theories are assumed to be scale independence ignoring 

the scale effect [14]. To improve this condition, the DM 

elasticity theory has been also used in the linear and 

nonlinear vibration analysis of carbon nanotubes [15, 16]. 

Due to different causes, cracks are often found in the 

nanostructures. For example, thermally-induced crack in 

the fabrication process of nanomaterials such as ZnO 

nanorods and nanowires may be created during heating 

[17]. The presence of the cracks in the nanodevices 

affects the safety and reliability in applications. However, 

few published papers investigated the aspect of 

mechanical analysis of cracked nanostructures [18]. 

Another field that recently attracted growing interest for 

the researchers is considering the scale effects on 

vibration of cracked nanobeams. Recently, nonlocal beam 

model has been adopted for the flexural [19, 20] and 

torsional [21, 22] vibration analysis of cracked 

nanostructures. Buckling behavior of imperfect axially 

compressed cylinder with an axial crack studied by many 

researcher [23, 24]. However, fewer researches have been 

so far conducted on the vibration behavior of cracked 

CNTs using DM theory. Although, there are several 

studies focusing on the axial responses of these kinds of 

nanostructures, none of them has incorporated the scale 

effect, explicitly. Gheshlaghi and Hasheminejad studied 

the axial vibration of CNTs using a modified couple stress 

theory [25]. Using a nonlocal elasticity model, the effects 

of crack on free axial vibration of nanorods and the 

effects of elastic medium on axial statics and dynamics of 

nanotubes were investigated. Zhang et al reported an 

order-of-magnitude reduction in the fatigue crack 

propagation rate for an epoxy system with the addition of 

five percent of carbon nanotube additives using 

fractography analysis and fracture mechanics modeling 

[26]. Rane et al. developed a method based on 

measurement of natural frequencies for detection of the 

location and size of a crack in a cantilever beam [27]. Hsu 

et al. studied the longitudinal frequency of a cracked 

nanobeam. They obtained the frequency equation of the 

nanobeam with different boundary conditions based on 

the nonlocal elasticity theory [28]. Singh introduced 

transcendental eigenvalue problems in axially vibrating 

rods to estimate the damage parameters in the continuous 

structure from natural frequencies [29]. Yali and Cercevik 

studied the axial vibration of cracked carbon nanotubes 

with arbitrary boundary conditions using the nonlocal 

elasticity theory. The crack severity and the supports were 

modeled by an axial spring representing the discontinuity 

in the axial displacement [30]. Loghmani and Hairi Yazdi 

studied free vibration of Euler-Bernoulli nanobeam with 

multiple cracks using Eringen's nonlocal elasticity theory 

based on wave approach [31]. Ebrahimi and Mahmudi 

proposed a finite element (FE) model to study the thermal 

transverse vibrations of cracked nanobeams resting on a 

double-parameter nonlocal elastic foundation using 

Hamilton’s principal [32]. Dilena and Morassi studied the 

identification of a single open crack in a vibrating beam, 

either under axial or bending vibration, based on 

measurements of damage-induced shifts in natural 

frequencies and antiresonant frequencies [33]. 

As far as known, however, there has been few 

investigation on the tangential vibration of a nanostructure 

with cracks explicitly incorporates scale effect in details. 

The lack prompted the authors to model the free 

tangential vibration of cracked nanotubes based on DM 

theory and to investigate the scale effects on tangential 

frequencies. In this paper, the tangential vibration of a 

cracked nanobeam with different boundary conditions is 

studied using DM theory. The effects of the crack 

parameter, crack location, and scale parameter on the 

vibration frequency of the cracked nanotube are studied. 

The main purpose of the present work is to propose a 

comprehensive analytical model to study the free 

tangential vibration of cracked CNTs. To this end, the 

governing equations of cracked nanotubes incorporating 

scale effects are derived using DM principle.  

