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Abstract 

Managing liquidity and inventory simultaneously remains a critical challenge in production planning, 

particularly for firms dealing with delayed receivables and financial constraints. This study proposes a 

novel mathematical model that integrates accounts receivable financing (ARF) into multi-period 

production planning. The model explicitly incorporates financial parameters such as cash inflows, 

advance payments, receivable discount rates, and bank credit limits, alongside operational factors like 

procurement and holding costs. 

The objective function is designed to maximize liquidity at the end of the planning horizon while 

ensuring demand satisfaction and inventory balance. A key innovation lies in the model’s unified 

treatment of financial and operational constraints—an aspect often overlooked in existing literature. 

The model is solved using advanced optimization methods, including nonlinear programming and a 

genetic algorithm, to handle complexity and ensure convergence to near-optimal solutions. 

Sensitivity analysis demonstrates the model’s robustness under demand fluctuations and financial 

volatility. Results indicate that the proposed approach can significantly reduce financial risks, 

improve cash flow stability, and support strategic decision-making. This framework offers valuable 

insights for managers seeking to align operational efficiency with financial resilience. Future research 

directions are also outlined to expand the model's applicability in dynamic production environments. 

Keywords: Accounts Receivable Financing, Liquidity Optimization, Inventory Management, 

Production Planning, Financial Risk Mitigation, Mathematical Modeling. 
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1.Introduction 

Liquidity management plays a critical role in production planning, particularly in environments where 

delayed receivables lead to operational disruptions. Accounts Receivable Financing (ARF) has 

emerged as a viable tool to address such challenges by converting receivables into immediate cash. 

This financial mechanism allows companies to accelerate cash inflows, mitigate payment default 

risks, and improve flexibility in procurement and production scheduling. 

Despite its potential, effectively integrating ARF into production planning remains complex. Firms 

must balance the financial benefits of ARF—such as enhanced liquidity and risk reduction—against 

associated costs like discount rates and administrative expenses. Additionally, operational factors 

including inventory management, order scheduling, and fluctuating demand introduce further 

constraints, necessitating a unified optimization framework. 

Existing literature has addressed ARF from various angles, including credit risk mitigation, supply 

chain coordination, and blockchain-based transparency. However, most studies treat financial and 

operational decisions separately, lacking an integrated perspective that reflects the realities of 

dynamic production environments. This gap limits the practical applicability of prior models. 

To address this limitation, the present study develops a novel mathematical model that incorporates 

ARF directly into multi-period production planning. The proposed model simultaneously considers 

key financial variables—such as advance payments, bank credit limits, and receivable discounting—

and operational elements like procurement costs and inventory levels. The objective is to maximize 

end-period liquidity while satisfying financial and operational constraints. The model is solved using 

a genetic algorithm, enabling effective optimization in nonlinear and constrained settings. The results 

offer practical insights for managers aiming to enhance liquidity and minimize financial risks in 

uncertain markets. 

While previous studies have explored accounts receivable financing from diverse perspectives—such 

as game-theoretic coordination, risk-sharing mechanisms, and technological platforms—they rarely 

provide an integrated model that combines ARF with detailed production planning decisions. Most 

existing models separate financial flows from operational constraints, making them less applicable in 

dynamic and uncertain environments. 

This study contributes to the literature by proposing a unified mathematical framework that embeds 

ARF directly into multi-period production planning. Unlike prior works, the model explicitly 

incorporates liquidity constraints, credit limitations, advance payment structures, and receivable 

discounting, alongside inventory and procurement decisions. The application of a genetic algorithm to 



solve the nonlinear optimization problem further enhances its novelty and practicality. The model not 

only bridges a major gap in the literature but also offers a robust tool for managers facing financial 

uncertainty in operational planning. 

 

 

2.Literature Review 

Recent studies on accounts receivable financing (ARF) have explored its impact on financial 

coordination, credit risk reduction, and production planning efficiency. (Yan et al., 2024) and (Zhang 

et al., 2023) used evolutionary game theory to analyze the strategic interactions among supply chain 

members, emphasizing the role of coordination and central bank digital currencies in enhancing 

financing efficiency. Similarly, (Xia , 2022;  Zhao  and  Lu, 2023) examined ARF under uncertainty, 

proposing guarantee mechanisms and pledge financing models to mitigate liquidity risks. 

