
33 International Journal of Smart Electrical Engineering, Vol.14, No1, Winter 2025 ISSN: 2251-9246

EISSN: 2345-6221

Smart Phishing Detection on Webpages Using Multi-Agent

Deep Learning and Multi-Dimensional Features

Ziba Jafari, Seyyed Hamid Ghafouri*, and Mohammad Ahmadinia

Department of Computer Engineering, Kerman branch, Islamic Azad University, Kerman, Iran

Abstract

The increasing sophistication of phishing attacks has made their detection more challenging, as attackers use deceptive tactics

to trick users into revealing sensitive information through fraudulent websites. Traditional detection methods struggle to keep

up with evolving phishing techniques, necessitating more adaptive approaches. This study introduces a multi-agent deep

learning framework that utilizes three specialized models to analyze different aspects of a webpage, including the URL, page

content, and Document Object Model structure. The outputs of these models are combined using a highest confidence score

mechanism to enhance accuracy. Experimental results demonstrate that this method outperforms existing techniques, achieving

99.21% accuracy with a false positive rate of only 0.22%. It effectively detects both known and new phishing sites, making it

a robust solution against emerging threats. Furthermore, this approach highlights the potential of deep reinforcement learning

in cybersecurity, paving the way for more automated and resilient security systems to combat phishing attacks.

Keywords: Deep Learning, Phishing, Representation Learning, Multi Agent Deep Reinforcement Learning (MADRL).

Article history: Received 2025/02/22; Revised 2025/04/15; Accepted 2025/06/04, Article Type: Research paper

© 2025 IAUCTB-IJSEE Science. All rights reserved

1. Introduction

Phishing attacks have become a major

cybersecurity threat, targeting millions of users

annually. These attacks deceive individuals into

revealing sensitive information through counterfeit

websites[1],[2],[3]. Reports from the Anti-Phishing

Working Group (APWG) indicate a significant rise

in phishing activities, with a record 963,994 attacks

observed in the third quarter of 2024 . Notably,

during the COVID-19 pandemic, healthcare

facilities with weaker security were heavily targeted.

Despite 75% of phishing websites using SSL

protection, it did not ensure their

legitimacy[4],[5],[6].Machine learning techniques

like Decision Trees, Random Forests, and Support

Vector Machines have been used for phishing

detection but struggle with unseen websites. Deep

learning methods, such as CNNs and RNNs, offer

improved performance but require extensive data

and computational resources [7]. Existing

approaches in phishing detection rely on URL-

based, heuristic-based [8], visual similarity-based

[9], and machine learning methods [10],[11].

However, many focus on a single input feature,

limiting their ability to capture the full range of

features on phishing webpages.

This study introduces a novel multi-agent deep

learning approach for phishing detection, utilizing

three distinct Deep Q-Networks (DQNs) to analyse

features from the URL, HTML content, and DOM

structure. By integrating data from multiple sources

and applying an attention mechanism, the model

selectively combines outputs based on their

performance, significantly improving accuracy,

precision, recall, and F1 score. This approach

outperforms state-of-the-art methods and

demonstrates robust detection capabilities even for

previously unseen phishing

websites[12],[13],[14].The proposed method

leverages the adaptability of deep reinforcement

learning to continuously improve its performance.

The results show promise in enhancing phishing

detection and contribute to better cybersecurity for

individuals, businesses, and governments. This

multi-faceted approach addresses the limitations of

existing methods and offers a comprehensive

solution for combating phishing attacks. This

paper's main contributions are as follows:

pp. 33:44

34 International Journal of Smart Electrical Engineering, Vol.14, No1, Winter 2025 ISSN: 2251-9246

EISSN: 2345-6221

The use of representation learning techniques

to automatically learn webpage representations

across all dimensions, based on the webpage's URL,

content, and DOM structure, all treated as text.

The proposal of a multi-agent deep learning

model that combines DDQN.

Conducting four experiments on our model

from various perspectives, demonstrating strong

classification performance.

The paper's organization is as follows: Related

works on phishing webpage detection are presented

in Section II. The framework and the detailed

process of our model are outlined in Section III. In

Section IV, the performance of our model is

evaluated. Finally, the paper concludes with a

discussion of future work.

2. Related work

Phishing website detection remains a

significant challenge in cybersecurity. Various

machine learning techniques, including logistic

regression, decision trees, support vector machines,

and neural networks, have been applied to this

problem, with deep learning showing promising

results in recent years. Studies in the literature [15]

have explored diverse input features for detecting

phishing websites, broadly categorized into URL-

based, content-based, and DOM-based features.

URL-based features, such as URL length, the

number of dots, and specific keywords, are

commonly used to distinguish legitimate websites

from phishing ones. Content-based features,

including keyword analysis, the presence of

multimedia elements, and the text-to-HTML ratio,

provide additional insights. Similarly, DOM-based

features, like hidden fields, form tags, and

suspicious script tags, have proven useful in

detecting malicious webpages. Phishing detection

methods can be broadly categorized into four types.

Blacklist-based approaches compare URLs and

webpage details against blacklists, achieving low

false positive rates but missing unlisted websites,

such as those used by Google Chrome [12]. Tools

like the PhishBench framework [16] offer a

benchmarking environment to evaluate advanced

detection techniques. Heuristic-based methods

extract rules from common phishing features; tools

like PhishDetector [8] offer real-time detection but

are prone to high false positive rates due to fuzzy

matching. These methods depend on features such

as URL statistics, Whois and DNS information, and

webpage content ,[15], ,[17], [18], with advanced

models extracting up to 2,130 features, as in Google

Chrome's case.

Recent advancements[10], which integrates

lexical analysis and URL HTML Encoding for real-

time classification with unbiased voting

mechanisms for improved accuracy. Despite these

innovations, attackers continuously adapt by

avoiding detectable features or algorithms,

necessitating ongoing refinement to counter

increasingly sophisticated phishing tactics.

Recently, deep learning has gained popularity

as an alternative to traditional machine learning

methods and has been successfully applied in

phishing webpage detection [13],[14]. These studies

are classified into three categories: 1) artificial

feature engineering, where features are manually

extracted for input to deep neural networks (DNNs),

2) automatic feature learning, where deep neural

networks learn features directly from the data, and

3) hybrid methods that use both artificial and

automatic features. In artificial feature engineering,

DNNs are fed manually extracted features such as

URL properties, domain details, webpage content,

and encoding [13], [19]. Although these methods

can detect phishing, they are still susceptible to

human bias. Automatic feature learning allows

DNNs to extract features on their own, enhancing

model accuracy without human intervention. Recent

studies also use NLP techniques to analyse webpage

or email content for phishing detection [12, 20].

URL-based methods, which treat URLs as text and

utilize models like LSTM, Denoising Auto encoder

(DAE), and CNN, have been effective in detecting

phishing websites [21], [22]. Page content-based

methods, on the other hand, process webpage

content as text and extract semantic features, often

using models like Word2Vec [12],[23], which help

avoid human biases and enhance generalization.

