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1. Introduction

Convexity of sets and function with their generalizations plays a crucial role in
mathematical analysis and related topics as inequalities, optimization and other
related fields and inequalities are important in mathematical analysis and its ap-
plications. There have been several works in the literature which are devoted to
investigating generalizations of this topic, see [4, 10, 13] and references therein. On
the other hand several important inequalities are derived and improved by using
the Steffensen-Popoviciu measure ( SP ) and Dual Steffensen-Popoviciu measure
( DSP ) see for example [5–8]. The integral of a nonnegative convex or concave
functions, in terms of an arbitrary measure, may not be necessarily nonnegative,
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but their integral in terms of SP and DSP measures are nonnegative. Characteri-
zation of SP measure investigated by T. Popoviciu in [11] and A. M. Fink in [2].
Additionally, C. P. Niculescu in [7] obtained new Jensen-type inequalities using
these measures and in [8] introduced the notion of DSP measure on interval and
obtained sufficient condition for DSP measure.
Assume that I is an interval of real numbers. The set of all continuous real valued

functions on I will denoted by C(I), the set of all continuous real valued convex
and concave functions on I, will denoted by C and −C, respectively, and the set
of all continuous real valued affine functions on I will represented by A(I).
We recall some definitions and results in convex analysis which we need through-

out the paper (see for example from [8, 10]).

Definition 1.1 Let I ⊆ R be an interval and f : I → R, be a real valued function.
Then,
(a) f is said to be convex if for every x, y ∈ I,

f(tx+ (1− t)y) ⩽ tf(x) + (1− t)f(y), for all t ∈ [0, 1],

(b) if for some c > 0 and for every x, y ∈ I,

f(tx+ (1− t)y) ⩽ tf(x) + (1− t)f(y)− ct(1− t)(x− y)2, for all t ∈ [0, 1],

then f is said to be strongly convex with modulus c.

Clearly every strongly convex function is convex but the converse is not true as
we see in the following example.

Example 1.2 Define the function f : R → R as follows:

f(x) =

 (x+ 2)2, x < −2
0, − 2 ⩽ x ⩽ 2

(x− 2)2, x > 2.

It is clear that the function f is a convex function while function f is not strongly
convex with some modulus c > 0. Indeed, by chossing x := 2, y := −2 and t := 1

2
we have:

f

(
1

2
(2) +

1

2
(−2)

)
⩽ 1

2
f(2) +

1

2
f(−2)− 4c,

so c ⩽ 0, and this is contradictory to the strong convexity of f .

The following characterization of strongly convex functions introduced in Propo-
sition 1.1.2 from [3]

Lemma 1.3 A function f : I → R is strongly convex with modulus c if and only
if the function g : I → R defined by g(x) = f(x)− cx2 is convex.

The SP and DSP measures are specific Borel measure wich are related to convex
and concave functions. See [5, 8].

Definition 1.4 A real Borel measure µ defined on interval I = [a, b] referred to
as

(1) Steffensen-Popoviciu measure provided that,

i) µ(I) > 0,
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ii)
∫ b
a f(x)dµ(x) ⩾ 0 for every nonnegative f ∈ C.

(2) dual Steffensen-Popoviciu measure provided that,
i) µ(I) > 0,

ii)
∫ b
a f(x)dµ(x) ⩾ 0 for any nonnegative f ∈ −C.

It can be seen that every finite positive Borel measure is both a SP and DSP
measures. Although we don’t have a criterion to identiy the DSP measures but
Popoviciu [11] and Fink [2] introduce the following lemma to identify the SP mea-
sures. See also [6, p177], for details.

Lemma 1.5 Assume that µ is a real Borel measure defined on the interval [a, b]
such that µ([a, b]) > 0. Then µ qualifies as a SP measure iff, it satisfies the following
conditions ∫ x

a
(x− t)dµ(t) ⩾ 0 and

∫ b

x
(t− x)dµ(t) ⩾ 0,

for any x ∈ [a, b].

The measures

(x2 − 1/6)3dx on [−1, 1][
(
2x− a− b

b− a
)2 + α

]
dx on [a, b] (α ⩾ −1

4
)[

(
2x− a− b

b− a
)2 − α(

2x− a− b

b− a
)

]
dx on [a, b] (|α| ⩽ 2

3
),

are examples of SP measure, see [8]. Moreover we recall the following examples of
DSP measures over the interval [a, b] (see [5] and [8]).

Example 1.6 The three measures

−δa + δ 3a+b

2
+ δ a+b

2
+ δ a+3b

2
− δb[

6

(
x− a+ b

2

)2

−
(
b− a

2

)2
]
dx

[(
2x− a− b

b− a

)2

+ α

]
dx for α ⩾ −1

6
,

are DSP measures on interval [a, b].