2. Free tangential vibration equation of motion for 

SWCNT using DM 

Originally developed by Granik (1978), DM is a 

micromechanical theory wherein solids are represented as 

arrays of points or nodes at finite distances. A pair of such 

nodes is referred to as a doublet and the nodal spacing 

distances introduce length scales into the microstructural 

theory. Each node in the array is allowed to have 

translation and rotation where small translational and 

rotational displacements are expanded in a convergent 

Taylor series about the nodal point. The order at which 

the series is truncated defines the degree of approximation 

employed. The lowest order case using only a single term 

in the series does not contain any length scales, while the 

terms beyond the first produce a multi-scale theory. In 

this way, kinematical microstrains of elongation, shear 

and torsion (about the doublet axis) are developed. 

Through appropriate constitutive assumptions, such 

microstrains can be related to the corresponding 

elongational, shear and torsional microstresses. 

A doublet being a basic constitutive unit in DM is shown 

in Fig. 1.  Corresponding to the doublet  , A B , there 

exists a doublet or branch vector aζ  connecting the 

adjacent particle centers and defining the doublet axis. 

The magnitude of this vector a a  ζ called length 

scales simply the particle diameter for particles in contact. 

However, in general, the particles need not be in contact, 

and for this case the length scale a  could be used to 

represent a more general microstructural feature.  
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Fig 1. Doublet. 

As mentioned above, the kinematics allow relative 

elongational, shearing and torsional motions between the 

particles, and this is used to develop an elongational 

microstress   , shear microstress  , and torsional 

microstress   as shown in Fig. 1. It should be pointed 

out that these microstresses are not second order tensors 

in the usual continuum mechanics sense. Rather, they are 

vector quantities that represent the elastic microforces and 

microcouples of interaction between doublet particles, 

examples of which include the interatomic forces between 

carbon molecules of a nanotube. The directions of 

microstresses depend on the doublet axes which are 

determined by the material microstructure. The 

microstresses are not continuously distributed but rather 

exist only at particular points in the medium being 

modeled by DM. 

 
Fig 2. Translations of the doublet nodes a  and ab . 

In Fig. 2, doublet ( ,a b ) is shown to transform to doublet 

(
'',a b ) as a result of kinematic translation. The 

superscript 0 for vectors indicates the initial 

configuration. 

If  , tu x  is the displacement field representing the 

translation of node a , the incremental displacement may 

be written as: 

   0 , ,t t    u u x ζ u x                              (1) 

where x  is the position vector of the particle. 

Here,   1,...,n   while n is referred to the numbers of 

doublets. For the problem under study, it is assumed that 

the shear and torsional microdeformations and 

microstresses are negligible therefore only extensional 

microstrains and microstresses are assumed to exist. 

It is further assumed that the relative displacement u  

is small compared to the doublet separation distance   (

 u ) whereby it may be concluded that the unit 

vector
0

 τ τ  [16]. 

The extensional microstrain scalar measure ٍ , 

representing the tangential deformation of the doublet 

vector, is defined as [15]: 

. 






τ u

ٍ                                                          (2) 

The incremental function in Eq. (2) is assumed to have a 

convergent Taylor series expansion written as [3]: 

 
 

1

0 0

1

. .
!

M




  











ٍ τ τ u                                 (3) 

where   is the gradient operator and   are the internal 

characteristic length scales. As mentioned above, the 

number of terms used in the series expansion of the local 

deformation field determines the order of the 

approximation in DM.  
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In DM, the relation between microstrain and microstress, 

neglecting torsional and shearing microstrain and 

temperature effects, is written as [15]: 

1

n

p A  

 

 ٍ                                                             (4) 

where p  is the tangential microstress along the doublet 

axes. An example of the tangential microstress is the 

interatomic force between atoms or molecules located at 

the nodes of a general array such as a crystalline lattice. 

Eq. (4) can be interpreted as the constitutive equation in 

the linear theory of DM and A is the matrix of the 

micromoduli of the doublet. The material is homogeneous 

if the matrix A  is constant throughout the body. 

The unit vector 
0

τ , known as the director vector, may be 

written as 
0 0 ,  1,2,3j j j  τ e where 

0 ,  1,2,3j j   

are the cosines of the angles between the direction of the 

microstress vector and the coordinates and ,  1,2,3i i e  

are the unit vectors of the coordinate system. 