The study in [24] tackled class imbalance in

phishing detection by creating a feature space using

deep learning, while another study in [7] introduced

a real-time browser plugin for phishing detection.

Methods like those in [25] address dimensionality

and sparsity in phishing detection, though they

typically use a single feature input, such as URL or

page content, limiting their comprehensiveness.

Hybrid methods combine both artificial and

automatic features. For instance, a hybrid CNN-

LSTM model in [14] uses both extracted URL

features and traditional page content features for

classification. Other techniques, such as those in

[26], use CNN with self-attention and GANs to

balance datasets and improve detection accuracy,

while [27] proposes a multi-agent system for

network anomaly detection that integrates deep

learning methods. PhishDet [28] combines Long-

Term Recurrent Convolutional Networks and Graph

Convolutional Networks, utilizing both URL and

HTML features for phishing detection. A popular

NLP-based approach using BERT [17] has also been

applied to phishing URL detection, and methods like

Web2Vec [12, 20] use hybrid CNN and BiLSTM

models with attention mechanisms to extract both

local and global features. In contrast, our model

employs a multi-agent deep learning approach to

35 International Journal of Smart Electrical Engineering, Vol.14, No1, Winter 2025 ISSN: 2251-9246

EISSN: 2345-6221

learn webpage representations from various

perspectives. Our proposed method uses three

DDQNs trained on different sets of features,

including URL, content, and DOM, with additional

features. These DDQNs' outputs are aggregated

through voting to classify webpages. The results

show our model outperforms existing phishing

detection techniques in accuracy, precision, recall,

and F1 score, offering significant improvements in

phishing detection for internet security.

3. Proposed method

This section outlines the proposed method for

phishing detection. Firstly, the formal definition of

phishing detection is provided, followed by a

detailed description of the proposed method

framework and its key technologies.

A) Problem statement

This article presents the problem of detecting

phishing webpages as a binary classification task,

where the two possible classes are "phishing" or

"benign". The input data comprises a collection of

webpages N, with N = {WP1, ..., WPi, ..., WPn},

where WPi refers to the i-th webpage with i ranging

from 1 to n. Each webpage consists of three

components, WPi = {Ui, Hi, Di}, where Ui denotes

the webpage's URL, Hi is the page content, and Di

represents the DOM structure. The training dataset

is represented by T webpages, each with

corresponding data and class labels in the format

(WP1, X1, Y1), (WP2, X2, Y2), ..., (WPT, XT, YT),

where:For i = 1, 2, ..., T, WP denotes a webpage in

the given training set T.

The features of webpage WPi are denoted by

Xi, which are extracted from its URL, content, and

DOM structure and are represented by a feature

matrix. The label of the underlying webpage is

denoted by Yi ∈ {0, 1}, where Yi = 0 represents a

benign webpage and Yi = 1 represents a phishing

webpage. The goal of proposed method is to learn a

discriminant model f: X → Y using the training

dataset, which can then be used to classify new

webpages as phishing or benign

B) The overall framework

The proposed model detects phishing

webpages through a multi-step process. First, it

preprocesses webpages to extract data like URLs,

content, and DOM structure, forming a dataset.

Using NLP-based word embedding, the model

learns data representations, which are then

processed by a DDQN network to extract features.

Finally, the combined features are classified as

phishing or benign. proposed method employs

multi-agent deep reinforcement learning for

comprehensive feature extraction, automating

classification through data preprocessing and feature

learning. . Key technologies and processes are

depicted in Figure 1.

Fig. 1. Model Framwork

C) Web page reprocessing

Webpage reprocessing involves parsing

webpage data and constructing various corpora to

enhance feature representation. While prior studies

primarily relied on URLs for phishing detection

[12],[14], URLs alone lack the structural and

semantic details of phishing webpages. The

proposed method overcomes this limitation by

learning features from the URL, page content, and

DOM structure. URL corpora are processed at

character and word levels: character-level analysis

normalizes URLs to a uniform length, maps

characters to a 96-character vocabulary, and encodes

them into OneHot vectors; word-level analysis

segments URLs into sequences of words based on

structural elements such as protocols and paths,

emphasizing sequential relationships. For webpage

content, both word-level and sentence-level corpora

are created, separating sentences by periods and

removing multimedia, HTML tags, and non-textual

elements for simplicity. The DOM structure is

represented as a hierarchical sequence of HTML

tags, parsed from the DOM tree using a breadth-first

approach. Tags are treated as words, forming a

word-level corpus that encapsulates the structural

essence of the webpage.

36 International Journal of Smart Electrical Engineering, Vol.14, No1, Winter 2025 ISSN: 2251-9246

EISSN: 2345-6221

D) Webpage representation

The previous section discussed the use of One-

Hot encoding for constructing corpora, which is

limited due to its lack of semantic relationships and

sparse encoding. To overcome this, techniques like

word embeddings, which map words to low-

dimensional vectors capturing semantic

relationships, were introduced [12]. The proposed

method uses a simpler approach by embedding the

One-Hot matrix as word vectors through a single-

layer neural network, avoiding the complexity of

pre-trained models like Word2Vec. This embedding

layer, along with feature extraction and

classification components, is optimized using

backpropagation to enhance semantic

representation. The embedding transforms the

sparse One-Hot matrix into a dense, lower-

dimensional representation matrix, reducing

computational cost and memory usage.

Once the representation matrix S is acquired, it

can be utilized as an input for the succeeding feature

extraction and classification sections. These sections

can be optimized together with the matrix using

backpropagation to enhance the model's semantic

representation capability. The same approach can be

applied to the word-level and DOM structure-level

corpora in the proposed method to acquire learned

representations. The method used to learn the

character representation for URLs in The proposed

model can be illustrated using an example. Suppose

we have a URL character-level corpus U, and we

want to learn the representation for the i-th URL,

denoted as "Ui"."Ui" is encoded using One-Hot

encoding. Let's say the j-th character is represented

by vector gj after One-Hot encoding, where gj =

(gj1, gj2, · · ·, gjm) T . The matrix G has dimensions

of m * n, where each column represents a character

gi of the URL "Ui".To obtain the URL character

embedding, each URL " Ui " is first represented as a

One-Hot matrix G with dimensions Gm×n = (g1, g2,

· · ·, gn). The One-Hot matrix G is then mapped to

its representation matrix S using a single-layer

neural network embedding. The weight matrix of the

embedding layer is denoted as W, and it has

dimensions Rp×m, where p is the embedding

dimension and is set to 128 in this case. The

calculation process for obtaining the URL character

embedding is as eq.(1).

