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Abstract 

The increasing sophistication of phishing attacks has made their detection more challenging, as attackers use deceptive tactics 

to trick users into revealing sensitive information through fraudulent websites. Traditional detection methods struggle to keep 

up with evolving phishing techniques, necessitating more adaptive approaches. This study introduces a multi-agent deep 

learning framework that utilizes three specialized models to analyze different aspects of a webpage, including the URL, page 

content, and Document Object Model structure. The outputs of these models are combined using a highest confidence score 

mechanism to enhance accuracy. Experimental results demonstrate that this method outperforms existing techniques, achieving 

99.21% accuracy with a false positive rate of only 0.22%. It effectively detects both known and new phishing sites, making it 

a robust solution against emerging threats. Furthermore, this approach highlights the potential of deep reinforcement learning 

in cybersecurity, paving the way for more automated and resilient security systems to combat phishing attacks. 
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1. Introduction 

Phishing attacks have become a major 

cybersecurity threat, targeting millions of users 

annually. These attacks deceive individuals into 

revealing sensitive information through counterfeit 

websites[1],[2],[3]. Reports from the Anti-Phishing 

Working Group (APWG) indicate a significant rise 

in phishing activities, with a record 963,994 attacks 

observed in the third quarter of 2024 . Notably, 

during the COVID-19 pandemic, healthcare 

facilities with weaker security were heavily targeted. 

Despite 75% of phishing websites using SSL 

protection, it did not ensure their 

legitimacy[4],[5],[6].Machine learning techniques 

like Decision Trees, Random Forests, and Support 

Vector Machines have been used for phishing 

detection but struggle with unseen websites. Deep 

learning methods, such as CNNs and RNNs, offer 

improved performance but require extensive data 

and computational resources [7]. Existing 

approaches in phishing detection rely on URL-

based, heuristic-based [8], visual similarity-based 

[9], and machine learning methods [10],[11]. 

However, many focus on a single input feature, 

limiting their ability to capture the full range of 

features on phishing webpages. 

This study introduces a novel multi-agent deep 

learning approach for phishing detection, utilizing 

three distinct Deep Q-Networks (DQNs) to analyse 

features from the URL, HTML content, and DOM 

structure. By integrating data from multiple sources 

and applying an attention mechanism, the model 

selectively combines outputs based on their 

performance, significantly improving accuracy, 

precision, recall, and F1 score. This approach 

outperforms state-of-the-art methods and 

demonstrates robust detection capabilities even for 

previously unseen phishing 

websites[12],[13],[14].The proposed method 

leverages the adaptability of deep reinforcement 

learning to continuously improve its performance. 

The results show promise in enhancing phishing 

detection and contribute to better cybersecurity for 

individuals, businesses, and governments. This 

multi-faceted approach addresses the limitations of 

existing methods and offers a comprehensive 

solution for combating phishing attacks. This 

paper's main contributions are as follows: 
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The use of representation learning techniques 

to automatically learn webpage representations 

across all dimensions, based on the webpage's URL, 

content, and DOM structure, all treated as text. 

The proposal of a multi-agent deep learning 

model that combines DDQN. 

Conducting four experiments on our model 

from various perspectives, demonstrating strong 

classification performance. 

The paper's organization is as follows: Related 

works on phishing webpage detection are presented 

in Section II. The framework and the detailed 

process of our model are outlined in Section III. In 

Section IV, the performance of our model is 

evaluated. Finally, the paper concludes with a 

discussion of future work. 

2. Related work 

Phishing website detection remains a 

significant challenge in cybersecurity. Various 

machine learning techniques, including logistic 

regression, decision trees, support vector machines, 

and neural networks, have been applied to this 

problem, with deep learning showing promising 

results in recent years. Studies in the literature [15] 

have explored diverse input features for detecting 

phishing websites, broadly categorized into URL-

based, content-based, and DOM-based features. 

URL-based features, such as URL length, the 

number of dots, and specific keywords, are 

commonly used to distinguish legitimate websites 

from phishing ones. Content-based features, 

including keyword analysis, the presence of 

multimedia elements, and the text-to-HTML ratio, 

provide additional insights. Similarly, DOM-based 

features, like hidden fields, form tags, and 

suspicious script tags, have proven useful in 

detecting malicious webpages. Phishing detection 

methods can be broadly categorized into four types. 

Blacklist-based approaches compare URLs and 

webpage details against blacklists, achieving low 

false positive rates but missing unlisted websites, 

such as those used by Google Chrome [12]. Tools 

like the PhishBench framework [16] offer a 

benchmarking environment to evaluate advanced 

detection techniques. Heuristic-based methods 

extract rules from common phishing features; tools 

like PhishDetector [8] offer real-time detection but 

are prone to high false positive rates due to fuzzy 

matching. These methods depend on features such 

as URL statistics, Whois and DNS information, and 

webpage content ,[15], ,[17], [18], with advanced 

models extracting up to 2,130 features, as in Google 

Chrome's case. 

Recent advancements[10], which integrates 

lexical analysis and URL HTML Encoding for real-

time classification with unbiased voting 

mechanisms for improved accuracy. Despite these 

innovations, attackers continuously adapt by 

avoiding detectable features or algorithms, 

necessitating ongoing refinement to counter 

increasingly sophisticated phishing tactics. 

Recently, deep learning has gained popularity 

as an alternative to traditional machine learning 

methods and has been successfully applied in 

phishing webpage detection [13],[14]. These studies 

are classified into three categories: 1) artificial 

feature engineering, where features are manually 

extracted for input to deep neural networks (DNNs), 

2) automatic feature learning, where deep neural 

networks learn features directly from the data, and 

3) hybrid methods that use both artificial and 

automatic features. In artificial feature engineering, 

DNNs are fed manually extracted features such as 

URL properties, domain details, webpage content, 

and encoding [13], [19]. Although these methods 

can detect phishing, they are still susceptible to 

human bias. Automatic feature learning allows 

DNNs to extract features on their own, enhancing 

model accuracy without human intervention. Recent 

studies also use NLP techniques to analyse webpage 

or email content for phishing detection [12, 20]. 