Operational integration of ARF has also gained attention. (Zhu et al., 2022; Cheng et al., 2023) 

developed joint financial-operational models to align cash flow and production schedules, 

demonstrating improved coordination and reduced costs. (Li et al., 2024; Cano et al., 2022) analyzed 

ARF in the context of SMEs and real-world case studies, confirming its positive impact on liquidity 

and investment capacity. 

Emerging technologies have introduced new perspectives. (Yang, 2024; Wang 2023, 2024; Ma et al. 

,2023) emphasized the role of blockchain and smart contracts in increasing transparency, reducing 

administrative costs, and streamlining receivables financing. These studies highlight the potential of 

digital infrastructure in modernizing financial operations. 

In addition, policy-oriented models by (Zhao and Lu, 2021; Feng, 2023) illustrated how government 

incentives and regulatory frameworks influence ARF adoption and coordination. (Zeng and Geng 

,2022) addressed sustainability by integrating green finance into ARF strategies for environmentally 

conscious production. 

Although these works offer valuable insights, most focus on specific financial mechanisms or 

strategic interactions, often excluding the operational side of production planning. This study 

distinguishes itself by proposing a comprehensive mathematical model that integrates ARF directly 

into multi-period production operations, explicitly addressing both financial and inventory-related 

constraints under real-world uncertainties. 

 

3.Modeling 

The proposed mathematical model for accounts receivable financing (ARF) is developed as an 

advanced tool for managing production planning in dynamic and complex environments. This model 

integrates financial and operational aspects of production to support strategic decision-making related 

to purchasing, selling, inventory management, and financing. The primary objective is to maximize 

available liquidity at the end of the planning horizon, ensuring financial stability by accurately 

managing resources and minimizing associated costs. 

Parameters and Decision Variables 

The model encompasses a set of parameters and decision variables that reflect the interactions among 

various production planning components, including suppliers, buyers, and financial institutions. Key 

parameters include purchasing, holding, and fixed costs, the percentage of cash and advance payments 

received from buyers, bank interest rates, and forecasted demand for products. Decision variables 



include the quantities of products purchased and sold during each period, end-of-period inventory 

levels, available liquidity, and the amount of financing received from banks. Additionally, binary 

variables are introduced to determine whether products are purchased during different periods. 

 

 

Parameters: 

MaxCred: Maximum credit limit provided by the bank in period t 

DiscRate: Discount rate for receivables in period t, determined by the bank. 

CashPerc: Percentage of cash received from buyer l for product k in period t 

AdvPerc Percentage of advance payment received from buyer l for product k in period t−, with 

guaranteed delivery in period t. 

w₀: Initial liquidity at the start of the financial period. 

MinOrder: Minimum acceptable order quantity for buyer l in period t 

γ: Percentage of receivables from buyer l for product k in period t that can be converted into liquidity 

in period 𝑡 + ℎ 

SellingPrice: Selling price per unit of product k to buyer l in period t 

HoldingCost: Holding cost per unit of product k in period t 

ProcureCost: Procurement cost per unit of product k. 

FixedCost: Fixed costs incurred at the end of period t. 

InitCash: Initial liquidity at the start of the financial period. 

AdvPerc: Percentage of advance payment received from buyer l for product k in period t−h, with 

guaranteed delivery in period t. 

 

 

Decision Variables: 

X: Quantity of product k purchased in period t 

S: Quantity of product k sold to buyer l in period t 

I: Inventory level of product k at the end of period t 

w: Liquidity available at the end of period t 

R: Total receivables at the end of period t 

Fin: Financing received from the bank through receivables factoring in period t 

CashIn: Cash inflows during period t, excluding bank financing. 

δ(Xᵢ): Binary variable indicating whether product iii is purchased in period t (1 if yes, 0 if no). 

 𝐼𝑓𝑘𝑡: Warehousing cost at the end of period t 

 𝐼𝑁𝐶𝑡:Transportation and distribution cost at the end of period t 



𝑇𝑅𝐶𝑡 : Amount of receivables from buyer I for product k in period t-h, with liquidity available in 

period t 

𝐴𝑅𝑘𝐼𝑡,𝑡+ℎ: Amount of cash received from buyer I for product k in period t 

 Amount of advance payment received from buyer I for product k in period t, with a guarantee of 

delivery in period t+h 

 

Objective Function: 

Maximize w 

Objective: Maximize liquidity available at the end of the planning horizon T. This ensures financial 

stability and optimal use of resources throughout the planning period. 