In an isotropic medium capable of undergoing only local 

interactions, Eq. (4) is simplified as [8]: 

0p A  ٍ                                                                    (5) 

The relation between macrostresses and microstresses is 

written as [15]: 

   
 

1
1

0 0 0

1 1

.
!

n M
M

ij i j p




   

 


  






 


  τ           (6) 

The superscript (M) in Eq. (6) refers to the generalized 

macrostresses which incorporate scale effects. 

This macrostress in Eq. (6) is the same as stresses in virial 

theorem with this difference that in virial stresses, there is 

no gradient of microstresses and it doesn’t explicitly 

contain scale parameter. It should be added that if the 

scale parameter in Eqs. (3) and (6) is set to zero, the CCM 

theory is obtained, as we expected. 

The three-dimensional equations of motion in DM in the 

Cartesian coordinate system are given by [8] 
  2

* *

2

M

ij j

i

i

u
f

x t




 
 

 
                                          (7) 

where  ,  1,2,3ix i   are the spatial Cartesian coordinates, 

 ,  1, 2,3ju j  are the displacement components, t is the 

time, and 
*  and 

*f  are the three dimensional body 

force and mass density, respectively. 

Now, the form of matrix  A  in Eq. (4) containing elastic 

macroconstants for a two-dimensional plane problem is 

obtained. For this purpose, Fig. 3 is considered wherein 

the 1 2x x  plane, three doublets are shown with equal 

angles between them. 

The solution for the scale-less approximation in DM can 

be calculated directly from the associated continuum 

mechanical problem for an isotropic material.  

 
Fig 3. Three doublets with equal angle      between them. 

For a two-dimensional problem in DM, the matrix  A  is 

a symmetric matrix of order three with the most general 

form [16] 

 

a b b

b a b

b b a

 
 


 
  

A                                                      (8) 

It can be shown in [28] that the coefficients of tensor 

 A are independent of direction thereby rendering the 

material isotropic. Furthermore, the coefficients a  and b  

in matrix  A  under plane stress conditions are 

determined to be [8] 

4 7 10 4 2
 , 

9 2 9 2
a b

   
 

   

 
 

 
                      (9) 

One could use 0b  as a quantitative guide to the 

applicability of a simpler constitutive relations such as Eq. 

(5). If 2   (or
1

 
3

  ) under plane stress conditions, 

from Eq. (9), it is concluded that 0b   and 

0

8 8

3 3

G
a A E


                                             (10) 
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Specific applications of DM have been developed for 

two-dimensional problems with regular particle packing 

microstructures. In particular, the two-dimensional 

hexagonal packing microstructure without internal atoms 

establishes three doublet axes at      angles as shown in 

Fig. 3.  

In the remainder of this section, the governing equations 

for tangential vibration of SWCNTs are derived. Now, 

consider a SWCNT of length L, mean radius R, Young’s 

modulus E, Poisson’s ratio   and mass density  as shown 

in Fig. 4. 

 
Fig 4. A nanotube in cylindrical coordinate. 

In the cylindrical coordinates, the equations of motion are 

given by the following equations [16] 
2

2

1 zzz z
z

NN u
f

z r t

  


 
  

  
                           (11) 

2

2

1z rN N N u
f

z r r t

   
 



  
   

  
              (12) 

2

2

1 rzr r
r

N NN u
f

z r r t

   


 
   

  
               (13) 

1 zzz
z zr

MM
l N

z r

 



  

 
                               (14) 

1 1z
r r

M M
M l N

z r r

 
  



 
   

 
                 (15) 

1
  rzr

r rr

M MM
l N

z r r

  


   
 

                        (16) 

which are the equations of motion of a thin shell in the 

cylindrical coordinates. 

Also, assuming that the shell-like body is thin, Eqs. (17) 

and (18) may be used to write the physical components 

ijN  and ijM  as: 

 
2

2

 ,  , 1,2,3

h

M

ij ij

h

N dz i j



                                  (17) 

 
2

2

 ,  , 1,2,3

h

M

ij ij

h

M z dz i j



                                (18) 

From Eq. (3), the microstrains with only three terms in the 

expansion can be written in cylindrical coordinates as: 

        0 0 0 0 0 2 0 0 0 01 1
. . . . . . . . .