URL-based methods, which treat URLs as text and 

utilize models like LSTM, Denoising Auto encoder 

(DAE), and CNN, have been effective in detecting 

phishing websites [21], [22]. Page content-based 

methods, on the other hand, process webpage 

content as text and extract semantic features, often 

using models like Word2Vec [12],[23], which help 

avoid human biases and enhance generalization. 

The study in [24] tackled class imbalance in 

phishing detection by creating a feature space using 

deep learning, while another study in [7] introduced 

a real-time browser plugin for phishing detection. 

Methods like those in [25] address dimensionality 

and sparsity in phishing detection, though they 

typically use a single feature input, such as URL or 

page content, limiting their comprehensiveness. 

Hybrid methods combine both artificial and 

automatic features. For instance, a hybrid CNN-

LSTM model in [14] uses both extracted URL 

features and traditional page content features for 

classification. Other techniques, such as those in 

[26], use CNN with self-attention and GANs to 

balance datasets and improve detection accuracy, 

while [27] proposes a multi-agent system for 

network anomaly detection that integrates deep 

learning methods. PhishDet [28] combines Long-

Term Recurrent Convolutional Networks and Graph 

Convolutional Networks, utilizing both URL and 

HTML features for phishing detection. A popular 

NLP-based approach using BERT [17] has also been 

applied to phishing URL detection, and methods like 

Web2Vec [12, 20] use hybrid CNN and BiLSTM 

models with attention mechanisms to extract both 

local and global features. In contrast, our model 

employs a multi-agent deep learning approach to 
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learn webpage representations from various 

perspectives. Our proposed method uses three 

DDQNs trained on different sets of features, 

including URL, content, and DOM, with additional 

features. These DDQNs' outputs are aggregated 

through voting to classify webpages. The results 

show our model outperforms existing phishing 

detection techniques in accuracy, precision, recall, 

and F1 score, offering significant improvements in 

phishing detection for internet security. 

3. Proposed method  

This section outlines the proposed method for 

phishing detection. Firstly, the formal definition of 

phishing detection is provided, followed by a 

detailed description of the proposed method 

framework and its key technologies. 

A) Problem statement  

This article presents the problem of detecting 

phishing webpages as a binary classification task, 

where the two possible classes are "phishing" or 

"benign". The input data comprises a collection of 

webpages N, with N = {WP1, ..., WPi, ..., WPn}, 

where WPi refers to the i-th webpage with i ranging 

from 1 to n. Each webpage consists of three 

components, WPi = {Ui, Hi, Di}, where Ui denotes 

the webpage's URL, Hi is the page content, and Di 

represents the DOM structure. The training dataset 

is represented by T webpages, each with 

corresponding data and class labels in the format 

(WP1, X1, Y1), (WP2, X2, Y2), ..., (WPT, XT, YT), 

where:For i = 1, 2, ..., T, WP denotes a webpage in 

the given training set T. 

The features of webpage WPi are denoted by 

Xi, which are extracted from its URL, content, and 

DOM structure and are represented by a feature 

matrix.  The label of the underlying webpage is 

denoted by Yi ∈ {0, 1}, where Yi = 0 represents a 

benign webpage and Yi = 1 represents a phishing 

webpage. The goal of proposed method is to learn a 

discriminant model f: X → Y using the training 

dataset, which can then be used to classify new 

webpages as phishing or benign 

B)  The overall framework  

The proposed model detects phishing 

webpages through a multi-step process. First, it 

preprocesses webpages to extract data like URLs, 

content, and DOM structure, forming a dataset. 

Using NLP-based word embedding, the model 

learns data representations, which are then 

processed by a DDQN network to extract features. 

Finally, the combined features are classified as 

phishing or benign. proposed method employs 

multi-agent deep reinforcement learning for 

comprehensive feature extraction, automating 

classification through data preprocessing and feature 

learning. . Key technologies and processes are 

depicted in Figure 1. 

 
Fig. 1. Model Framwork 

C)  Web page reprocessing  

Webpage reprocessing involves parsing 

webpage data and constructing various corpora to 

enhance feature representation. While prior studies 

primarily relied on URLs for phishing detection 

[12],[14], URLs alone lack the structural and 

semantic details of phishing webpages. The 

proposed method overcomes this limitation by 

learning features from the URL, page content, and 

DOM structure. URL corpora are processed at 

character and word levels: character-level analysis 

normalizes URLs to a uniform length, maps 

characters to a 96-character vocabulary, and encodes 

them into OneHot vectors; word-level analysis 

segments URLs into sequences of words based on 

structural elements such as protocols and paths, 

emphasizing sequential relationships. For webpage 

content, both word-level and sentence-level corpora 

are created, separating sentences by periods and 

removing multimedia, HTML tags, and non-textual 

elements for simplicity. The DOM structure is 

represented as a hierarchical sequence of HTML 

tags, parsed from the DOM tree using a breadth-first 

approach. Tags are treated as words, forming a 

word-level corpus that encapsulates the structural 

essence of the webpage. 
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D)   Webpage representation  

The previous section discussed the use of One-

Hot encoding for constructing corpora, which is 

limited due to its lack of semantic relationships and 

sparse encoding. To overcome this, techniques like 

word embeddings, which map words to low-

dimensional vectors capturing semantic 

relationships, were introduced [12]. The proposed 

method uses a simpler approach by embedding the 

One-Hot matrix as word vectors through a single-

layer neural network, avoiding the complexity of 

pre-trained models like Word2Vec. This embedding 

layer, along with feature extraction and 

classification components, is optimized using 

backpropagation to enhance semantic 

representation. The embedding transforms the 

sparse One-Hot matrix into a dense, lower-

dimensional representation matrix, reducing 

computational cost and memory usage. 