𝑆𝐶 = 𝑊𝐺 = [

𝑤11 ⋯ 𝑤1𝑚

⋮ ⋱ ⋮
𝑤𝑝1 ⋯ 𝑤𝑝𝑚

] ∗ [

𝑔11 ⋯ 𝑔1𝑛

⋮ ⋱ ⋮
𝑔𝑚1 ⋯ 𝑔𝑔𝑚

] (1)

Once the representation learning process is

completed for webpage WPi, its representation is

referred to as Xi, which is a concatenation of five

vectors with fixed-length as follows (2):

𝑥𝑖(𝑈𝑅𝐿) = (𝑈𝑖
𝑐 , 𝑈𝑖

𝑤) (2)

𝑥𝑖(𝐶𝑂𝑁𝑇𝐸𝑁𝑇)= (𝐶𝑖
𝑤 , 𝐶𝑖

𝑠)

 𝑥𝑖(𝐷𝑂𝑀)= (𝐷𝑖)

𝑥𝑖(𝑈𝑅𝐿)= (𝑈𝑖
𝑐 , 𝑈𝑖

𝑤 , 𝑈𝑖
𝑓

)

𝑥𝑖(𝐷𝑂𝑀)=(𝐶𝑖
𝑤 , 𝐶𝑖

𝑠 , 𝐶𝑖
𝑓

)

 𝑥𝑖(𝐷𝑂𝑀)=(𝐷𝑖 , 𝐷𝑖
𝑓

)

(3)

The representation 𝐔𝐑𝐋 vectors , (𝑼𝒊
𝒄 and 𝑼𝒊

𝒘

) are the representation vector learned from Ui. The

CONTENT vectors (𝑪𝒊
𝒘 , 𝑪𝒊

𝒔) are vectors learned

from the page content, and DOM vector(𝑫𝒊) is

learned from the DOM structure. To obtain the

character-level representation𝑼𝒊
𝒄, statistical features

of each element are extracted, including the mean,

variance, skewness, and kurtosis. On the other hand,

a bag-of-words approach is used to represent the

webpage content to obtain the word-level

representation vector 𝑼𝒊
𝒘, where the frequency of

each word in the webpage is counted and normalized

by the total number of words in the webpage. Then,

statistical features of the word frequency

distribution are extracted, including the mean,

variance, skewness, and kurtosis. For the character-

level representation vector 𝑪𝒊
𝒘 and the sentence-

level representation vector 𝑪𝒊
𝒔, statistical features are

extracted from the page content. On the other hand,

for the DOM structure vector 𝑫𝒊, features are

directly extracted from the DOM tree.

The five vectors, which have the same

dimensions and contain information on the

character-level, word-level, and sentence-level,

enable mathematical calculations based on these

features. The next step involves feature extraction,

where important information is selected and

extracted from the input data to create a new set of

features that can more effectively represent the input

data. In The proposed model, feature extraction is

performed on the five fixed-length vectors obtained

after representation learning. After feature

extraction in this part, The results of the vectors

obtained from this part are combined with 20

additional features below, including 20 features

related to URL, 20 features related to HTML

content, and 20 features related to DOM, for better

learning of the learning network.

E) Additional feature extraction

The proposed approach extracts feature

representations from the URL, content, and DOM,

each incorporating an additional 20-dimensional

vector space to enhance the distinction between

benign and phishing webpages. URL-based features

include 20 attributes, such as URL length and the

presence of IP addresses, aiding in phishing

detection [15] ,[29]. Similarly, 20 content-based

features analyze multimedia elements, including

images and JavaScript, ensuring high-accuracy

37 International Journal of Smart Electrical Engineering, Vol.14, No1, Winter 2025 ISSN: 2251-9246

EISSN: 2345-6221

detection despite potential vulnerabilities.

Additionally, 20 DOM tree features, derived from

[15], provide structural insights for effective

detection. Tables 1–3 outline these features.

F) Normalization

The normalization process converts all feature

vectors and class labels for each URL into binary

values (0 and 1). After feature extraction and

normalization, the input matrix s(xi) is defined as

shown in equation (3). The variables

𝑼𝒊
𝒇

 , 𝑪𝒊
𝒇

 𝒂𝒏𝒅 𝑫𝒊
𝒇
 represent additinal features that

are obtained through learning from the URL,

content, and DOM structure.