2 6
                 

   
ٍ τ τ u τ τ τ u τ τ τ τ u                                              (19) 

where the gradient operator   in cylindrical coordinates 

is given by 

1
r z

r r z




  
  
  

e e e                                  (20) 

Similarly, from Eq. (6), the macro- to microstress 

relations, to within three terms in the expansion, in the 

cylindrical coordinates may be written as: 

      0 0 0 2 0 0

1

1 1
. . .

2 6

n
M

p p p         



 


          
σ τ τ τ τ τ                                                                (21) 

In this study, the following assumptions, known as Love’s 

first approximation, for cylindrical shells are made: 

1. All points that lie on a normal to the middle surface 

before deformation do the same after the 

deformation. Then the transverse shear stresses
 M

rz

and 
 M

z are assumed to be negligible. 

2.  Displacements are small compared to the shell 

thickness. 

3. The normal stresses in the thickness direction (
 M

rr ) 

are negligible (planar state of stress). 

It should be mentioned that in the tangential vibration, the 

nanotube vibrates in the tangential direction. Let the 

nanotube is approximated by a homogeneous cylinder. 

Thus, with assumptions of homogeneity for the entire tube 

in the tangential vibration, this implies that 

0,  0
rz

 
 

 
and 0, 0r zu u  . Considering such 
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assumptions and neglecting body forces, Eqs. (32)- (37) 

reduce to 
2

2

1z rN N N u
f

z r r t

   
 



  
   

  
            (22) 

As a result of the above assumptions, the gradient 

operator and the displacement vector are given by: 

 
1

, u
r

  



 


  e   u e                                 (24) 

It is further assumed that all doublets originating from a 

common node have the same magnitudes, i.e.,

,  1,2,3a a   . 

As mentioned above, a SWCNT is constructed from three 

doublets having equal lengths and angles between them, 

an example of which is a Zigzag SWCNT (    in Fig. 

3) shown in Fig. 5. 

 

 
Fig 5. A Zigzag nanotube. 

Considering Fig. 5, the director vectors in cylindrical 

coordinates can be expressed as: 

0 0 0

1 2 30 , 0 ,  0r r r                                             (25) 

0 0 0

1 2 30 , 30 ,  30cos cos                            (26) 

0 0 0

1 2 31 , 60 ,  60z z zcos cos                       (27) 

where   is in the tangential direction and   and   are in 

the radial and circumferential directions of the nanotube, 

respectively. 

For Armchair one, the director vectors in cylindrical 

coordinates reduced to 

                                                              (28) 

                                                 (29) 

                                                    (30) 

Substituting Eq. (24) into Eq. (19) and performing some 

algebraic manipulations detailed in Appendix A, it is 

found that 

   
 

 
(   
 ) 

   

  
 
 

 
  *

 

  
(   
 ) (

    

   
   )+  

 

 
  
 *

 

  
(   
 ) (

    

   
  

   

  
)+                                                           (31) 

Inserting Eq. (31) into Eq. (4), the following equation for 

the microstresses is obtained 

     ,
 

 
(   
 ) 

   

  
 
 

 
  *

 

  
(   
 ) (

    

   
   )+  

 

 
  
 *

 

  
(   
 ) (

    

   
  

   

  
)+-                                                    (32) 

Similarly, substituting    from Eq. (32) into Eq. (6) and 

taking note of Eq. (24), it is found that 

𝜎
  

( )
   ∑    

    
 ,

 

 
(   
 ) 

   

  
 

 

  
  
 *

 

  
(   
 ) (

    

   
  

   

  
)+- 

                                                                                (33) 

This equation is the relation between the macrostresses 

and the displacements. Setting   and   equal to   in Eq. 
(33), the following equation for the normal stress 𝜎

  

( )
 is 

found to be 

𝜎
  

( )
   ∑ ,

 

 
(   
 ) 

   

  
 

 

  
  
 *

 

  
(   
 ) (

    

   
  

   

  
)+- 

                                                                                            (34) 

If Eq. (34) are substituted into Eq. (22) and then 

integrated along the tube thickness, the following 

equation is obtained 

    
( )

  
 
 

 