Once the representation matrix S is acquired, it 

can be utilized as an input for the succeeding feature 

extraction and classification sections. These sections 

can be optimized together with the matrix using 

backpropagation to enhance the model's semantic 

representation capability. The same approach can be 

applied to the word-level and DOM structure-level 

corpora in the proposed method to acquire learned 

representations. The method used to learn the 

character representation for URLs in The proposed 

model can be illustrated using an example. Suppose 

we have a URL character-level corpus U, and we 

want to learn the representation for the i-th URL, 

denoted as "Ui"."Ui" is encoded using One-Hot 

encoding. Let's say the j-th character is represented 

by vector gj after One-Hot encoding, where gj = 

(gj1, gj2, · · ·, gjm) T  . The matrix G has dimensions 

of m * n, where each column represents a character 

gi of the URL "Ui".To obtain the URL character 

embedding, each URL " Ui " is first represented as a 

One-Hot matrix G with dimensions Gm×n = (g1, g2, 

· · ·, gn). The One-Hot matrix G is then mapped to 

its representation matrix S using a single-layer 

neural network embedding. The weight matrix of the 

embedding layer is denoted as W, and it has 

dimensions Rp×m, where p is the embedding 

dimension and is set to 128 in this case. The 

calculation process for obtaining the URL character 

embedding is as eq.(1). 

𝑆𝐶 = 𝑊𝐺 = [

𝑤11 ⋯ 𝑤1𝑚

⋮ ⋱ ⋮
𝑤𝑝1 ⋯ 𝑤𝑝𝑚

] ∗ [

𝑔11 ⋯ 𝑔1𝑛

⋮ ⋱ ⋮
𝑔𝑚1 ⋯ 𝑔𝑔𝑚

] (1) 

Once the representation learning process is 

completed for webpage WPi, its representation is 

referred to as Xi, which is a concatenation of five 

vectors with fixed-length as follows (2): 

𝑥𝑖(𝑈𝑅𝐿) = (𝑈𝑖
𝑐 , 𝑈𝑖

𝑤)  (2) 

𝑥𝑖(𝐶𝑂𝑁𝑇𝐸𝑁𝑇)= (𝐶𝑖
𝑤 , 𝐶𝑖

𝑠)  

 𝑥𝑖(𝐷𝑂𝑀)= ( 𝐷𝑖) 

𝑥𝑖(𝑈𝑅𝐿)= (𝑈𝑖
𝑐 , 𝑈𝑖

𝑤 , 𝑈𝑖
𝑓

) 

𝑥𝑖(𝐷𝑂𝑀)=(𝐶𝑖
𝑤 , 𝐶𝑖

𝑠 , 𝐶𝑖
𝑓

)  

 𝑥𝑖(𝐷𝑂𝑀)=(𝐷𝑖  , 𝐷𝑖
𝑓

) 

(3) 

The representation  𝐔𝐑𝐋 vectors , (𝑼𝒊
𝒄 and 𝑼𝒊

𝒘 

) are the representation vector learned from Ui. The 

CONTENT vectors (𝑪𝒊
𝒘 , 𝑪𝒊

𝒔) are vectors learned 

from the page content, and DOM vector( 𝑫𝒊) is 

learned from the DOM structure. To obtain the 

character-level representation𝑼𝒊
𝒄, statistical features 

of each element are extracted, including the mean, 

variance, skewness, and kurtosis. On the other hand, 

a bag-of-words approach is used to represent the 

webpage content to obtain the word-level 

representation vector 𝑼𝒊
𝒘, where the frequency of 

each word in the webpage is counted and normalized 

by the total number of words in the webpage. Then, 

statistical features of the word frequency 

distribution are extracted, including the mean, 

variance, skewness, and kurtosis. For the character-

level representation vector 𝑪𝒊
𝒘 and the sentence-

level representation vector 𝑪𝒊
𝒔, statistical features are 

extracted from the page content. On the other hand, 

for the DOM structure vector 𝑫𝒊, features are 

directly extracted from the DOM tree.  

The five vectors, which have the same 

dimensions and contain information on the 

character-level, word-level, and sentence-level, 

enable mathematical calculations based on these 

features. The next step involves feature extraction, 

where important information is selected and 

extracted from the input data to create a new set of 

features that can more effectively represent the input 

data. In The proposed model, feature extraction is 

performed on the five fixed-length vectors obtained 

after representation learning. After feature 

extraction  in this part, The results of the vectors 

obtained from this part are combined with 20 

additional features below, including 20 features 

related to URL, 20 features related to HTML 

content, and 20 features related to DOM, for better 

learning of the learning network. 

E)  Additional feature extraction  

The proposed approach extracts feature 

representations from the URL, content, and DOM, 

each incorporating an additional 20-dimensional 

vector space to enhance the distinction between 

benign and phishing webpages. URL-based features 

include 20 attributes, such as URL length and the 

presence of IP addresses, aiding in phishing 

detection [15] ,[29]. Similarly, 20 content-based 

features analyze multimedia elements, including 

images and JavaScript, ensuring high-accuracy 
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detection despite potential vulnerabilities. 

Additionally, 20 DOM tree features, derived from 

[15], provide structural insights for effective 

detection. Tables 1–3 outline these features. 

F) Normalization 

The normalization process converts all feature 

vectors and class labels for each URL into binary 

values (0 and 1). After feature extraction and 

normalization, the input matrix s(xi) is defined as 

shown in equation (3). The variables 

𝑼𝒊
𝒇

 ,   𝑪𝒊
𝒇

 𝒂𝒏𝒅  𝑫𝒊
𝒇
 represent additinal features that 

are obtained through learning from the URL, 

content, and DOM structure.  