Table.1.
URL Based Features

URL
Feature

Explanation
 for 0

Explanation
 for 1

IP URL doesn't use IP address URL uses IP address, potentially phishing

U_Length Short URL length Long URL length, potential phishing

at_U No "@" character in URL "@" character present in URL, potential

phishing

Dots_U Few dots (".") in URL Many dots in URL, potential phishing

TLD_P No popular TLD in path Popular TLDs in path, potential phishing

https URL doesn't use https

protocol

URL uses https protocol, potential

phishing

hyphen_U No "-" character in URL "-" character present in URL, potential

phishing

spe_chars_U Few special characters in

URL

Many special characters in URL, potential

phishing

Sens_words No sensitive words in URL Sensitive words in URL, potential

phishing

Length_S Subdomain length is normal Short subdomain length, potential

phishing

Brand_Name No brand name in URL Brand name in URL, potential phishing

Det_Keywords No specified keywords in

URL

Specified keywords in URL, potential

phishing

Slash_U Few double slashes // in

URL

Many double slashes in URL, potential

phishing

Prefix URL doesn't contain

protocol

URL contains protocol, potential phishing

Port URL uses reliable ports URL uses non-reliable ports, potential

phishing

Punctuation Few punctuation characters

in URL

Many punctuation characters in URL,

potential phishing

Subdomain_U Only one subdomain in

URL

Multiple subdomains in URL, potential

phishing

Length_DN Domain name length is

normal

Long domain name length, potential

phishing

Hex_U No hexadecimal characters

in URL

Hexadecimal characters in URL, potential

phishing

Paths URL has no paths URL has paths, potential phishing

Table.2.
Content HTML Based Features

Content

Feature

Explanation
for 0

Explanation
for 1

Anchor Links match the domain name
Links ratio different from the

domain name, potentially

phishing

U_request
Few requests from different

domains

High number of requests from

different domains, potentially

phishing

Popup
No sensitive data requested via

popups
Sensitive data requested via

popups, potential phishing

Links_in_tags
No blacklisted addresses in

<link>,<meta>,<script> tags
Blacklisted addresses in tags,

potential phishing

Abn_req_URL
Request rate in object tag

matches own domain
Abnormal request rate resembling

another site, potential phishing

Cookies Cookies used
No cookies used, potentially

phishing

Iframe
Iframe tags don't link to external

sites
Iframe used to deceive visitors,

potential phishing

Submit Submit button used sparingly
Frequent use of submit button,

potential phishing

Form Limited number of forms
Multiple forms used, potential

phishing

Favicon
Favicon domain matches website

URL
Favicon loaded from different

domain, potential phishing

Mailto Safe form management
Sending user info via mailto,

potential phishing

IMG_Hyperlink Pictures link to same domain
Pictures link to different domains,

potential phishing

Susp_links Text link domain matches text
Text link domain differs,

potential phishing

Right_click Right-click common on websites
Rare right-click on website,

potential phishing

Security Secure forms used
Insecure forms used, potential

phishing

Action URL action relative or absolute
Relative URL action, potential

phishing

Dest_port Destination port not anomalous
Anomalous destination port,

potential phishing

Links Few URLs linking to the page
Many URLs linking to the page,

potential phishing

Message
Social media posts not

anomalous
Anomalous repetitive message,

potential anomaly

Diff_message
No repeated messages from

different users
Repeated messages from different

users, potential anomaly

Table.3.
DOM Tree Based Features

DOM Feature Explanation
 for 0

Explanation
 for 1

Number of DOM

Nodes

Fewer nodes,

simpler structure

Many nodes, complex structure

Depth of the

DOM Tree

Shallower tree Deeper tree

Tag Count Normal tag

distribution

Unusually high counts of specific

tags

CSS Class Count Few CSS classes

used

Many CSS classes used,

indicating complexity

DOM Element

Types

Absence of certain

DOM elements

Presence of certain DOM

elements

Text Length Low total text length High total text length,

overwhelming content

Number of Child

Elements

Normal number of

child elements

Excessive number of child

elements, potentially obfuscating

Hidden Form

Elements

No hidden form

elements

Hidden form elements,

potentially capturing data secretly

Pop-up Windows No pop-up windows Presence of pop-up windows,

potentially deceptive

Iframe Elements No iframe elements Presence of iframe elements,

potentially loading malicious

content

External

Resources

Minimal external

content

Multiple external resources,

indicating potential data

collection

Script Tags No suspicious

scripts

Presence of suspicious or

obfuscated scripts

Meta Refresh

Tags

No meta refresh tags Presence of meta refresh tags,

potentially redirecting

Interactive

Elements

Minimal interactive

elements

Presence of interactive elements,

potentially deceptive

Mismatched

Domains

URL matches actual

domain

URL doesn't match actual

domain, potentially deceptive

Hover URLs Legitimate hover

URLs

Fake or misleading hover URLs,

potentially deceptive

Hidden Content No hidden content Presence of hidden content,

potentially deceptive

Download Links Normal download

links

Suspicious download links,

potentially leading to malware

Mixed Content Consistent secure

content

Mixture of secure and non-secure

content, potentially exploited

URL Parameters Normal URL

parameter count

Unusual or excessive URL

parameters, potentially malicious

G) Background of Multi-Agent Deep

Reinforcement Learning

This section provides a foundational overview

of key concepts and methodologies relevant to our

approach. We first discuss Multi-Agent Deep

Reinforcement Learning (MADRL) and its role in

collaborative environments. Then, we introduce the

Double Deep Q-Network (DDQN) algorithm, which

mitigates overestimation bias and instability in

traditional Q-learning. These concepts lay the

groundwork for understanding how our model

integrates deep reinforcement learning and multi-

agent architectures to enhance phishing detection

accuracy and robustness [30], [31].

Multi-Agent Deep Reinforcement Learning

(MADRL) enables multiple agents to interact within

a shared environment to achieve a common

objective. These agents either act independently to

maximize individual rewards (competitive model)

or collaborate to optimize a shared reward

(cooperative model) [32] [33].

To classify webpages as legitimate or phishing,

our model employs a multi-agent deep

reinforcement learning algorithm. This algorithm

38 International Journal of Smart Electrical Engineering, Vol.14, No1, Winter 2025 ISSN: 2251-9246

EISSN: 2345-6221

processes webpage features—including URL,

content, and DOM—by mapping them into a high-

dimensional feature space. The function f:Rd→R

optimizes these representations to enhance phishing

detection. Our approach integrates this function into

a deep learning framework designed to refine

classification accuracy through iterative training.

H) Background of Double Deep Q-Network

(DDQN)

The Double Deep Q-Network (DDQN)

improves upon the traditional Deep Q-Network

(DQN) by addressing overestimation bias in Q-

learning. Standard Q-learning estimates action

values using a single Q-network, often leading to

overoptimistic value predictions and unstable

learning. DDQN overcomes this issue by employing

two separate networks: one for action selection and

another for evaluation, ensuring more accurate Q-

value estimation [34] [35],[36].

Key Steps in DDQN Algorithm:

− Initialize two Q-networks: an online network

(Q_online) and a target network (Q_target).

− Collect experience tuples (state, action, reward,

next state) and store them in a replay buffer.

− Sample mini-batches from the buffer for

training.

− Compute target Q-values using the target

network to reduce overestimation bias.

− Update the online network using a loss function

to minimize the error between predicted and

target Q-values.

− Periodically update the target network by

copying weights from the online network.

− Advantages of DDQN:

− Reduces overestimation bias by separating

action selection from evaluation.

− Enhances stability through the use of a target

network with delayed updates.

− Improves learning efficiency, leading to faster

and more accurate convergence in complex

environments.

Due to its stability and effectiveness, DDQN is

widely used in reinforcement learning applications,

particularly those involving high-dimensional data

and intricate decision-making tasks.

I) DDQN

In our research, the Double Deep Q-Network

(DDQN) is a crucial element of the proposed

approach, which plays a central role in training a

multi-agent model to classify webpages as either

phishing or legitimate.

Double Q-Learning: DDQN mitigates
overestimation bias by using two separate Q-

networks. One network selects actions, and the other

estimates the Q-values for those actions, resulting in

more accurate and stable Q-value estimates.

Agent: The agent uses webpage features (URL,

content, DOM structure) to understand the state

current. It performs actions, receives rewards, and

updates the Q-table, initially set to zero and refined

over time to improve the policy.

Action (WP). Actions in the model affect the

environment and trigger updates to the Q-values.

The available actions depend on factors such as

feature vectors, the dataset, and neural network

architecture.

State (S). It represents the webpage features

and influences agent actions based on changes in the

environment.

Policy: The policy (π) guides the agent in

choosing actions that maximize rewards based on

the current state. As shown in Equation (4), π(s)

selects the action that maximizes the Q-value,

Q(s,a), for the states.

Reward and Learning: The reward (r) is the

feedback given to the agent after an action in a

specific state, indicating whether if the action was

beneficial or detrimental. In the phishing detection

task, correct classifications result in positive

rewards, while incorrect ones result in negative

rewards. Cumulative rewards at time t are calculated

by taking the sum of discounted future rewards, as

shown in Equation (5), where the discount factor γ

determines the importance of future rewards.

Q-Value (Action-Value Function): The Q-

value Q(s, a), also known as the action-value

function, is crucial in reinforcement learning and the

DDQN algorithm. It estimates the expected

cumulative reward for taking action in state s and by

following the optimal policy thereafter. DDQN

learns to estimate Q-values for different actions

given the current state, guiding the agent's decisions.