Constraints 

The model is structured with a set of constraints that capture operational and financial limitations: 

1. Inventory Balance Constraint: 

Ensures that the end-of-period inventory equals the initial inventory plus purchased quantities 

minus sold quantities. 

 

2. Demand Fulfillment Constraint: 

Ensures that sold quantities do not exceed the forecasted demand. 

 

3. Liquidity Constraint: 

Ensures sufficient liquidity during each period to cover purchasing, holding, and fixed costs. 

 

 

4. Income and Expense Calculation: 

Defines the total receivables based on cash and advance payments from sales, incorporating 

discount rates. 

 

5. Bank Credit Constraint: 

Limits financing to the maximum available credit from the bank. 

 



6. Liquidity for Financing Constraint: 

Determines financing based on the difference between required liquidity and available 

liquidity during a given period. 

 

7. Liquidity Conversion: 

Calculates end-of-period liquidity, including cash flows and receivables converted into cash, 

minus fixed costs. 

 

8. Non-Negative Inventory: 

Ensures that inventory levels remain non-negative. 

 

9. Minimum Order Quantity Constraint: 

Enforces a minimum order quantity for sales to buyers. 

 

10. Binary Decision for Purchases: 

A binary variable determines whether a product is purchased during a specific period. 

 

 

 

      11. Warehousing Cost Calculation 

 
(The warehousing cost is calculated as the inventory level multiplied by the holding cost per unit.) 

 

12. Transportation and Distribution Cost:      

 

 

 

 

(Transportation and distribution costs depend on the quantity sold and the cost per unit.) 

 

 

 

13. Receivables Liquidity Conversion: 



 

 

 

(Receivables from buyer 𝐼 for product 𝑘 in period 𝑡 − ℎ are converted to liquidity in period 𝑡 

using the conversion factor 𝛾.) 

 

 

14. Cash Received from Advance Payments: 

 

 

 

(Advance payments for guaranteed delivery are calculated as a percentage of sales in the relevant 

period.) 

 

Objective Function 

The objective function seeks to maximize liquidity at the end of the planning horizon: 

 

Where 𝐿𝑇 is the liquidity at the final period T. 

The model incorporates a range of parameters, including purchasing costs, holding costs, fixed costs, 

cash flow rates, demand forecasts, and bank credit limits. Sensitivity analysis is performed to assess 

the impact of changes in key parameters, such as interest rates, demand fluctuations, and holding 

costs, on liquidity and financial stability. By addressing operational challenges like optimal order 

quantities and financial commitments, the model ensures liquidity preservation across all periods. 

The proposed model provides solutions for real-world operational challenges, such as determining 

optimal order quantities and managing financial obligations to maintain liquidity throughout all 

periods. It reduces financial risks by accurately managing liquidity and limiting dependence on 

external financing. The model helps organizations utilize internal resources more effectively, reducing 

reliance on external financing and enhancing flexibility in responding to market changes. 

Ultimately, the proposed model not only guarantees improved financial performance but also fosters 

better coordination among production planning components. By considering operational and financial 

requirements, it serves as a strategic tool for financial and managerial decision-making. The model is 

especially useful for industries that experience delays in accounts receivable, as it improves trust 

among production planning members, reduces costs, and enhances liquidity while ensuring 

operational stability. By offering practical solutions, this model plays a significant role in optimizing 

production planning management. 

The proposed mathematical model for accounts receivable financing is designed as an 

advanced tool for production planning management, aiming to optimize liquidity and 

reduce financial risks in complex and dynamic environments. This model considers all 

operational and financial aspects of the production planning, assisting in smarter 

decision-making regarding purchasing, selling, inventory management, and financing. 



The objective function is defined to maximize the available liquidity at the end of the 

planning period, ensuring the organization’s financial stability by accurately managing 

financial resources and minimizing costs associated with procurement and inventory 

holding. 

The modeling process is summarized as follows   

The model was formulated by translating real-world financial and operational processes into a set of 

mathematical equations. We began by defining decision variables representing key activities such as 

purchasing, selling, financing, and inventory holding. Parameters such as cash inflow ratios, 

procurement and holding costs, credit limits, and discount rates were included to reflect practical 

conditions. Constraints were then formulated to ensure inventory balance, demand satisfaction, 

liquidity sufficiency, and adherence to credit limits. The objective function—maximizing end-period 

liquidity—was constructed to capture the primary managerial goal. Binary variables were added to 

model purchasing decisions. Overall, the model took the form of a nonlinear, constrained optimization 

problem with both continuous and discrete variables . 