Table.1. 
URL Based Features 

URL  
Feature 

Explanation 
 for 0 

Explanation 
 for 1 

IP URL doesn't use IP address URL uses IP address, potentially phishing 

U_Length Short URL length Long URL length, potential phishing 

at_U No "@" character in URL "@" character present in URL, potential 

phishing 

Dots_U Few dots (".") in URL Many dots in URL, potential phishing 

TLD_P No popular TLD in path Popular TLDs in path, potential phishing 

https URL doesn't use https 

protocol 

URL uses https protocol, potential 

phishing 

hyphen_U No "-" character in URL "-" character present in URL, potential 

phishing 

spe_chars_U Few special characters in 

URL 

Many special characters in URL, potential 

phishing 

Sens_words No sensitive words in URL Sensitive words in URL, potential 

phishing 

Length_S Subdomain length is normal Short subdomain length, potential 

phishing 

Brand_Name No brand name in URL Brand name in URL, potential phishing 

Det_Keywords No specified keywords in 

URL 

Specified keywords in URL, potential 

phishing 

Slash_U Few double slashes // in 

URL 

Many double slashes in URL, potential 

phishing 

Prefix URL doesn't contain 

protocol 

URL contains protocol, potential phishing 

Port URL uses reliable ports URL uses non-reliable ports, potential 

phishing 

Punctuation Few punctuation characters 

in URL 

Many punctuation characters in URL, 

potential phishing 

Subdomain_U Only one subdomain in 

URL 

Multiple subdomains in URL, potential 

phishing 

Length_DN Domain name length is 

normal 

Long domain name length, potential 

phishing 

Hex_U No hexadecimal characters 

in URL 

Hexadecimal characters in URL, potential 

phishing 

Paths URL has no paths URL has paths, potential phishing 

Table.2. 
Content HTML Based Features 

Content 

Feature 

Explanation 
for 0 

Explanation 
for 1 

Anchor Links match the domain name 
Links ratio different from the 

domain name, potentially 

phishing 

U_request 
Few requests from different 

domains 

High number of requests from 

different domains, potentially 

phishing 

Popup 
No sensitive data requested via 

popups 
Sensitive data requested via 

popups, potential phishing 

Links_in_tags 
No blacklisted addresses in 

<link>,<meta>,<script> tags 
Blacklisted addresses in tags, 

potential phishing 

Abn_req_URL 
Request rate in object tag 

matches own domain 
Abnormal request rate resembling 

another site, potential phishing 

Cookies Cookies used 
No cookies used, potentially 

phishing 

Iframe 
Iframe tags don't link to external 

sites 
Iframe used to deceive visitors, 

potential phishing 

Submit Submit button used sparingly 
Frequent use of submit button, 

potential phishing 

Form Limited number of forms 
Multiple forms used, potential 

phishing 

Favicon 
Favicon domain matches website 

URL 
Favicon loaded from different 

domain, potential phishing 

Mailto Safe form management 
Sending user info via mailto, 

potential phishing 

IMG_Hyperlink Pictures link to same domain 
Pictures link to different domains, 

potential phishing 

Susp_links Text link domain matches text 
Text link domain differs, 

potential phishing 

Right_click Right-click common on websites 
Rare right-click on website, 

potential phishing 

Security Secure forms used 
Insecure forms used, potential 

phishing 

Action URL action relative or absolute 
Relative URL action, potential 

phishing 

Dest_port Destination port not anomalous 
Anomalous destination port, 

potential phishing 

Links Few URLs linking to the page 
Many URLs linking to the page, 

potential phishing 

Message 
Social media posts not 

anomalous 
Anomalous repetitive message, 

potential anomaly 

Diff_message 
No repeated messages from 

different users 
Repeated messages from different 

users, potential anomaly 

Table.3. 
DOM Tree Based Features 

DOM Feature Explanation 
 for 0 

Explanation 
 for 1 

Number of DOM 

Nodes 

Fewer nodes, 

simpler structure 

Many nodes, complex structure 

Depth of the 

DOM Tree 

Shallower tree Deeper tree 

Tag Count Normal tag 

distribution 

Unusually high counts of specific 

tags 

CSS Class Count Few CSS classes 

used 

Many CSS classes used, 

indicating complexity 

DOM Element 

Types 

Absence of certain 

DOM elements 

Presence of certain DOM 

elements 

Text Length Low total text length High total text length, 

overwhelming content 

Number of Child 

Elements 

Normal number of 

child elements 

Excessive number of child 

elements, potentially obfuscating 

Hidden Form 

Elements 

No hidden form 

elements 

Hidden form elements, 

potentially capturing data secretly 

Pop-up Windows No pop-up windows Presence of pop-up windows, 

potentially deceptive 

Iframe Elements No iframe elements Presence of iframe elements, 

potentially loading malicious 

content 

External 

Resources 

Minimal external 

content 

Multiple external resources, 

indicating potential data 

collection 

Script Tags No suspicious 

scripts 

Presence of suspicious or 

obfuscated scripts 

Meta Refresh 

Tags 

No meta refresh tags Presence of meta refresh tags, 

potentially redirecting 

Interactive 

Elements 

Minimal interactive 

elements 

Presence of interactive elements, 

potentially deceptive 

Mismatched 

Domains 

URL matches actual 

domain 

URL doesn't match actual 

domain, potentially deceptive 

Hover URLs Legitimate hover 

URLs 

Fake or misleading hover URLs, 

potentially deceptive 

Hidden Content No hidden content Presence of hidden content, 

potentially deceptive 

Download Links Normal download 

links 

Suspicious download links, 

potentially leading to malware 

Mixed Content Consistent secure 

content 

Mixture of secure and non-secure 

content, potentially exploited 

URL Parameters Normal URL 

parameter count 

Unusual or excessive URL 

parameters, potentially malicious 

G) Background of Multi-Agent Deep 

Reinforcement Learning  

This section provides a foundational overview 

of key concepts and methodologies relevant to our 

approach. We first discuss Multi-Agent Deep 

Reinforcement Learning (MADRL) and its role in 

collaborative environments. Then, we introduce the 

Double Deep Q-Network (DDQN) algorithm, which 

mitigates overestimation bias and instability in 

traditional Q-learning. These concepts lay the 

groundwork for understanding how our model 

integrates deep reinforcement learning and multi-

agent architectures to enhance phishing detection 

accuracy and robustness [30], [31]. 