Mathematically, the Q-value is defined in Equation

(6) where 𝑹𝑪 represents the cumulative reward.:

The Goal of DDQN Agents: The primary goal

of DDQN agents is to maximize cumulative rewards

𝑹𝑪 by determining the optimal Q* function by using

an ɛ-greedy policy. The Q* function represents the

maximum achievable rewards for an optimal policy

π∗. In the ɛ-greedy policy, actions are selected

randomly from the available options to facilitate

learning and maximize reward acquisition based on

policy π∗. By applying the optimal policy π∗, the Q*

function can be transformed into the optimal

classifier model for the experiment, as represented

by Equation (7).

This variable "y" is a representation of the

expected Q-value, which is calculated using the

Bellman equation. It is used to update the Q-values

throughout the training process. The Bellman

equation computes the expected future reward from

a given state-action pair, by taking into account the

discounted future rewards and the Q-values of the

next state. The equation is as follows (8).

39 International Journal of Smart Electrical Engineering, Vol.14, No1, Winter 2025 ISSN: 2251-9246

EISSN: 2345-6221

This formula calculates the maximum Q-value

for a given state and action. The DQN estimates the

optimal action-value function by computing the

expected Q-value through the Bellman equation,

which helps it perform better in predicting class

labels.𝑟𝑗 is the immediate reward obtained by the

DDQN after taking action (a) in state (s) at time t.

Loss Function: The loss function (L) measures

the difference between the DDQN's estimated Q-

values and the target Q-values, calculated using the

Mean Squared Error (MSE). The target Q-values are

provided by a target network, a stable copy of the Q-

Network. The loss function is (9). The target Q-

values are computed as (10) where r is the

immediate reward, 𝛄 is the discount factor, s' is the

next state, and a' is the action in s''. The DDQN

minimizes this loss by updating its parameters,

improving its ability to classify webpages as

phishing or legitimate.

Exploration vs. Exploitation: The method uses

an ε-greedy policy to balance exploration of new

actions and exploitation of learned knowledge.

During training, the agent selects actions based on

Q-values with a probability (ε) for exploration. This

probability decreases over time to shifting favor

exploitation.

Training and Fine-tuning: The DDQN interacts

with the environment (webpage features) to update

Q-value estimates and fine-tune its parameters. The

process uses backpropagation and gradient descent

to minimize the loss function and improve Q-value

accuracy. By leveraging DDQN in deep

reinforcement learning, this method effectively

learns complex patterns from webpage data,

enhancing phishing detection accuracy.

𝜋 (𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄(𝑠, 𝑎)) (4)

𝑅𝐶 = ∑ 𝛾𝑘 . 𝑟𝑡+𝑘

∞

𝑘=1

 (5)

𝑄𝜋 (𝑠 , 𝑎) = 𝛦𝜋[∑ 𝛾𝑘 . 𝑟𝑡+𝑘
∞
𝑘=1 |(𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)] (6)

𝜋∗ = {
1 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄∗ (𝑠, 𝑎)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7)

𝑦 = {
𝑟𝑗 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑗 = 𝑇

𝑟𝑗 + 𝛾𝑚𝑎𝑥𝑎𝑡1
𝑄(𝑠𝑡+1 , 𝑎𝑡+1 ,𝜃𝑘−1)), 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑗 = 𝐹

 (8)

𝐿(𝜃) = ∑ ((𝑄(𝑠, 𝑎, 𝜃𝑘) − 𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎))2

(𝑠1 ,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)∊𝐵𝑚

 (9)

𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎, 𝜃) = 𝑟 + 𝛾 ∗ 𝑚𝑎𝑥(𝑄(𝑠1, 𝑎𝑡, 𝜃)) (10)

J) Classification based on DDQN

In the proposed phishing webpage

classification problem, the Double Deep Q-Network

(DDQN) is used as a reinforcement learning

algorithm for sequential decision-making. Agents

representing phishing and legitimate classes are

given input vectors of URL, content, and DOM to

interact with the environment and make decisions.

During the learning process, agents use these input

vectors to perform actions and obtain rewards. The

agents for the phishing class aim to maximize

rewards, whereas those for the legitimate class aim

to minimize them. This iterative process helps

agents improve their decision-making over time.

The state at each time step (t) is defined by a vector

space representation of the training dataset (T),

comprising three matrices for URL, content, and

DOM features. Each matrix has dimensions of

((96+96+20)* WPT), where 212 is the number of

feature vectors and WPT is the number of webpages

in the dataset. Training samples are updated each

episode to expose agents to different scenarios.

The action (a) is binary: 0 or 1, representing the

classification of a webpage (ut) as phishing or

legitimate. function estimates the likelihood that (ut)

is a phishing webpage. If the Q-function value

exceeds 0.5, it is normalized to 1 (phishing); if

between 0 and <0.5, it is normalized to 0

(legitimate). The reward (R) is feedback received by

the agent based on the correctness of its

classification. For each action (at), the reward (rt) is

defined as follows, based on whether the agent

correctly or incorrectly classified (ut) according to

its true label (lt) as (11):

𝑅 = {
1 , 𝑎𝑡 = 𝑙𝑡

−1 , 𝑎𝑡 ≠ 𝑙𝑡
 (11)

Using rewards, agents iteratively update their

Q-values through the DDQN algorithm, gradually

improving their classification ability for phishing or

legitimate webpages based on cumulative rewards.

In conclusion, DDQN allows agents to interact

effectively with the environment, receive feedback,

and learn to make better classification decisions,

resulting in an effective and accurate phishing

detection system.

K) Training the network

In our proposed phishing detection model

using the Double Deep Q-Network (DDQN)

algorithm we utilized three separate DDQNs for

URL, content, and DOM features. Each DDQN

comprises two fully connected neural networks,

each with ReLU activation and a softmax output

layer for Q-values. a batch size of 64, a learning rate

of 0.001, and the Adam optimizer across 1000

epochs. The loss was calculated by comparing

predicted Q-values with target Q-values. Random

data batches were used to train the DDQNs, with

weights updated simultaneously. The reward

function was based on prediction accuracy. Cross-

validation was performed to enhance accuracy and

generalization. By combining DDQNs with CNNs,

our method effectively detects phishing webpages,

achieving high accuracy and robustness. The DDQN

40 International Journal of Smart Electrical Engineering, Vol.14, No1, Winter 2025 ISSN: 2251-9246

EISSN: 2345-6221

agents learn optimal Q-values through exploration

(ε-greedy strategy) and exploitation, guiding

accurate classification decisions. The Figure 2

shows the structure of the three DQNs, and their

combined outputs determine the final classification

as phishing or legitimate based on the highest

confidence.

L) Highest confidence score

After training and extracting the feature

vectors outputs from each DDQN(URL, Content,

DOM), the highest confidence score as the final

output. For example, if the confidence scores are (1,

1, 0), the highest confidence score is 1.