    

   
 

 

  
  *

 

  
 (

    

   
  

    

   
)+              (35) 

Inserting Eq. (34) into Eq. (35), the following equation is 

obtained 

 

  (    )
{
    

   
 

 

  
(
 

 
)
 
* (

    

   
  

    

   
)+}   

    

   
         (36) 

In DM, basic equations of scaling microdynamics for 

local interactions with homogeneous medium can be 

written as follow [15] 
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  ̈  ∑           
    

             

    
                                                                                                    (37) 

where 

              ∑  
  

 
 
  

 
 
   

 
 
   

 
  

   

   
   

  

 
       (38) 

For tangential vibration mode of SWCNTs studied in this 

paper, Eq. (37) is reduced to Eqs. (36). It is noted that the 

nonscale macromodulus      , corresponding to    , is 

indeed independent of  , i.e., isotropic in the plane. On 

the contrary, the macromoduli            for         

are anisotropic. Then, it may be concluded that in the first 

approximation,    , Eq. (37) model the continuum-like 

behavior of solids, whereas in the other approximations, 

        Eq. (37) also reflect discrete-like features of 

the solid, in a manner that increases with   [16]. 

Therefore, it can be concluded that DM is capable of 

modeling solids in view of their dual and to some extent 

contradictory discrete continuous nature. The power of 

such dual-representation capability is evident in the 

discussion of isotropy. The basal plane of the doublets 

arrangement (Fig. 3) is isotropic only in the continuum 

(nonscale) approximation. Thus, isotropy is a scale-

related notion. In fact, no material may be argued to be 

isotropic at all dimensional scales, down to its most 

elementary component level [15]. 

3. Crack modeling 

A schematic diagram of a cracked nanobeam is depicted 

in Fig 6. The nanobeam with previous specifications has a 

crack at location C located at a distance    from the left 

end. The crack is modeled by a linear elastic spring 

representing the discontinuity in the tangential 

displacement. Crack severity or crack parameter shown 

with K defined by   
  

  
. In the present model, the effect 

of the crack is taken into account following the 

methodology proposed in [28]. To this end, the CNT is 

divided into two intact nanobeam pieces which are 

connected by an spring located at the cracked section to 

consider the additional strain energy due to the presence 

of the crack. It is obvious that in the crack location, the 

tangential displacement has discontinuity. However the 

tangential force is presumed to be continuous. Natural 

frequencies for cracked nanobeams for different crack 

positions, crack severities, mode numbers, and 

dimensions of nanobeam on the free tangential vibration 

of nanotubes are studied. In this work, the nanobeam with 

a single and double edge crack for a tangential vibration is 

explored based on the DM theory. 

 

 
Fig 6. A nanobeam with crack  

It should be pointed out that presence of crack causes a 

complex geometrical property which is difficult to study. 

Analyzing the results in the presence of the crack, the 

equation of motion for two intact nanobeams given with 

Eq. (36) can be expressed as [3] 
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The solution of Eqs. (39) and (40) can be expressed as 

         (
  

 
 )       (

  

 
 )                           (41) 

         (
  

 
 )       (

  

 
 )                          (42) 

wherein   
 

   (    )
 indicate the natural frequency 

without considering crack, mode number and scale 

parameter.    is the frequency incorporating scale effect, 

mode number and crack severity. 

Eqs (39) and (40) are the free tangential vibration solution 

of the segment one and two, respectively. Eqs. (41) and 

(42) have four unknown coefficients must be determined. 

Obtaining the natural frequencies in tangential mode, two 

more conditions than boundary conditions are needed. 

The conditions are compatibility conditions at the crack 

section given by: 

Jump in tangential deflection, 

                                                                  (43) 

Continuity of the tangential force, 

                                                                           (44) 

In Eq. (43),   
 

 
 is the flexibility of the spring and 

obtained using fracture mechanics principles. 

   
  

    
,
   

  
 

 

  
  * 

 

  
(
    

   
  

   

  
)+-             (45) 

Applying the boundary and compatibility conditions, Eqs. 

(43) and (44) yield a system of four homogeneous 

algebraic equations with         , and    as unknowns. 