Multi-Agent Deep Reinforcement Learning 

(MADRL) enables multiple agents to interact within 

a shared environment to achieve a common 

objective. These agents either act independently to 

maximize individual rewards (competitive model) 

or collaborate to optimize a shared reward 

(cooperative model) [32] [33]. 

To classify webpages as legitimate or phishing, 

our model employs a multi-agent deep 

reinforcement learning algorithm. This algorithm 
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processes webpage features—including URL, 

content, and DOM—by mapping them into a high-

dimensional feature space. The function f:Rd→R 

optimizes these representations to enhance phishing 

detection. Our approach integrates this function into 

a deep learning framework designed to refine 

classification accuracy through iterative training. 

H) Background of Double Deep Q-Network 

(DDQN) 

The Double Deep Q-Network (DDQN) 

improves upon the traditional Deep Q-Network 

(DQN) by addressing overestimation bias in Q-

learning. Standard Q-learning estimates action 

values using a single Q-network, often leading to 

overoptimistic value predictions and unstable 

learning. DDQN overcomes this issue by employing 

two separate networks: one for action selection and 

another for evaluation, ensuring more accurate Q-

value estimation [34] [35],[36]. 

Key Steps in DDQN Algorithm: 

− Initialize two Q-networks: an online network 

(Q_online) and a target network (Q_target). 

− Collect experience tuples (state, action, reward, 

next state) and store them in a replay buffer. 

− Sample mini-batches from the buffer for 

training. 

− Compute target Q-values using the target 

network to reduce overestimation bias. 

− Update the online network using a loss function 

to minimize the error between predicted and 

target Q-values. 

− Periodically update the target network by 

copying weights from the online network. 

− Advantages of DDQN: 

− Reduces overestimation bias by separating 

action selection from evaluation. 

− Enhances stability through the use of a target 

network with delayed updates. 

− Improves learning efficiency, leading to faster 

and more accurate convergence in complex 

environments. 

Due to its stability and effectiveness, DDQN is 

widely used in reinforcement learning applications, 

particularly those involving high-dimensional data 

and intricate decision-making tasks. 

I) DDQN 

In our research, the Double Deep Q-Network 

(DDQN) is a crucial element of the proposed 

approach, which plays a central role in training a 

multi-agent model to classify webpages as either 

phishing or legitimate. 

Double Q-Learning: DDQN mitigates 
overestimation bias by using two separate Q-

networks. One network selects actions, and the other 

estimates the Q-values for those actions, resulting in 

more accurate and stable Q-value estimates. 

Agent: The agent uses webpage features (URL, 

content, DOM structure) to understand the state 

current. It performs actions, receives rewards, and 

updates the Q-table, initially set to zero and refined 

over time to improve the policy. 

Action (WP). Actions in the model affect the 

environment and trigger updates  to the Q-values. 

The available actions depend on factors such as 

feature vectors, the dataset, and neural network 

architecture. 

State (S). It represents the webpage features 

and influences agent actions based on changes in the 

environment. 

Policy: The policy (π) guides the agent in 

choosing actions that maximize rewards based on 

the current state. As shown in Equation (4), π(s) 

selects the action that maximizes the Q-value, 

Q(s,a), for the states. 

Reward  and Learning: The reward (r) is the 

feedback given to the agent after an action in a 

specific state, indicating whether if the action was 

beneficial or detrimental. In the phishing detection 

task, correct classifications result in positive 

rewards, while incorrect ones result in negative 

rewards. Cumulative rewards at time t are calculated 

by taking the sum of discounted future rewards, as 

shown in Equation (5), where the discount factor γ 

determines the importance of future rewards.       

Q-Value (Action-Value Function): The Q-

value Q(s, a), also known as the action-value 

function, is crucial in reinforcement learning and the 

DDQN algorithm. It estimates the expected 

cumulative reward for taking action in state s and by 

following the optimal policy thereafter. DDQN 

learns to estimate Q-values for different actions 

given the current state, guiding the agent's decisions. 

Mathematically, the Q-value is defined in Equation 

(6) where 𝑹𝑪  represents the cumulative reward.: 

The Goal of DDQN Agents: The primary goal 

of DDQN agents is to maximize cumulative rewards 

𝑹𝑪  by determining the optimal Q* function by using 

an ɛ-greedy policy. The Q* function represents the 

maximum achievable rewards for an optimal policy 

π∗. In the ɛ-greedy policy, actions are selected 

randomly from the available options to facilitate 

learning and maximize reward acquisition based on 

policy π∗. By applying the optimal policy π∗, the Q* 

function can be transformed into the optimal 

classifier model for the experiment, as represented 

by Equation (7). 

This variable "y" is a representation of the 

expected Q-value, which is calculated using the 

Bellman equation. It is used to update the Q-values 

throughout the training process. The Bellman 

equation computes the expected future reward from 

a given state-action pair, by taking into account the 

discounted future rewards and the Q-values of the 

next state. The equation is as follows (8). 



39                              International Journal of  Smart Electrical Engineering, Vol.14, No1, Winter 2025                         ISSN:  2251-9246 

EISSN: 2345-6221   

This formula calculates the maximum Q-value 

for a given state and action. The DQN estimates the 

optimal action-value function by computing the 

expected Q-value through the Bellman equation, 

which helps it perform better in predicting class 

labels.𝑟𝑗 is the immediate reward obtained by the 

DDQN after taking action (a) in state (s) at time t. 

Loss Function: The loss function (L) measures 

the difference between the DDQN's estimated Q-

values and the target Q-values, calculated using the 

Mean Squared Error (MSE). The target Q-values are 

provided by a target network, a stable copy of the Q-

Network. The loss function is (9). The target Q-

values are computed as (10) where r  is the 

immediate reward, 𝛄 is the discount factor, s'  is the 

next state, and  a'  is the action in  s''. The DDQN 

minimizes this loss by updating its parameters, 

improving its ability to classify webpages as 

phishing or legitimate. 