 

The model includes a set of parameters and decision variables that reflect the interactions 

among various components of the production planning, including suppliers, buyers, and 

financial institutions. Key parameters include procurement costs, holding costs, fixed 

costs, the percentage of cash and advance payments received from buyers, bank interest 

rates, and forecasted product demand. Decision variables include the quantities of 

products purchased and sold in each period, end-of-period inventory levels, available 

liquidity, and the amount of financing received from banks. Additionally, binary 

variables are introduced to determine whether products are purchased during different 

periods. 

The model is structured with a set of constraints that capture operational and financial 

limitations. Inventory balance constraints ensure that inventory levels in each period 

align with quantities purchased, sold, and carried forward from the previous period. 

Demand-related constraints ensure that sales volumes do not exceed the forecasted 

demand from buyers. Liquidity constraints guarantee that the available liquidity in each 

period is sufficient to cover procurement, holding, and fixed costs. Bank credit 

limitations restrict the available financing to prevent excessive reliance on external 

funding. 

A key feature of this model is its consideration of all financial flows within the 

production planning, including revenues from sales, incoming cash flows, and funds 

obtained through bank financing. The model also analyzes the interactions between 

financial flows and physical operations, such as purchasing and selling products, and 

evaluates their impact on final liquidity levels. It enables organizations to use sensitivity 

analysis to assess the effects of changes in key parameters, such as interest rates, demand 

levels, and holding costs, and to make better decisions accordingly. 

The model also aims to provide solutions to operational challenges within the production 

planning, such as determining optimal order quantities and managing financial 

commitments to maintain liquidity throughout all periods. Other advantages of the model 



include its ability to reduce financial risks through precise liquidity management and 

limiting external financing. The model helps organizations effectively utilize internal 

resources, reducing dependency on external funding and increasing flexibility in 

responding to market changes. 

 

Benefits of the Model 

1. Financial Optimization: Maximizes liquidity and minimizes costs associated 

with inventory holding and procurement. 

2. Risk Mitigation: Reduces dependence on external financing by effectively 

managing cash flows. 

3. Operational Efficiency: Aligns financial and operational priorities, ensuring 

stable production planning. 

4. Strategic Decision-Making: Provides a robust framework for managers to 

evaluate and implement optimal production and financing strategies. 

 

4.Solution Approach and Genetic Algorithm Parameters 

The genetic algorithm (GA) used to solve the model was configured with parameters 

selected based on empirical tuning...Ultimately, the proposed model not only ensures 

improved financial performance but also facilitates better coordination among production 

planning components. By considering both operational and financial requirements, it 

serves as a strategic tool for financial and managerial decision-making. It is particularly 

applicable in industries that face delays in receivables collection. Using this model can 

increase trust among production planning members, reduce costs, and improve liquidity 

while ensuring the organization’s operational stability. By offering practical solutions, 

this model plays a significant role in optimizing production planning management. 

 

 