For two ends clamped boundary conditions, Eqs. (43) and 

(44) can be written in matrix form as 
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wherein   
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For a nontrivial solution of          and   , the 

determinant of the coefficients of the matrix must be set 

to zero for each boundary type. The process gives the 

explicit form of characteristic equation of the cracked 

nanobeam with fixed-fixed yields 

  
|
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 )      (

  

 
 )

|
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               (47) 

One may introduce the frequency ratio as the frequency of 

nanobeam without considering crack to the frequency of 

the cracked nanobeam to obtain dimension less frequency 

as 

    
                               

                            
                           (48) 

The roots of the characteristic equation (47) are the 

tangential frequencies for the cracked nanobeam 

incorporating the scale effects, explicitly. A MATLAB 

program is written to solve the characteristic equations. It 

should be pointed out here that, by setting     in the 

above equations, it can be obtained the natural frequency, 

i.e. eigenvalue equations, of the corresponding uncracked 

nanobeams and     the corresponding scale less 

nanobeam. Indeed, the computation of these vibration 

frequencies may also be used to detect the location and 

severity of cracks in a nanostructure.  

4. Local flexibility of cracked nanostructure 

Assume that a slender prismatic nanobeam with a circular 

cross section, having a non-propagating single or double 

edge crack (SEC or DEC) (or flaw like crack) are shown 

in Fig. 7. 

 
Fig 7. DEC in tangential loading of SWCNT 

The cracked section is presented by a massless spring 

with flexibility  , where 

                                                                           (49) 

And 

  
 

 
 
  

 
                                                                   (50) 

This quantity is a function of the crack severity and the 

stiffness (  ) of the cross section of the nanobeam, and 

can be written as suggested in [24] as below: 

  
 

  
 ( )                                                                  (51) 

wherein  ( ) is calculated by the following equations 

For single edge crack (SEC) 
 ( )                                    
                                                (52) 

For double edge crack (DEC) 
 ( )                                    
                                                 (53) 

where   is the diameter of the circular cross section and 

 ( ) is called the local flexibility function. 

In this study an attempt is also made to calculate the stress 

intensity factor of the nanobeam explicitly incorporate 

scale effect using DM and principals of fracture 

mechanics. The predictive equation  ( ) for slender 

prismatic nanobeam with a SEC and DEC is proposed as 

[34] 

   𝜎√   ( )   
 

√  
                                           (54) 
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wherein  ( ) is a function of crack severity and crack 

type defined by the following equations for cracked 

nanobeam with circular cross section. 

For single edge crack 

 ( )  {
√                  

                      
                           (55) 

5. Results and discussion 

In order to validate the presented method, as well as to 

demonstrate their implementation to dynamical analysis, a 

cracked nanotube with free boundary condition is 

considered. The crack parameter K is taken as 0.000001 

for noncracked nanotube. Table 1 shows the tangential 

frequencies of 15 different Zigzag and Armchair 

SWCNTs based on the available experimental and 

analytical results. The first column shows the n and m 

chiral indices of the nanotube; the second column shows 

the SWCNT diameter (d, in nm) and the next three 

columns are the experimental, analytical and the present 

method results, respectively. From this Table, it can be 

seen that the doublet mechanical predictions of the 

tangential frequencies of different SWCNTs are in good 

agreement with the available results.  

Tube (n, m) Diameter (nm) Experiment [25] Shell theory [19] DM (present work) 

(6,0) 0.4698 475.7 480.9 469.8 

(7,0) 0.5481 407.8 412.2 405.3 

(8,0) 0.6264 356.8 360.7 356.0 

(9,0) 0.7047 317.2 320.6 317.4 

(10,0) 0.7830 285.4 288.6 286.2 

(11,0) 0.8613 259.5 262.3 260.5 

(12,0) 0.9397 237.8 240.5 239.1 

(13,0) 1.0180 219.5 222.0 220.9 

(14,0) 1.0963 203.9 206.1 205.2 

(15,0) 1.1746 190.3 192.4 191.7 

(16,0) 1.2529 178.4 180.4 179.8 

(17,0) 1.3312 167.9 169.7 169.3 

(18,0) 1.4095 158.6 160.3 159.9 

(19,0) 1.4878 150.2 151.9 151.5 

(20,0) 1.5661 142.7 144.3 144.0 

Experimentally, the tangential frequency is related to   

via   
 

   
 where,            

  

 
 is the velocity of 

light in the vacuum. This relation is used in Table 1 below 

to report the frequencies in     . Throughout this paper, 

the material properties of SWCNT are taken to be: 

Young’s modulus        , mass density        
  

  
 

and Poisson’s ratio       [19]. In the DM model, the 

scale parameter used is the carbon-carbon bond length 

            [8]. 