Exploration vs. Exploitation: The method uses 

an ε-greedy policy to balance exploration of new 

actions and exploitation of learned knowledge. 

During training, the agent selects actions based on 

Q-values with a probability (ε) for exploration. This 

probability decreases over time to shifting favor 

exploitation. 

Training and Fine-tuning: The DDQN interacts 

with the environment (webpage features) to update 

Q-value estimates and fine-tune its parameters. The 

process uses backpropagation and gradient descent 

to minimize the loss function and improve Q-value 

accuracy. By leveraging DDQN in deep 

reinforcement learning, this method effectively 

learns complex patterns from webpage data, 

enhancing phishing detection accuracy. 

𝜋 (𝑠)  = 𝑎𝑟𝑔𝑚𝑎𝑥( 𝑄(𝑠, 𝑎)) (4) 

𝑅𝐶 = ∑ 𝛾𝑘 . 𝑟𝑡+𝑘

∞

𝑘=1

 (5) 

𝑄𝜋 ( 𝑠 , 𝑎 ) = 𝛦𝜋[∑ 𝛾𝑘 . 𝑟𝑡+𝑘
∞
𝑘=1 |(𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)] (6) 

𝜋∗ = {
1          𝑎 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄∗  (𝑠, 𝑎)
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

𝑦 = {
𝑟𝑗                                                                        𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑗 = 𝑇

𝑟𝑗 + 𝛾𝑚𝑎𝑥𝑎𝑡1 
𝑄(𝑠𝑡+1  , 𝑎𝑡+1 ,𝜃𝑘−1  )),       𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑗 = 𝐹

 (8) 

𝐿(𝜃) = ∑ ((𝑄(𝑠, 𝑎, 𝜃𝑘) − 𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎))2

(𝑠1  ,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)∊𝐵𝑚

 (9) 

𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎, 𝜃) = 𝑟 +  𝛾 ∗  𝑚𝑎𝑥(𝑄(𝑠1, 𝑎𝑡, 𝜃)) (10) 

J) Classification based on DDQN 

In the proposed phishing webpage 

classification problem, the Double Deep Q-Network 

(DDQN) is used as a reinforcement learning 

algorithm for sequential decision-making. Agents 

representing phishing and legitimate classes are 

given input vectors of URL, content, and DOM to 

interact with the environment and make decisions. 

During the learning process, agents use these input 

vectors to perform actions and obtain rewards. The 

agents for the phishing class aim to maximize 

rewards, whereas those for the legitimate class aim 

to minimize them. This iterative process helps 

agents improve their decision-making over time. 

The state at each time step (t) is defined by a vector 

space representation of the training dataset (T), 

comprising three matrices for URL, content, and 

DOM features. Each matrix has dimensions of 

((96+96+20)* WPT), where 212 is the number of 

feature vectors and WPT is the number of webpages 

in the dataset. Training samples are updated each 

episode to expose agents to different scenarios. 

The action (a) is binary: 0 or 1, representing the 

classification of a webpage (ut) as phishing or 

legitimate. function estimates the likelihood that (ut)  

is a phishing webpage. If the Q-function value 

exceeds 0.5, it is normalized to 1 (phishing); if 

between 0 and <0.5, it is normalized to 0 

(legitimate). The reward (R) is feedback received by 

the agent based on the correctness of its 

classification. For each action (at), the reward (rt) is 

defined as follows, based on whether the agent 

correctly or incorrectly classified (ut) according to 

its true label (lt) as (11): 

𝑅 = {
1 ,    𝑎𝑡 = 𝑙𝑡

−1 ,   𝑎𝑡 ≠ 𝑙𝑡
 (11) 

Using rewards, agents iteratively update their 

Q-values through the DDQN algorithm, gradually 

improving their classification ability for phishing or 

legitimate webpages based on cumulative rewards. 

In conclusion, DDQN allows agents to interact 

effectively with the environment, receive feedback, 

and learn to make better classification decisions, 

resulting in an effective and accurate phishing 

detection system.  

K) Training the network 

In our proposed phishing detection model 

using the Double Deep Q-Network (DDQN) 

algorithm we utilized three separate DDQNs for 

URL, content, and DOM features. Each DDQN 

comprises two fully connected neural networks, 

each with ReLU activation and a softmax output 

layer for Q-values. a batch size of 64, a learning rate 

of 0.001, and the Adam optimizer across 1000 

epochs. The loss was calculated by comparing 

predicted Q-values with target Q-values. Random 

data batches were used to train the DDQNs, with 

weights updated simultaneously. The reward 

function was based on prediction accuracy. Cross-

validation was performed to enhance accuracy and 

generalization. By combining DDQNs with CNNs, 

our method effectively detects phishing webpages, 

achieving high accuracy and robustness. The DDQN 
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agents learn optimal Q-values through exploration 

(ε-greedy strategy) and exploitation, guiding 

accurate classification decisions. The Figure 2 

shows the structure of the three DQNs, and their 

combined outputs determine the final classification 

as phishing or legitimate based on the highest 

confidence.  

L) Highest confidence score 

After training and extracting the feature 

vectors outputs from each DDQN(URL, Content, 

DOM), the highest confidence score as the final 

output. For example, if the confidence scores are (1, 

1, 0), the highest confidence score is 1. 

4. Experimental results and analysis  

This section summarizes four experiments 

designed to evaluate the performance of the 

proposed model in detecting phishing websites. The 

experiments examine various aspects of the model, 

including feature extraction, multi-agent 

approaches, and comparisons with other models. 

A) Experimental environment 

The development environment used for the 

experiments consisted of Python 3.5, with PyCharm 

as the integrated development environment (IDE). 

The system had 16GB of memory and an Intel Core 

i7-6700 CPU, providing sufficient computational 

power for the tasks. Windows 10 was the operating 

system used, compatible with the necessary machine 

learning frameworks and libraries. 