Table 1: Basic models of inventory and working capital management 

Category Parameter Value Unit 

Problem Dimensions    

 Number of Periods (T) 6 Periods 

 Number of Products (K) 3 Products 

 Number of Buyers (I) 2 Buyers 



Category Parameter Value Unit 

 Prepayment Period (h) 1 Period 

Financial Parameters    

 Maximum Credit (MaxCred) 10,000 Currency Units 

 Discount Rate (DiscRate) 0.02 Percent 

 Initial Liquidity (InitCash) 5,000 Currency Units 

Payment Conditions    

 Cash Payment Percentage 

(CashPerc) 
0.7 Percent 

 Advance Payment Percentage 

(AdvPerc) 
0.3 Percent 

Prices and Costs    

 Base Selling Price 100 Currency Units 

 Price Increase per Product 10 Currency Units 

 Random Price Fluctuation N(0,5) Currency Units 

 Holding Cost (h_cost) 5 
Currency 

Units/Period 

 Procurement Cost for Product 1 50 Currency Units 

 Procurement Cost for Product 2 60 Currency Units 

 Procurement Cost for Product 3 70 Currency Units 

 Fixed Cost (F) 1,000 
Currency 

Units/Period 

Demand Parameters    

 Base Demand 100 Units 

 Sinusoidal Fluctuation 20×sin(t) Units 

 Random Demand Fluctuation N(0,10) Units 

 Minimum Order (MinOrder) 10 Units 

Genetic Algorithm 

Parameters 
   

 Population Size 100 Members 

 Maximum Generations 200 Generations 

 Crossover Rate 0.8 Percent 

Penalty Coefficients    

 Negative Inventory Penalty 1e7 Currency Units 

 Demand Violation Penalty 1e6 Currency Units 

 Credit Violation Penalty 1e7 Currency Units 

 Minimum Order Violation Penalty 1e5 Currency Units 

 Inventory Change Penalty 1e4 Currency Units 

 

 



The  initial hypothetical values in Table1 are considered for a medium-sized inventory 

and working capital management problem. In this model, a company with 3 products, 2 

buyers, and a planning horizon of 6 periods is analyzed. The financial parameters include 

a credit limit of 10,000 units and an initial liquidity of 5,000 units, which seem 

reasonable given the problem's scale. Payment terms are set at 70% cash and 30% 

advance payment, reflecting a cautious financial policy. 

Holding costs are relatively low (5 units), and procurement costs increase progressively 

(50, 60, and 70 units) for different products. Demand consists of a fixed component (100 

units), a sinusoidal component to represent seasonal variations, and a normal random 

component to simulate unpredictable fluctuations. 

The genetic algorithm parameters, with a population size of 100 and 200 generations, are 

configured to balance computational time and solution quality. 

 

Figure1. Genetic algorithm convergence diagram 

 

The convergence chart of the genetic algorithm in Figure1 illustrates the improvement trend of the 

objective function over 200 generations. The chart displays the number of generations on the 

horizontal axis and the objective function value on the vertical axis, with two primary curves: one 

representing the best fitness value and the other the mean fitness of the population. The vertical axis 

scale ranges from −13 × 1010 to −4 × 1010, indicating a minimization problem. 

The convergence process of the algorithm can be divided into three main phases: 



Phase 1 (Generations 1 to 20): 

A rapid and significant improvement in the objective function value is observed, reflecting the 

algorithm’s capability to quickly identify promising regions in the search space. During this 

phase, the gap between the best solution and the population mean is large, indicating high 

diversity within the population. 

Phase 2 (Generations 20 to 80): 

The rate of improvement decreases, but a gradual downward trend continues. At this stage, the 

gap between the best solution and the population mean narrows, indicating a gradual convergence 

of the population towards better solutions. 

Phase 3 (Generations 80 to 200): 

The algorithm reaches an almost stable state, with only minor improvements in the objective 

function value. The final best value achieved −1.29755 ×  1011, and the mean fitness value is 

−1.29703 ×  1011. 

The rapid convergence in the initial phase demonstrates that the genetic algorithm parameters (e.g., 

population size, mutation rate, and crossover rate) have been appropriately tuned. The close alignment 

between the best and mean values at the end of the execution reflects proper convergence but may 

also indicate a reduction in genetic diversity, raising the risk of the algorithm getting trapped in local 

optima. 

While the convergence curve suggests that the algorithm has reached a stable solution, additional 

strategies could be employed to ensure solution quality. These include increasing the mutation rate in 

the final generations or rerunning the algorithm with different initial values. Another noteworthy 

aspect is the presence of minor fluctuations in the mean population curve, indicating that the mutation 

operator continues to introduce diversity within the population. This is a desirable feature, as it 

enables exploration of the solution space even during the final generations. 

The numerical results presented in the table reflect the performance of the genetic 

algorithm during the final generations (183 to 200). These results include the generation 

number, individual ID, best fitness value, average fitness value, and the number of stalls 

(improvement stagnation). 

In Table2 the final generations, the objective function value improves from 

−1.298 × 1011 to −1.295 × 1011, indicating slight but continuous progress. The 

average fitness of the population is almost equal to the best value, demonstrating that the 

population has converged effectively. After 200 generations, the algorithm terminates 

due to reaching the maximum allowed number of generations. 