We also need the notion of concave on the coordinates function, see [1].

Definition 1.7 The function f : [a, b] × [c, d] → R is known as concave with
respect to the coordinates (coordinated concave) if maps fx : [c, d] → R, defined
by fx(v) = f(x, v) and fy : [a, b] → R, defined by fy(u) = f(u, y), are both concave
for any x ∈ [a, b] and y ∈ [c, d] respectively.

It is clear that every two variable concave function on a rectangle in R2, is concave
on the coordinates function, See [1]. Motivated by the above studies we establish
some new inequalities for convex and strongly convex functions defined on intervals
via SP and DSP measures. Then some inequalities in this setting are also involved
for two variables functions.
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2. Main results

Jensens inequality is an important tool in convex analysis, revealing property of
continuous convex functions by a Borel measure(mass distribution). Let f is a
continuous convex function on interval I and µ is a real Borel measure on I. Then
µ have barycenter

bµ =
1

µ(I)

∫
I
xdµ(x),

and

f(bµ) ⩽
1

µ(I)

∫
I
f(x)dµ(x).

For more details see [6] and [9]. This inequality also holds for SP measures, see
[6], Theorem 4.2.1. The analogue of this inequality for strongly convex functions is
as follows:

Theorem 2.1 Let µ be a SP measure on interval I and f : I → R be a continuous
strongly convex function with modulus c. Then

f (bµ) ⩽
1

µ(I)

∫
I
fdµ(x)− c

µ(I)

∫
I
x2dµ(x) + cb2µ.

Proof By Lemma 1.3, f(x)− cx2 is a continuous convex function and we have

f (bµ)− cb2µ ⩽ 1

µ(I)

∫
I

(
f(x)− cx2

)
dµ(x),

therefore

f (bµ) ⩽
1

µ(I)

∫
I
f(x)dµ(x)− c

µ(I)

∫
I
x2dµ(x) + cb2µ,

hence

f (bµ) ⩽
1

µ(I)

∫
I
f(x)dµ− c

(
1

µ(I)

∫
I
x2dµ

)
+ cb2µ.

■

Remark 2.2 A function f : I → R is strongly convex with modulus c if and only
if for every x0 ∈ int I there exists an a ∈ R such that

f(x) ⩾ c (x− x0)
2 + a (x− x0) + f (x0) , x ∈ I

i.e. f has a quadratic support at x0. For a twice differentiable f, f is strongly convex
with modulus c if and only if f ′′ ⩾ 2c, see [12].

Recall that a function f : I → R, is said to be quasiconvex provided that for
every x, y ∈ I,

f(tx+ (1− t)y) ⩽ max{f(x), f(y)}, for all, t ∈ [0, 1].
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Now we drive a new inequality for strongly convex function, by using a specific
SP mesure:

Theorem 2.3 Let f : [a, b] −→ R be a twice differentiable strongly convex func-
tion with modulus c, whose second derivative is an absolutely continuous quasi-
convex function. Then

1

b− a

∫ b

a
f(x)dx ⩾ f(a) + f(b)

2
− 3(b− a)

32

(
f ′(b)− f ′(a)

)
+

c(b− a)2

48
.

Proof Taking into account that f ′′ ⩾ 2c we get f ′′−2c is a nonnegative absolutely
continuous quasiconvex function. In the other hand

g(x)dx =

((
2x− a− b

b− a

)2

− 1

4

)
dx,

satisfy in conditions Theorem 2 in [8], therefore

0 ⩽
∫ b

a
(f ′′(x)− 2c)

((
2x− a− b

b− a

)2

− 1

4

)
dx

⇒ 2c

∫ b

a

((
2x− a− b

b− a

)2

− 1

4

)
dx ⩽

∫ b

a
f ′′(x)

((
2x− a− b

b− a

)2

− 1

4

)
dx

⇒ 2c

(
b− a

12

)
⩽
[(

2x− a− b

b− a

)2

− 1

4

]
f ′(x)

∣∣∣∣∣
b

a

− 4

b− a

∫ b

a

2x− a− b

b− a
f ′(x)dx

⇒ c(b− a)

6
⩽ 3

4

(
f ′(b)− f ′(a)

)
−
[

4

b− a

2x− a− b

b− a
f(x)

]b
a

+
8

(b− a)2

∫ b

a
f(x)dx

⇒ c(b− a)

6
⩽ 3

4

(
f ′(b)− f ′(a)

)
− 4

b− a
(f(a) + f(b)) +

8

(b− a)2
t

∫ b

a
f(x)dx

⇒ 1

b− a

∫ b

a
f(x)dx ⩾ f(a) + f(b)

2
− 3(b− a)

32

(
f ′(b)− f ′(a)

)
+

c(b− a)2

48
.