Table.4. 
Evaluation Indicator 

Calculation formula Evaluation 

indicator 

(TP+TR)/(TP+FP+TN+FN) Accuracy 

TP/(TP+FP) Precision 

TP/(TP+FN) TPR(Recall) 

(2*Precision*Recall)/(Precision+Recall) F1 

FP/(TN+FP) FPR 

Table.5. 
Data Source 

Data Source Legitimated Urls Phishing Urls 

Phish Storm[37] 48009 47902 

Phish Tank[38] 0 178495 

Iscx-Url2016 [39] 35378 9965 

Kaggle[40] 345738 0 

B) Parameter setting 

The  proposed model utilizes several key 

parameters to optimize performance. It uses 128 

deep neural network cells to capture complex 

features and a batch size of 64 for efficient sample 

processing. A dropout rate of 0.5 helps prevent 

overfitting by deactivating 50% of neurons during 

training. The model is trained for 100 epochs and 

1000 episodes, with a learning rate of 0.001, 

balancing adaptation speed and stability. The RELU 

activation function adds nonlinearity, improving 

feature learning. 

Input sizes for URLs, HTML content, and 

DOM structures are set at 200, 1000, and 2000, 

respectively. These lengths are chosen to reduce 

unnecessary padding while preserving relevant 

information, enhancing the model's ability to detect 

phishing websites and optimizing computational 

efficiency. 

C) Evaluation metrics  

Evaluation metrics commonly used in research 

include Accuracy, Precision, Recall (True Positive 

Rate), False Positive Rate (FPR), and F1-measure, 

as detailed in Table 4. True Positive (TP) and True 

Negative (TN) indicate correct classifications, while 

False Positive (FP) and False Negative (FN) 

represent misclassifications. The F1 score combines 

Precision and Recall to assess overall performance 

effectively. 

D) Dataset 

Data plays a crucial role in the performance of 

machine learning models, with both the quality and 

quantity being critical factors [41]. In our study, data 

collection was organized into two main stages: 

gathering data from various sources and processing 

and storing it. We used several open datasets, 

including the Phish Storm dataset [37], which 

contains 96,018 URLs (48,009 legitimate and 

48,009 phishing URLs), and the ISCX-URL2016 

dataset [39], which includes 35,378 legitimate and 

9,965 phishing URLs. Additionally, approximately 

490,000 legitimate URLs were obtained from an 

open Kaggle project [40], supplemented by daily 

updates from the Phish Tank platform[38].Data 

processing included cleansing, removing duplicates, 

and standardizing URL formats to ensure a balanced 

representation of legitimate and phishing URLs. 

This approach helped prevent bias and ensured the 

model could adapt to evolving phishing tactics. The 

extensive and diverse dataset contributed to better 

generalization, improving performance in phishing 

detection by reducing false positives and negatives. 

The data assessment in Table 5 reflects critical 

aspects related to data sourcing, processing, and 

integrity, which directly impacted the model's 

performance. 

E) Compared methods 

To validate the efficacy of the proposed model, 

a comparison study was conducted between The 

proposed model and traditional phishing webpage 

detection methods. Several deep learning-based 

approaches have been developed for phishing 

detection. PhishDet[28] employs a Long-term 

Recurrent Convolutional Network and Graph 



41                              International Journal of  Smart Electrical Engineering, Vol.14, No1, Winter 2025                         ISSN:  2251-9246 

EISSN: 2345-6221   

Convolutional Network to analyse URL and HTML 

features. The RNN-GRU model [7] utilizes a CNN 

to extract features from website screenshots and 

applies a Long Short-Term Memory (LSTM) 

network for classification. WEB2VEC 

[12]integrates Convolutional Neural Network 

(CNN) for local feature extraction and Bidirectional 

Long Short-Term Memory (BiLSTM) for global 

semantic feature representation. Hybrid DLM [42] 

combines deep LSTM and CNN networks, with the 

LSTM analysing URL data and a separate CNN 

processing HTML features. URLNet [43] uses 

CNNs with character-level and word-level 

embedding’s to automatically extract features from 

URLs, while MPURNN [44] employs a CNN for 

character-level embedding and an LSTM for 

additional feature extraction, demonstrating the 

diversity and effectiveness of deep learning 

techniques in phishing detection. The comparison 

demonstrates the strengths and approaches of each 

model, highlighting the advancements and unique 

contributions in phishing webpage detection 

techniques.  

In evaluating the feature extraction methods in 

the proposed model, we considered several deep 

learning networks including CNN, RNN, and 

LSTM, as well as hybrid networks such as CNN-

RNN, CNN-LSTM, and CNN-BiLSTM. However, 

it's worth noting that we did not compare traditional 

supervised machine learning methods like 

Sequential Minimal Optimization (SMO), Bayesian 

Network (BN), Support Vector Machine (SVM), 

and AdaBoost in our experiments. 

Table.6. 
Detection effects of different feature combinations 

0.0032 0.9651 0.9628 0.9698 0.9695 CNN-LSTM 

0.0104 0.9915 0.0059 0.9869 0.9918 CNN- RNN 

0.0061 0.9616 0.9325 0.9924 0.9654 LSTM 

0.0063 0.9628 0.9351 0.9922 0.9665 RNN 

0.0085 0.9800 0.9756 0.9844 0.9786 CNN 

Table.7. 
Performance of various feature extraction models in detecting 

phishing webpages is evaluated 

FPR F1 TPR(Recall) Precision Accuracy Aalgorithm 

0.0022 0.9930 09825 0.9905 0.9921 DDQN 

0.0025 0.9908 0.9826 0.9869 0.9905 CNN-BLSTM 

0.0032 0.9651 0.9628 0.9698 0.9695 CNN-LSTM 

0.0104 0.9915 0.0059 0.9869 0.9918 CNN- RNN 

0.0061 0.9616 0.9325 0.9924 0.9654 LSTM 

0.0063 0.9628 0.9351 0.9922 0.9665 RNN 

0.0085 0.9800 0.9756 0.9844 0.9786 CNN 

Table.8. 
Detection effects of different feature combinations 

FPR F1 TPR 

(Recall) 