 

 

 

 

 

 



Table2. The final optimization results 

Metric Value 

Objective Function Value (Final Liquidity) −1.29755 × 1011  

Average Purchases per Period 532.517 

Average Sales per Period 5210.855 

Average Inventory Level −16,999.553-16,999.553−16,999.553 

Average Liquidity 1,254,197.387 

 

 

These results indicate that the algorithm has successfully achieved an acceptable solution. 

 

  

Figure2.Output Charts 

The output charts in Figure2 consist of three graphs that illustrate the trends of key variables over six 

periods: 

1. First Chart (Total Optimal Purchases in Each Period): 

A fluctuating trend is observed with a sharp increase in the final period. The purchase quantity 

starts at approximately 200 units in the first period, rises to around 500 units in the second 

and third periods, decreases slightly, and finally surges to over 1,000 units in the sixth period. 

This purchasing pattern indicates a stockpiling strategy towards the end of the planning 

horizon, potentially due to anticipated demand increases or price changes. 



2. Second Chart (Optimal Liquidity in Each Period): 

A steadily increasing, almost linear trend is observed, starting from zero and reaching 

approximately 2.5×1062.5 \times 10^62.5×106 by the sixth period. This trend demonstrates 

that the liquidity management strategy has been successful, consistently improving liquidity 

throughout the periods. 

3. Third Chart (Total Optimal Inventory in Each Period): 

A downward trend is evident, starting at around −0.5×106-0.5 \times 10^6−0.5×106 and 

declining to approximately −3×106-3 \times 10^6−3×106 by the sixth period. This suggests a 

consistent depletion of inventory levels, likely due to sales outpacing replenishment, which 

aligns with the strategy to optimize holding costs and manage cash flow effectively. 

5. Managerial Implications 

 The proposed model offers valuable insights for decision-makers managing production planning 

under financial constraints. In real-world environments where delayed customer payments, limited 

credit access, and volatile demand conditions are common, this model enables managers to design 

more resilient and liquidity-focused strategies. 

One of the key managerial advantages is the model’s ability to simulate various financial and 

operational scenarios. Managers can evaluate how changes in parameters—such as customer payment 

patterns, interest rates, or inventory holding costs—affect cash availability and production efficiency 

across multiple periods. This helps in proactively adjusting purchasing schedules, financing plans, and 

sales policies, thereby reducing financial risk and avoiding liquidity shortages. 

The integration of accounts receivable financing (ARF) directly into the production planning model is 

especially significant. It allows managers to assess the impact of offering credit to buyers and 

determine the optimal use of receivables discounting. Instead of relying on intuition or ad-hoc 

decisions, they can use a structured tool to align operational decisions (e.g., order quantities, 

procurement timing) with financial constraints (e.g., credit limits, cash flow availability). 

Moreover, the use of genetic algorithms enables fast and robust optimization even in complex and 

nonlinear situations, making the model applicable to a wide range of manufacturing environments. 

Sensitivity analysis enhances this further by allowing managers to anticipate outcomes under 

uncertainty and to test the impact of extreme scenarios. 

Overall, the model serves as a strategic decision support system, enabling production and financial 

managers to coordinate efforts, minimize risk, and improve both liquidity and operational efficiency. 

 

 

 

Conclusion 

This study introduces a novel mathematical model that integrates accounts receivable 

financing into production planning, addressing critical challenges in liquidity 

management and financial risk mitigation. By incorporating parameters such as cash 

inflows, advance payments, procurement costs, and bank credit limits, the model 

provides a robust framework for optimizing financial and operational performance. 

The results demonstrate that the proposed model effectively enhances liquidity, reduces 

financial dependency, and supports decision-making under dynamic market conditions. 

Sensitivity analyses further validate its adaptability to variations in demand, interest 

rates, and operational costs, making it applicable across industries with diverse financial 

constraints. 

Key findings underscore the strategic importance of ARF in modern production planning: 



1. Liquidity Optimization: The model ensures stable cash flow across planning periods, 

reducing reliance on external financing and mitigating financial risks. 

2. Cost Reduction: By integrating ARF with inventory management, the model 

minimizes holding and procurement costs, improving overall profitability. 

3. Scalability and Flexibility: The framework adapts to fluctuating market conditions, 

offering managers actionable tools for both short-term and long-term planning. 

Despite its strengths, the study acknowledges limitations, such as the exclusion of 

advanced market dynamics and the lack of real-time data integration. Future research 

could explore these areas, particularly the incorporation of blockchain technology and 

artificial intelligence to enhance model efficiency and transparency. Additionally, 

expanding the model to address sustainability goals and multi-tier supply chains could 

provide further value. 