4. Experimental results and analysis

This section summarizes four experiments

designed to evaluate the performance of the

proposed model in detecting phishing websites. The

experiments examine various aspects of the model,

including feature extraction, multi-agent

approaches, and comparisons with other models.

A) Experimental environment

The development environment used for the

experiments consisted of Python 3.5, with PyCharm

as the integrated development environment (IDE).

The system had 16GB of memory and an Intel Core

i7-6700 CPU, providing sufficient computational

power for the tasks. Windows 10 was the operating

system used, compatible with the necessary machine

learning frameworks and libraries.

Table.4.
Evaluation Indicator

Calculation formula Evaluation

indicator

(TP+TR)/(TP+FP+TN+FN) Accuracy

TP/(TP+FP) Precision

TP/(TP+FN) TPR(Recall)

(2*Precision*Recall)/(Precision+Recall) F1

FP/(TN+FP) FPR

Table.5.
Data Source

Data Source Legitimated Urls Phishing Urls

Phish Storm[37] 48009 47902

Phish Tank[38] 0 178495

Iscx-Url2016 [39] 35378 9965

Kaggle[40] 345738 0

B) Parameter setting

The proposed model utilizes several key

parameters to optimize performance. It uses 128

deep neural network cells to capture complex

features and a batch size of 64 for efficient sample

processing. A dropout rate of 0.5 helps prevent

overfitting by deactivating 50% of neurons during

training. The model is trained for 100 epochs and

1000 episodes, with a learning rate of 0.001,

balancing adaptation speed and stability. The RELU

activation function adds nonlinearity, improving

feature learning.

Input sizes for URLs, HTML content, and

DOM structures are set at 200, 1000, and 2000,

respectively. These lengths are chosen to reduce

unnecessary padding while preserving relevant

information, enhancing the model's ability to detect

phishing websites and optimizing computational

efficiency.

C) Evaluation metrics

Evaluation metrics commonly used in research

include Accuracy, Precision, Recall (True Positive

Rate), False Positive Rate (FPR), and F1-measure,

as detailed in Table 4. True Positive (TP) and True

Negative (TN) indicate correct classifications, while

False Positive (FP) and False Negative (FN)

represent misclassifications. The F1 score combines

Precision and Recall to assess overall performance

effectively.

D) Dataset

Data plays a crucial role in the performance of

machine learning models, with both the quality and

quantity being critical factors [41]. In our study, data

collection was organized into two main stages:

gathering data from various sources and processing

and storing it. We used several open datasets,

including the Phish Storm dataset [37], which

contains 96,018 URLs (48,009 legitimate and

48,009 phishing URLs), and the ISCX-URL2016

dataset [39], which includes 35,378 legitimate and

9,965 phishing URLs. Additionally, approximately

490,000 legitimate URLs were obtained from an

open Kaggle project [40], supplemented by daily

updates from the Phish Tank platform[38].Data

processing included cleansing, removing duplicates,

and standardizing URL formats to ensure a balanced

representation of legitimate and phishing URLs.

This approach helped prevent bias and ensured the

model could adapt to evolving phishing tactics. The

extensive and diverse dataset contributed to better

generalization, improving performance in phishing

detection by reducing false positives and negatives.

The data assessment in Table 5 reflects critical

aspects related to data sourcing, processing, and

integrity, which directly impacted the model's

performance.

E) Compared methods

To validate the efficacy of the proposed model,

a comparison study was conducted between The

proposed model and traditional phishing webpage

detection methods. Several deep learning-based

approaches have been developed for phishing

detection. PhishDet[28] employs a Long-term

Recurrent Convolutional Network and Graph

41 International Journal of Smart Electrical Engineering, Vol.14, No1, Winter 2025 ISSN: 2251-9246

EISSN: 2345-6221

Convolutional Network to analyse URL and HTML

features. The RNN-GRU model [7] utilizes a CNN

to extract features from website screenshots and

applies a Long Short-Term Memory (LSTM)

network for classification. WEB2VEC

[12]integrates Convolutional Neural Network

(CNN) for local feature extraction and Bidirectional

Long Short-Term Memory (BiLSTM) for global

semantic feature representation. Hybrid DLM [42]

combines deep LSTM and CNN networks, with the

LSTM analysing URL data and a separate CNN

processing HTML features. URLNet [43] uses

CNNs with character-level and word-level

embedding’s to automatically extract features from

URLs, while MPURNN [44] employs a CNN for

character-level embedding and an LSTM for

additional feature extraction, demonstrating the

diversity and effectiveness of deep learning

techniques in phishing detection. The comparison

demonstrates the strengths and approaches of each

model, highlighting the advancements and unique

contributions in phishing webpage detection

techniques.

In evaluating the feature extraction methods in

the proposed model, we considered several deep

learning networks including CNN, RNN, and

LSTM, as well as hybrid networks such as CNN-

RNN, CNN-LSTM, and CNN-BiLSTM. However,

it's worth noting that we did not compare traditional

supervised machine learning methods like

Sequential Minimal Optimization (SMO), Bayesian

Network (BN), Support Vector Machine (SVM),

and AdaBoost in our experiments.

Table.6.
Detection effects of different feature combinations

0.0032 0.9651 0.9628 0.9698 0.9695 CNN-LSTM

0.0104 0.9915 0.0059 0.9869 0.9918 CNN- RNN

0.0061 0.9616 0.9325 0.9924 0.9654 LSTM

0.0063 0.9628 0.9351 0.9922 0.9665 RNN

0.0085 0.9800 0.9756 0.9844 0.9786 CNN

Table.7.
Performance of various feature extraction models in detecting

phishing webpages is evaluated

FPR F1 TPR(Recall) Precision Accuracy Aalgorithm

0.0022 0.9930 09825 0.9905 0.9921 DDQN

0.0025 0.9908 0.9826 0.9869 0.9905 CNN-BLSTM

0.0032 0.9651 0.9628 0.9698 0.9695 CNN-LSTM

0.0104 0.9915 0.0059 0.9869 0.9918 CNN- RNN

0.0061 0.9616 0.9325 0.9924 0.9654 LSTM

0.0063 0.9628 0.9351 0.9922 0.9665 RNN

0.0085 0.9800 0.9756 0.9844 0.9786 CNN

Table.8.
Detection effects of different feature combinations

FPR F1 TPR

(Recall)