■

At this point, we present the notion of DSP measure in plane and derive several
new inequalities based on these measure. Let D be a non-empty convex compact
subset of R2. Assume that C(D) is the space of all two variable continuous real
valued functions on D and let −C represent the set of all two variable continuous
and real valued concave functions over D.

Definition 2.4 A DSP measure on D is characterized as a real Borel measure µ
on D which meets the following criteria:

i) µ(D) =
∫ ∫

D dµ(x, y) > 0,
ii)
∫ ∫

Df(x, y)dµ(x, y) ⩾ 0 for any nonnegative f ∈ −C.

In what follows we introduce some results and properties of DSP measures in
this setting.

Theorem 2.5 Let p(x)dx and q(x)dx denote two DSP measures defined over
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intervals [a, b] and [c, d], respectively. Then

µ(x, y) = (p(x) + q(y))dxdy,

represents a DSP measure on the rectangle [a, b]× [c, d].

Proof At first

µ([a, b]× [c, d]) =

∫ d

c

∫ b

a
(p(x) + q(y))dxdy

=

∫ d

c

∫ b

a
p(x)dxdy +

∫ d

c

∫ b

a
q(y)dxdy

= (d− c)

∫ b

a
p(x)dx+ (b− a)

∫ d

c
q(y)dy > 0,

expressed as a sum of non-negative terms. Suppose that f : [a, b]× [c, d] → R is a
non-negative continuous real valued concave function, so f is concave on coordi-
nates. Thus

f(tx1 + (1− t)x2, y) ⩾ tf(x1, y) + (1− t)f(x2, y),

for every x1, x2 ∈ [a, b], y ∈ [c, d] and for any t in [0, 1]. By integrating the above
inequality we have

∫ d

c
f(tx1 + (1− t)x2, y)dy ⩾ t

∫ d

c
f(x1, y)dy + (1− t)

∫ d

c
f(x2, y)dy.

Thus the map

x →
∫ d

c
f(x, y)dy,

is a nonnegative concave function. Similarly the map

y →
∫ b

a
f(x, y)dx,

is also a nonnegative concave function. Therefore

∫ b

a

∫ d

c
f(x, y)(p(x) + q(y))dydx

=

∫ b

a

(∫ d

c
f(x, y)dy

)
p(x)dx+

∫ d

c

(∫ b

a
f(x, y)dx

)
q(y)dy ⩾ 0,

as a sum of nonnegative numbers. ■

Remark 2.6 If p and q are the same ones in Theorem 2.5, one can readily see that
the measure (αp(x)+βq(y))dxdy also qualifies as a DSP measure over [a, b]× [c, d]
for any α, β ⩾ 0.
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Example 2.7 According to Example 1.6,

[
(
2x− a− b

b− a
)2 + α

]
dx is a DSP mea-

sure over [a, b] for any α ⩾ −1
6 . Therefore, by Theorem 2.5[

(
2x− a− b

b− a
)2 + (

2y − c− d

d− c
)2 + γ

]
dxdy,

is a DSP measure over rectangle [a, b]× [c, d] for any γ ⩾ −1
3 .

Theorem 2.8 Let p(x)dx and q(y)dy be DSP measures defined over [a, b] and
[c, d] respectively. Thus

µ(x, y) = p(x)q(y)dxdy,

is a DSP measure over the rectangle [a, b]× [c, d] provided that at least one of the
functions p(x) or q(y) is non-negative.

Proof

µ([a, b]× [c, d]) =

∫ d

c

∫ b

a
p(x)q(y)dxdy

=

∫ d

c

(∫ b

a
p(x)dx

)
q(y)dy=

(∫ b

a
p(x)dx

)(∫ d

c
q(y)dy

)
>0,

as a product of positive numbers. Consider f : [a, b]× [c, d] → R as a non negative
continuous concave function. Suppose that p is a non-negative function defined
over interval [a, b]. It is evident that the mapping

y →
∫ b

a
f(x, y)p(x)dx,

is a concave and nonnegative function on the interval [c, d]. Thus

∫ d

c

∫ b

a
f(x, y)p(x)q(y)dxdy =

∫ d

c

(∫ b

a
f(x, y)p(x)dx

)
q(y)dy ⩾ 0.

Therefore the µ(x, y) = p(x)q(y)dxdy is a DSP measure over [a, b]× [c, d]. ■

These types of measures are also applicable to triangular domains of the form
{(x, y) : x ⩾ 0, y ⩾ 0, x+ y ⩽ c} for c > 0.