Precision Accurac

y 

Feature 

combination 

0.0022 0.9930 09825 0.9905 0.9921 URL+HTML+DOM 

0.0127 0.9914 0.9913 0.9919 0.9915 URL+HTML 

0.0080 0.9887 0.9834 0.9812 0.9870 HTML+ DOM 

0.0026 0.9710 0.9758 0.9798 0.9790 URL+ DOM 

0.0030 0.9514 0.9700 0.9767 0.9712 HTML 

0.0221 0.9363 0.9733 0.9978 0.9372 DOM 

0.0259 0.9416 0.8800 0.8670 0.9010 URL 

Table.9. 
Detection effect of multiagent 

FPR F1 TPR 

(Recall) 
Precision Accuracy Agent 

0.0022 0.9930 09825 0.9905 0.9921 Multi Agent 

0.0030 0.8731 0.8811 0.8670 0.9110 Single Agent 

 

 
Fig. 2. Detection effect of multi-agent 

F)  Experiment 2: The effectiveness of DDQN 

with additional features 

Experiment 2 investigates the impact of the 

feature extraction process on the proposed model by 

using a Double Deep Q-Network (DDQN). In this 

experiment, various models, including CNN-

BILSTM, CNN-LSTM, CNN-RNN, LSTM, RNN, 

and CNN, are used in place of DQN in the proposed 

model. The results of this comparison are 

summarized in Table 7.the findings show that the 

DDQN network outperforms CNN-BILSTM in 

terms of classification detection, suggesting that 

incorporating additional feature extraction improves 

performance in multi-agent scenarios. Specifically, 

the DDQN model achieves a False Positive Rate 

(FPR) of 0.0022, an F1 score of 0.9930, a True 

Positive Rate (Recall/TPR) of 0.9825, Precision of 

0.9905, and an overall Accuracy of 0. 9921.In 

comparison, CNN-BILSTM performs slightly 

worse with an FPR of 0.0025, an F1 score of 0.9908, 

a recall of 0.9826, precision of 0.9869, and an 

accuracy of 0.9905. Other models, such as CNN-

LSTM, CNN-RNN, LSTM, RNN, and CNN, show 

varying performance. CNN-LSTM has a higher FPR 

(0.0104) and lower recall (0.0059), while CNN-

RNN and LSTM models perform similarly with 

lower F1 scores and accuracy compared to DDQN.  

these results indicate that DDQN with additional 

features is more effective in phishing webpage 

detection than the other models tested, highlighting 

the importance of feature extraction in improving 

model performance. 

G) Experiment 3: Effects of multi-faceted 

feature learning  

Experiment 3 assessed the impact of learning 

features from different webpage components, 

including URL, page content, and DOM structure. 

The results, shown in Table 8, reveal that the best 

detection performance is achieved by combining all 

three features: URL, page content, and DOM 
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structure. This combination yields an FPR of 

0.0022, an F1 score of 0.9930, a recall of 0.9825, 

precision of 0.9905, and accuracy of 0. 9921.when 

combining two features, such as URL + HTML, the 

model still performs well, with an FPR of 0.0127 

and an F1 score of 0.9914. However, using only a 

single feature, like HTML or DOM, results in lower 

performance, indicating that combining multiple 

features enhances detection accuracy. Overall, the 

experiment shows that incorporating multiple 

sources of information significantly improves 

phishing webpage detection. 

H) Experiment 4: Evaluating the effectiveness 

of a multiagent approach 

Experiment 4 evaluated the proposed model's 

multi-agent (3 DDQN) approach compared to a 

single-agent model. Results in Table 9 show that the 

multi-agent model achieved superior performance, 

with faster, more stable training and testing. The 

multi-agent model recorded an FPR of 0.0022, F1 

score of 0.9930, recall of 0.9825, precision of 

0.9905, and overall accuracy of 0.9921, 

outperforming the single-agent model (FPR: 0.0030, 

F1: 0.8731, recall: 0.8811, precision: 0.8670, 

accuracy: 0.9110). These results confirm that the  

proposed model effectively represents webpages 

and improves classification by leveraging multi-

agent deep learning and additional feature 

extraction, showcasing excellent prediction 

performance. Figure 2 illustrated that the training 

and testing processes in the multi-agent model were 

faster and more stable 

Figure 3 highlights the training and testing 

accuracy and loss trends for single-agent and multi-

agent models over multiple epochs. The accuracy 

graphs show a steady increase, reaching high 

stability, while the loss graphs display rapid 

decreases in early epochs, followed by stabilization. 

These trends demonstrate the multi-agent model's 

effective learning, rapid convergence, and strong 

generalization from training to unseen data. 

5. Conclusion 

The study introduces the proposed model, an 

automated framework for detecting phishing 

webpages using a multi-agent deep reinforcement 

learning approach with additional features. This 

method leverages NLP-based representation 

learning techniques to extract a comprehensive 

webpage representation from various aspects, such 

as URL, page content, and DOM structure. A multi-

channel, multi-agent deep learning network is 

utilized to identify and extract deep hidden features, 

with influential features weighted more heavily in 

classification predictions. Results from four 

experiments demonstrate that the proposed model 

outperforms existing advanced phishing detection 

techniques, achieving an impressive accuracy of 

99.21% and a false positive rate as low as 0.22%. 

Overall, this approach shows great potential to 

enhance web security, empowering users and 

organizations to effectively identify and prevent 

phishing attacks. Future work could involve 

optimizing the model by adding new features or 

integrating more data to improve performance in 

dynamic environments. Additionally, extending this 

approach to address more complex threats and 

enable phishing detection across multi-lingual 

settings could further strengthen the system’s 

capabilities. 

 
EPPOCH(A) 
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Fig. 3. The impact of multi-agent deep learning 
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