Precision Accurac

y

Feature

combination

0.0022 0.9930 09825 0.9905 0.9921 URL+HTML+DOM

0.0127 0.9914 0.9913 0.9919 0.9915 URL+HTML

0.0080 0.9887 0.9834 0.9812 0.9870 HTML+ DOM

0.0026 0.9710 0.9758 0.9798 0.9790 URL+ DOM

0.0030 0.9514 0.9700 0.9767 0.9712 HTML

0.0221 0.9363 0.9733 0.9978 0.9372 DOM

0.0259 0.9416 0.8800 0.8670 0.9010 URL

Table.9.
Detection effect of multiagent

FPR F1 TPR

(Recall)
Precision Accuracy Agent

0.0022 0.9930 09825 0.9905 0.9921 Multi Agent

0.0030 0.8731 0.8811 0.8670 0.9110 Single Agent

Fig. 2. Detection effect of multi-agent

F) Experiment 2: The effectiveness of DDQN

with additional features

Experiment 2 investigates the impact of the

feature extraction process on the proposed model by

using a Double Deep Q-Network (DDQN). In this

experiment, various models, including CNN-

BILSTM, CNN-LSTM, CNN-RNN, LSTM, RNN,

and CNN, are used in place of DQN in the proposed

model. The results of this comparison are

summarized in Table 7.the findings show that the

DDQN network outperforms CNN-BILSTM in

terms of classification detection, suggesting that

incorporating additional feature extraction improves

performance in multi-agent scenarios. Specifically,

the DDQN model achieves a False Positive Rate

(FPR) of 0.0022, an F1 score of 0.9930, a True

Positive Rate (Recall/TPR) of 0.9825, Precision of

0.9905, and an overall Accuracy of 0. 9921.In

comparison, CNN-BILSTM performs slightly

worse with an FPR of 0.0025, an F1 score of 0.9908,

a recall of 0.9826, precision of 0.9869, and an

accuracy of 0.9905. Other models, such as CNN-

LSTM, CNN-RNN, LSTM, RNN, and CNN, show

varying performance. CNN-LSTM has a higher FPR

(0.0104) and lower recall (0.0059), while CNN-

RNN and LSTM models perform similarly with

lower F1 scores and accuracy compared to DDQN.

these results indicate that DDQN with additional

features is more effective in phishing webpage

detection than the other models tested, highlighting

the importance of feature extraction in improving

model performance.

G) Experiment 3: Effects of multi-faceted

feature learning

Experiment 3 assessed the impact of learning

features from different webpage components,

including URL, page content, and DOM structure.

The results, shown in Table 8, reveal that the best

detection performance is achieved by combining all

three features: URL, page content, and DOM

42 International Journal of Smart Electrical Engineering, Vol.14, No1, Winter 2025 ISSN: 2251-9246

EISSN: 2345-6221

structure. This combination yields an FPR of

0.0022, an F1 score of 0.9930, a recall of 0.9825,

precision of 0.9905, and accuracy of 0. 9921.when

combining two features, such as URL + HTML, the

model still performs well, with an FPR of 0.0127

and an F1 score of 0.9914. However, using only a

single feature, like HTML or DOM, results in lower

performance, indicating that combining multiple

features enhances detection accuracy. Overall, the

experiment shows that incorporating multiple

sources of information significantly improves

phishing webpage detection.

H) Experiment 4: Evaluating the effectiveness

of a multiagent approach

Experiment 4 evaluated the proposed model's

multi-agent (3 DDQN) approach compared to a

single-agent model. Results in Table 9 show that the

multi-agent model achieved superior performance,

with faster, more stable training and testing. The

multi-agent model recorded an FPR of 0.0022, F1

score of 0.9930, recall of 0.9825, precision of

0.9905, and overall accuracy of 0.9921,

outperforming the single-agent model (FPR: 0.0030,

F1: 0.8731, recall: 0.8811, precision: 0.8670,

accuracy: 0.9110). These results confirm that the

proposed model effectively represents webpages

and improves classification by leveraging multi-

agent deep learning and additional feature

extraction, showcasing excellent prediction

performance. Figure 2 illustrated that the training

and testing processes in the multi-agent model were

faster and more stable

Figure 3 highlights the training and testing

accuracy and loss trends for single-agent and multi-

agent models over multiple epochs. The accuracy

graphs show a steady increase, reaching high

stability, while the loss graphs display rapid

decreases in early epochs, followed by stabilization.

These trends demonstrate the multi-agent model's

effective learning, rapid convergence, and strong

generalization from training to unseen data.

5. Conclusion

The study introduces the proposed model, an

automated framework for detecting phishing

webpages using a multi-agent deep reinforcement

learning approach with additional features. This

method leverages NLP-based representation

learning techniques to extract a comprehensive

webpage representation from various aspects, such

as URL, page content, and DOM structure. A multi-

channel, multi-agent deep learning network is

utilized to identify and extract deep hidden features,

with influential features weighted more heavily in

classification predictions. Results from four

experiments demonstrate that the proposed model

outperforms existing advanced phishing detection

techniques, achieving an impressive accuracy of

99.21% and a false positive rate as low as 0.22%.

Overall, this approach shows great potential to

enhance web security, empowering users and

organizations to effectively identify and prevent

phishing attacks. Future work could involve

optimizing the model by adding new features or

integrating more data to improve performance in

dynamic environments. Additionally, extending this

approach to address more complex threats and

enable phishing detection across multi-lingual

settings could further strengthen the system’s

capabilities.

EPPOCH(A)

EPPOCH(B)

EPPOCH(C)

EPPOCH(D)

Fig. 3. The impact of multi-agent deep learning

References

[1] Opara, C., Y. Chen, and B. Wei, Look before you leap:
Detecting phishing web pages by exploiting raw URL and
HTML characteristics. Expert Systems with Applications,
2024. 236: p. 121183.

[2] Wang, M., et al., Phishing webpage detection based on
global and local visual similarity. Expert Systems with
Applications, 2024. 252: p. 124120.

43 International Journal of Smart Electrical Engineering, Vol.14, No1, Winter 2025 ISSN: 2251-9246

EISSN: 2345-6221

[3] Sánchez-Paniagua, M., et al., Phishing URL detection: A
real-case scenario through login URLs. IEEE Access, 2022.
10: p. 42949-42960.

[4] Roy, S.S., et al., Multimodel Phishing URL Detection
Using LSTM, Bidirectional LSTM, and GRU Models.
Future Internet, 2022. 14(11): p. 340.

[5] Purwanto, R.W., et al., PhishSim: Aiding Phishing Website
Detection with a Feature-Free Tool. IEEE Transactions on
Information Forensics and Security, 2022. 17: p. 1497-
1512.

[6] Ozcan, A., et al., A hybrid DNN–LSTM model for detecting
phishing URLs. Neural Computing and Applications, 2021:
p. 1-17.

[7] Tang, L. and Q.H. Mahmoud, A Deep Learning-Based
Framework for Phishing Website Detection. IEEE Access,
2021. 10: p. 1509-1521.

[8] Moghimi, M. and A.Y. Varjani, New rule-based phishing
detection method. Expert systems with applications, 2016.
53: p. 231-242.

[9] Cao, J., et al., A phishing web pages detection algorithm
based on nested structure of earth mover’s distance (Nested-
EMD). Chinese Journal of Computers, 2009. 32(5): p. 922-
929.