In conclusion, this research contributes to the growing body of knowledge on ARF by 

offering a comprehensive, practical, and scalable solution for production planning 

challenges. It equips managers with a strategic tool for aligning financial stability with 

operational efficiency, paving the way for sustainable growth and competitive advantage 

in today’s dynamic industrial landscape. 

 

 

 

 

References    

Yan, B., Chen, Z., Yan, C., Zhang, Z., & Kang, H. (2024). Evolutionary multiplayer game analysis of 

accounts receivable financing based on supply chain financing. International Journal of Production 

Research, 62(22), 8110–8128. 

Zeng, G., & Geng, C. (2022). A game study on accounts receivable financing in energy conservation 

and environmental protection manufacturing supply chain under green development. Polish Journal of 

Environmental Studies, 31(2). 

Zhang, Q., Yang, D., & Qin, J. (2023). Multi-party evolutionary game analysis of accounts receivable 

financing under the application of central bank digital currency. Journal of Theoretical and Applied 

Electronic Commerce Research, 18(1), 394–415. 

Zhao, S., & Lu, X. (2023). Guarantee mechanism in accounts receivable financing with demand 

uncertainty. Sustainability, 15(3), 2192. 

Zhao, S., & Lu, X. (2021, May). Accounts receivable financing and supply chain coordination under 

the government subsidy. In 2021 11th International Conference on Information Science and Technology 

(ICIST) (pp. 477–484). IEEE. 

Yang, L. (2024). Blockchain-driven account receivable financing coordination strategies. IEEE Access. 

Xia, Y. Y. (2022). A study on evolution game of accounts receivable pledge financing in supply chain 

finance model. International Business Research, 15, 39–46. 

Wang, B. (2023, July). Evolutionary game analysis of supply chain finance receivables financing for 

financial institutions and SMEs considering blockchain. In Proceedings of the 2nd International 

Conference on Bigdata Blockchain and Economy Management (ICBBEM 2023), May 19–21, 

Hangzhou, China. 



Wang, C. (2024, April). Research on receivables financing model in supply chain finance based on 

blockchain technology. In Proceedings of the 5th Management Science Informatization and Economic 

Innovation Development Conference (MSIEID 2023), December 8–10, Guangzhou, China. 

Mittal, S. (2022). Accounts receivable and payable interrelationships: Evidence from Indian small cap 

companies. Ramanujan International Journal of Business and Research, 7(1), 21–30. 

Ma, S., Qian, Q., Wang, G., & Xu, M. (2023, July). Research on smart contracts of accounts receivable 

financing in supply chain finance based on blockchain technology. In 2023 4th International Conference 

on E-Commerce and Internet Technology (ECIT 2023) (pp. 306–325). Atlantis Press. 

Mendoza, R. L. (n.d.). Benefits and costs of financing accounts receivable portfolios in the healthcare 

industry. Business Forum, 29(1), 3. 

Li, M., Li, C., Duan, M., Hou, W., & Pan, X. (2024). Analysis of the alleviating effect of accounts 

receivable pledge financing on financing constraints. Finance Research Letters, 70, 106311. 

He, J., Li, Z., Ren, J., & Xue, Q. (n.d.). A certification scheme for realizing the value of future accounts 

receivable claims. [Manuscript in preparation or unpublished]. 

Feng, S. (2023). New regulations on receivables financing in the context of supply chain finance. 

Tsinghua China Law Review, 16, 157. 

Cano, D. B. C., Cruz, J. P. L., & Rodriguez, V. H. P. (2022). Accounts receivable in liquidity: Case Oil 

& Lam EIRL 2018–2020, Peru. Sapienza: International Journal of Interdisciplinary Studies, 3(2), 836–

853. 

Cheng, Y., Wen, F., Wang, Y., & Olson, D. L. (2023). Who should finance the supply chain? Impact of 

accounts receivable mortgage on supply chain decision. International Journal of Production 

Economics, 261, 108874. 

Zhu, X., Cao, Y., Wu, J., Liu, H., & Bei, X. (2022). Optimum operational schedule and accounts 

receivable financing in a production supply chain considering hierarchical industrial status and 

uncertain yield. European Journal of Operational Research, 302(3), 1142–1154. 

 