Example 2.9 According to Example 1.6 and by applying Theorem 2.8 it is easy
to see that (

2x− a− b

b− a

)2
((

2y − c− d

d− c

)2

+ α

)
dxdy,

is a DSP measure over [a, b]× [c, d] which α ⩾ −1
6 .

Remark 2.10 Consider p(x)dx and q(y)dy as two DSP measures as established
in Theorem 2.8 and f : [a−d, b− c] → R is a nonnegative concave function of class
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C2 with a concave second derivative. Then we have∫ b

a

∫ d

c
f(x− y)p(x)q(y)dydx ⩾ 0.

In next theorem we obtain a DSP measure under certain conditions.

Theorem 2.11 Let p(x)dx and q(y)dy be DSP measures defined over [a, b] and
[c, d], respectively. Thus

µ(x, y) =
p(x)

q(y)
dxdy,

is a DSP measure on the rectangle [a, b] × [c, d], provided that q(y) is a positive
function on the interval [c, d].

Proof

µ([a, b]× [c, d]) =

∫ d

c

∫ b

a

p(x)

q(y)
dxdy

=

∫ d

c

(∫ b

a
p(x)dx

)
1

q(y)
dy=

(∫ b

a
p(x)dx

)(∫ d

c

1

q(y)
dy

)
>0,

as a product of positive numbers. Now let f : [a, b]× [c, d] → R be a non-negative
continuous concave function. Hence, the map

x →
∫ d

c

f(x, y)

q(y)
dy,

is a concave and non-negative function over the interval [a, b]. Indeed,∫ d

c

f(tx1 + (1− t)x2, y)

q(y)
dy ⩾

∫ d

c

tf(x1, y) + (1− t)f(x2, y)

q(y)
dy

= t

∫ d

c

f(x1, y)

q(y)
dy +(1− t)

∫ d

c

f(x2, y)

q(y)
dy,

for every x1, x2 ∈ [a, b] and t ∈ [0, 1].
Since p(x)dx is a DSP measure on [a, b] we have∫ d

c

∫ b

a
f(x, y)

p(x)

q(y)
dxdy =

∫ b

a

(∫ d

c

f(x, y)

q(y)
dy

)
p(x)dx ⩾ 0.

Therefore µ(x, y) = p(x)
q(y)dxdy is a DSP measure on the rectangle [a, b]× [c, d]. ■

By using the Example 1.6, Remark 2.6, Theorem 2.11 and along with an appro-
priate selection of

p(x)dx :=

((
2x− a− b

b− a

)2

+ α

)
dx,
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and

q(y)dy :=

(
2y − c− d

d− c

)2

dy,

it is easy to show that((
2x− a− b

2y − c− d

)2

+ α

(
b− a

2y − c− d

)2
)
dxdy,

is a DSP measure on the rectangle [a, b]× [c, d] for every α ⩾ −1
6 .

Now we are in position to investigate DSP measure on a compact disc.

Proposition 2.12 Let p(x)dx represent a DSP measure defined on the in-

terval [0, R], then p(
√
x2+y2)√
x2+y2 dxdy is a DSP measure on the compact disc

D̄R(0) = {(x, y) : x2 + y2 ⩽ R}.

Proof By apply converting from rectangular to polar coordinates we have

∫ ∫
D̄R(0)

p(
√

x2 + y2)√
x2 + y2

dxdy =

∫ 2π

0

∫ R

0

p(r)

r
rdrdθ = 2π

∫ R

0
p(r)dr > 0.

Now let f be a nonnegative real valued continuous concave function on compact
disc D̄R(0). In the other hand p(r)dr and 1dθ are two DSP measures on intervals
[0, R] and [0, 2π] respectively wich satisfy in Theorem 2.8. Hence p(r)drdθ is a DSP
measure on D̄R(0). Therefore∫ ∫

D̄R(0)

f(x, y)
p(
√

x2 + y2)√
x2 + y2

dxdy =

∫ 2π

0

∫ R

0
f(r, θ)p(r)drdθ ⩾ 0,

which is required. ■

Example 2.13 By choosing a := 0 and b := 1 in Example 1.6, [(2x−1)2+α]dx is
a DSP measure on the interval [0, 1] for every α ⩾ −1

6 and by applying Proposition
2.12 we have

(2
√

x2 + y2 − 1)2 + α√
x2 + y2

dxdy,

is a DSP measure on unit compact disc D̄1(0).

3. Conclusion

In this paper, we improve several inequalities for convex and strongly convex func-
tions by using Steffensen-Popoviciu and dual Steffensen-Popoviciu measures. In one
hand the characterizations of these two kinds of interesting measures in the several
variables case, and on the other hand, generalizations of Jensen and Hermite-
Hadamard inequalities in this setting remain open for future researches.
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