[10] Rao, R.S. and A.R. Pais, Two level filtering mechanism to
detect phishing sites using lightweight visual similarity
approach. Journal of Ambient Intelligence and Humanized
Computing, 2020. 11(9): p. 3853-3872.

[11] Liang, B., et al. Cracking classifiers for evasion: A case
study on the google's phishing pages filter. in Proceedings
of the 25th International Conference on World Wide Web.
2016.

[12] 1, J.F., et al., Web2Vec: Phishing Webpage Detection
Method Based on Multidimensional Features Driven by
Deep Learning. 2020.

[13] Vrbančič, G., I. Fister Jr, and V. Podgorelec. Swarm
intelligence approaches for parameter setting of deep
learning neural network: case study on phishing websites
classification. in Proceedings of the 8th international
conference on web intelligence, mining and semantics.
2018.

[14] Yang, P., G. Zhao, and P. Zeng, Phishing website detection
based on multidimensional features driven by deep
learning. IEEE access, 2019. 7: p. 15196-15209.

[15] Korkmaz, M., O.K. Sahingoz, and B. Diri. Feature
selections for the classification of webpages to detect
phishing attacks: a survey. in 2020 International Congress
on Human-Computer Interaction, Optimization and Robotic
Applications (HORA). 2020. IEEE.

[16] El Aassal, A., et al., An in-depth benchmarking and
evaluation of phishing detection research for security needs.
IEEE Access, 2020. 8: p. 22170-22192.

[17] Elsadig, M., et al., Intelligent Deep Machine Learning
Cyber Phishing URL Detection Based on BERT Features
Extraction. Electronics, 2022. 11(22): p. 3647.

[18] Chatterjee, M. and A.-S. Namin. Detecting phishing
websites through deep reinforcement learning. in 2019
IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC). 2019. IEEE.

[19] Feng, J., L. Zou, and T. Nan, A phishing webpage detection
method based on stacked autoencoder and correlation
coefficients. Journal of computing and information
technology, 2019. 27(2): p. 41-54.

[20] Basit, A., et al., A comprehensive survey of AI-enabled
phishing attacks detection techniques. Telecommunication
Systems, 2021. 76(1): p. 139-154.

[21] Chen, W., W. Zhang, and Y. Su. Phishing detection
research based on LSTM recurrent neural network. in
International Conference of Pioneering Computer
Scientists, Engineers and Educators. 2018. Springer.

[22] Douzi, S., M. Amar, and B. El Ouahidi. Advanced phishing
filter using autoencoder and denoising autoencoder. in
Proceedings of the International Conference on Big Data
and Internet of Thing. 2017.

[23] Zhang, X., et al. Boosting the phishing detection
performance by semantic analysis. in 2017 ieee
international conference on big data (big data). 2017. IEEE.

[24] Bu, S.-J. and H.-J. Kim. Learning Disentangled
Representation of Web Address via Convolutional-
Recurrent Triplet Network for Classifying Phishing URLs.
in 2021 International Conference on Electronics,
Information, and Communication (ICEIC). 2021. IEEE.

[25] Gualberto, E.S., et al., The answer is in the text: multi-stage
methods for phishing detection based on feature
engineering. IEEE Access, 2020. 8: p. 223529-223547.

[26] Xiao, X., et al., Phishing websites detection via CNN and
multi-head self-attention on imbalanced datasets.
Computers & Security, 2021. 108: p. 102372.

[27] Louati, F. and F.B. Ktata, A deep learning-based multi-
agent system for intrusion detection. SN Applied Sciences,
2020. 2(4): p. 1-13.

[28] Ariyadasa, S., S. Fernando, and S. Fernando, Combining
Long-Term Recurrent Convolutional and Graph
Convolutional Networks to Detect Phishing Sites Using
URL and HTML. IEEE Access, 2022. 10: p. 82355-82375.

[29] Mohammad, R.M., F. Thabtah, and L. McCluskey. An
assessment of features related to phishing websites using an
automated technique. in 2012 international conference for
internet technology and secured transactions. 2012. IEEE.

[30] Louati, F. and F.B. Ktata, A deep learning-based multi-
agent system for intrusion detection. SN Applied Sciences,
2020. 2(4): p. 675.

[31] Nguyen, T.T., et al., A multi-objective deep reinforcement
learning framework. Engineering Applications of Artificial
Intelligence, 2020. 96: p. 103915.

[32] Nguyen, T.T., N.D. Nguyen, and S. Nahavandi, Deep
reinforcement learning for multiagent systems: A review of
challenges, solutions, and applications, in IEEE transactions
on cybernetics. 2020. p. 3826-3839.

[33] Sartoli, S. and A.S. Namin. A semantic model for action-
based adaptive security. in Proceedings of the Symposium
on Applied Computing. 2017.

[34] Jiang, F., et al., A reinforcement learning-based computing
offloading and resource allocation scheme in F-RAN.
EURASIP Journal on Advances in Signal Processing, 2021.
2021: p. 1-25.

[35] Sutton, R.S. and A.G. Barto, Reinforcement learning: An
introduction. 2018: MIT press.

[36] Du, W. and S. Ding, A survey on multi-agent deep
reinforcement learning: from the perspective of challenges
and applications. Artificial Intelligence Review, 2021.
54(5): p. 3215-3238.

[37] Wang, W., et al., PDRCNN: Precise phishing detection with
recurrent convolutional neural networks. Security and
Communication Networks, 2019. 2019(1): p. 2595794.

[38] PhishTank > See All Suspected Phish Submissions.
Accessed: Oct. 20, 2021. www.phishtank.com.[Online].
Available: https://www.phishtank.com/phish_archive.php.

[39] URL 2016 | Datasets | Research | Canadian Institute for
Cybersecurity | UNB. Accessed: Oct. 20, 2021.
www.unb.ca. [Online]. Available:
https://www.unb.ca/cic/datasets/url-2016.html.

[40] Kumar., S., Malicious and Benign URLs.kaggle.com. 2019.

[41] Gupta, N., et al. Data quality for machine learning tasks. in
Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining. 2021.

[42] Ariyadasa, S., S. Fernando, and S. Fernando, Detecting
phishing attacks using a combined model of LSTM and

file:///D:/IJSEE/52-new/www.phishtank.com.%5bOnline
https://www/
file:///D:/IJSEE/52-new/www.unb.ca
https://www.unb.ca/cic/datasets/url-2016.html

44 International Journal of Smart Electrical Engineering, Vol.14, No1, Winter 2025 ISSN: 2251-9246

EISSN: 2345-6221

CNN. International Journal of Advanced And Applied
Sciences, 2020. 7(7): p. 56-67.

[43] Le, H., et al., URLNet: Learning a URL representation with
deep learning for malicious URL detection. arXiv preprint
arXiv:1802.03162, 2018.

[44] Bahnsen, A.C., et al. Classifying phishing URLs using
recurrent neural networks. in 2017 APWG symposium on
electronic crime research (eCrime). 2017. IEEE.