In order to investigate the effect of different parameters 

like crack parameter, boundary condition, crack position 

and scale parameter to frequency in tangential vibration of 

cracked SWCNTs, several graphical form are depicted in 

Figs. 8- 11. 

Effect of Crack severity and tube chirality 

Fig. 8 shows that effect of crack opening size on the 

frequency ratio of the cracked nanobeam for Zigzag and 

Armchair nanotubes. The boundary condition is fixed-free 

and the crack is located as 
  

 
    . From this figure, it 

can be seen that as the crack parameter increases, the 

frequency decreases. Moreover, this reduction is 

significant as the crack severity being larger. As the crack 

severity is more increases, the two graphs approaches to 

single value. That’s why the smaller crack severity is used 

for further modeling. It can also be concluded that in 

identical crack severity, the frequency of Zigzag chiral is 

higher than the Armchair one. This increase is more 

apparent in lower crack severities. 

 
Fig 8. Natural frequency versus crack severity 
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Effect of boundary condition and crack location 

Effect of crack location for specified scale parameter has 

been represented in Fig. 9 for various crack severity for 

fixed-free boundary condition. The crack parameter is 

assumed to be        and the first mode of vibration is 

considered. From this figure, it can be observed that 

frequency ratio varies for a certain crack parameter 

depending on the crack location. It can be seen that 

frequency ratio increases as the crack moves away from 

the fixed end. In other words, reduction in frequency is 

less for crack located near free end. It is also seen that as 

the crack severity increases, the frequency ratio decreases. 

This reduction is more apparent as the crack location 

moves to neighborhood of free end support. 

This important note should be noticed carefully. As crack 

moves to fixed boundaries, the reduction is more 

apparent. To explain this effect sensibly, we can consider 

this example. Suppose a bar with free-free boundary 

conditions with a crack in the middle of the bar. As the 

crack moves from the middle to the end of the free 

boundaries, as it is expected, the effect of the crack is 

lessen. When crack reaches exactly to the end of the bar, 

it can be supposed that there is no crack in the bar. 

Therefore, we can conclude that as crack move to the free 

end boundaries, the effect of crack decreases. 

Now, we can suppose a bar with fixed-fixed boundaries 

with a crack in the middle. In this case, as the crack 

moves toward the fixed end, the effect of the crack is 

more apparent. Especially when the crack reaches around 

the fixed ends of the bar, the frequency severely is 

affected by the crack. In this case the tube may even be 

separated from the support. 

 
Fig 9. Frequency ratio versus normalized crack position 

Effect of tube length and boundary condition 

Next, the effects of the tube length on the tangential 

frequency are noticed. For this purpose, in Fig. 10, the 

frequency ratio of nanobeams with respect to tube length 

for different boundary condition is depicted.  

 
Fig 10. Frequency ratio versus tube length (A) for different mode number 
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From this figure, it can be concluded that fixed boundary 

condition is higher than free one. This difference is more 

apparent in lower tube length. The frequency is decreases 

as the tube length increases. As the tube length increases 

more, the difference between boundary condition 

decreases. In other words, for nanobeams with enough 

large length, the effect of the boundary condition on 

frequency is negligible, and only the crack can have an 

apparent decreasing effect on lower length. 

Effect of crack type and scale parameter 

To demonstrate the influence of the scale parameter on 

the critical stress intensity factor (also known as fracture 

toughness) of cracked nanobeams, variations of the 

Fracture toughness versus the scale parameter is plotted 

for different crack opening size for fixed-free boundary 

condition in Fig. 11. From this figure, it can be observed 

that fracture toughness decreases as the scale parameter 

increases. This reduction is more apparent in higher scale 

parameters. From this figure, the following important 

notes can be achieved. Firstly, in addition to the crack 

severity, the scale parameter has a decreasing effect on 

the tangential frequency. The decreasing effect of the 

crack is the result of the rigidity loss of the structure, and 

the more flexible the structure is, the smaller its frequency 

is. The decreasing effect of the scale parameter can be 

explained in this way that the scale has a negative 

modulus, and its negative amount is increased by the 

surface residual stress resulting in the decrease in the 

rigidity of nanobeam. Moreover, the scale parameter 

decreases the potential energy of the system, and as it is 

known, as the potential energy of the system decreases, its 

natural frequency decreases too. Then, the scale effect is 

taken account in the analysis that makes the nanobeam 

stiffer. Therefore, a larger nonlocal parameter leads to a 

decrease of the crack effect on the frequency. 

 
Fig 11. Fracture toughness (   √  ) versus scale parameter for different crack opening size 

6. Conclusions 

In this study, the free tangential vibration of cracked 

nanobeams in the presence of the scale effects is 

investigated using DM elasticity theory with different 

boundary conditions. The governing equation of motion is 

obtained with dividing the nanotube into two segment in 

crack location connected with a linear spring with 

flexibility determined from fracture mechanics principles. 

The results reveal that both the crack severity and scale 

parameter have a decreasing effect on the natural 

frequency.  

From the present study, the following notes are especially 

obtained: 

1. By using the present method, the eigenvalue 

equation for a cracked nanorod with any kinds of 

boundary conditions can be conveniently 

determined from a fourth order determinant.  

2. The vibration frequency of nanorods is shown to 

be dependent on the crack severity, the end 

conditions and scale parameter. 

3. Influence of a crack on the dynamic behavior of 

the nanorod is sensitive to its location and length. 

Natural frequency reduces due to the presence of 

cracks. The amount of reduction depends on 

location and size of cracks. As crack moves to 

the fixed support, more reduction in frequency is 

observed. On the other hands, the effect of crack 

is more pronounced when the cracks are near to 

the fixed end than at free end. 

4. For a certain crack location, the natural 

frequencies of a cracked nanotube are inversely 

proportional to the crack severity. While for a 

certain crack severity, change in natural 

frequency is less as the crack position moves 

away from fixed end. 

5. By increasing the length of the nanotube, the 

effect of the crack decreases. For the nanotubes 

with enough large length, the effect of the crack 

on the frequency of nanotube can be neglected.  

6. In the same conditions, Armchair nanotubes has 

lower frequency that the Zigzag one. This 
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difference is more pronounced in lower cracked 

parameter. 

7. For a certain crack parameter, change in natural 

frequency is less as the crack position moves 

away from fixed end. 

8. The scale parameter has decreasing effect on 

fracture toughness. This reduction is more 

apparent in higher scale parameters. 
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Appendix A: strain-displacement relation in tangential 

vibration 

Considering scale effects, the relation between the 

microstrains and displacements up to three terms in the 

expansion can be written as: 

        0 0 0 0 0 2 0 0 0 01 1
. . . . . . . . .

2 6
                       

   
ٍ τ τ u τ τ τ u τ τ τ τ u                                          (A1) 

The expressions for  ,   and   
  can be written in the cylindrical coordinates as: 
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In the problem considered here, Eqs. (A3) are reduced to 
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From Eq. (A4),   
     and   

  (  
    ) can be written as: 
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Similarly, from Eq. (A4), it is concluded that 
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Finally, if Eqs. (A6), (A9) and (A12) are substituted into Eq. (A1), it is found that 
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Substituting Eq. (A13) into Eq. (5) and the result in Eq. (6), yields 
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If we set       in Eq. (A14), we conclude that 
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If Eq. (A15) is substitute in Eq. (17) and Eqs. (25)- (30) is considered, we have 

    
( )

  
 

  

    
∑ ,

 

 

    

   
 

 

  
  
 *

 

  
 (

    

   
  

    

   
)+- 

                                                                                                      (A16) 

wherein    
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