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Abstract 

Dynamic multi-modal logistics networks must remain efficient even when customer demand fluctuates randomly. This study 

combines fractional-order flow dynamics with the Fire Hawk metaheuristic to build an intelligent decision-making framework 

that continually reallocates road, rail, and feeder-air capacity in near-real time. Tested on the 2,522 edge Barcelona benchmark 

(fractional order α = 0.8, 110 origin–destination pairs, five Monte-Carlo demand scenarios), the model cuts total cost by about 

8,835 units roughly 16 percent versus the deterministic baseline keeps average flow near 3.05 units, and restricts flow variance 

to 0.15–0.16 while sustaining demand-variance resilience of 52.3. These results demonstrate that embedding long-memory 

fractional equations within a nature-inspired optimizer provides a scalable, data-driven tool that relieves congestion, balances 

throughput, and strengthens robustness for next-generation smart logistics planning. 
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1. Introduction 

Over the past decade, the logistics sector has 

become a proving ground for intelligent decision-

making (IDM) systems that blend data-driven 

perception, optimization and control to cope with 

real-time complexity. Advanced heuristics, neural 

rule engines and hybrid expert systems now assist 

dispatchers in routing, mode choice and capacity 

allocation, yielding measurable gains in cost and 

service resilience [1, 2]. Yet most commercial IDM 

tools still assume static demand and single-modal 

flows, limiting their ability to react to today’s 

volatile, multi-actor freight ecosystems. 

Multi-modal logistics networks where road, 

rail, sea and air legs are stitched together offer 

superior sustainability and flexibility, but also 

introduce path-dependency, inter-modal transfer 

constraints and demand uncertainty [3]. Traditional 

deterministic or single-period models neglect these 

couplings, often producing fragile policies that fail 

when volumes swing or congestion propagates [4, 

5]. A robust decision framework must therefore 

capture (i) stochastic, time-varying origin-

destination flows, (ii) capacity-induced congestion 

feedback and (iii) the memory effects that arise 

when today’s routing choices influence tomorrow’s 

network state. 

Stochastic programming, chance-constrained 

MILP and metaheuristic search have each been 

deployed to tackle aspects of this problem. Two-

stage formulations hedge against random demand 

but scale poorly with scenario count [6, 5]; MILP 

with time windows ensures logical consistency yet 

explodes combinatorially in large multi-modal 

graphs [7]. Recent metaheuristics (e.g., modified 

firefly and genetic algorithms) accelerate search but 

still rely on integer-order flow dynamics, ignoring 

the long-range dependence observed in real freight 

data [8, 9]. Consequently, existing IDM frameworks 

remain either computationally prohibitive or 

behaviorally incomplete. 

To close this gap, we integrate fractional 

differential equations well suited for modelling 

systems with hereditary properties with the Fire 

Hawk Optimization Algorithm (FHOA), a recent 

nature-inspired metaheuristic that balances global 

exploration and local intensification [1]. The 

fractional terms embed network “memory”, 

allowing the model to anticipate congestion 

persistence, while FHOA efficiently searches the 
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high-dimensional flow–capacity space. Validated 

on the Barcelona benchmark network, the hybrid 

scheme achieves an 8 % reduction in total operating 

cost and smoother flow profiles relative to state-of-

the-art integer-order baselines [10]. 

Section 2 reviews related multi-modal 

optimization literature and positions our work 

within IDM research. Section 3 formulates the 

fractional flow and demand dynamics, followed by 

Section 4, which details the FHOA-based solution 

procedure. Section 5 presents numerical 

experiments on synthetic and real-world datasets, 

while Section 6 discusses managerial insights, 

limitations and avenues for future research. 

2. Related Work 

Multimodal logistics and transportation 

networks under uncertainty have received 

significant attention in the literature, covering 

various topics such as uncertain demands, cost 

minimization, and complex optimization strategies 

in dynamic networks. Zhang et al. [11] have 

proposed an optimization model for multimodal 

hub-and-spoke transport networks, integrating fuzzy 

chance-constrained methods to handle demand 

uncertainty and improve transportation efficiency. 

Their work provides insights into trade-offs between 

the number of hubs and cost minimization, 

emphasizing the impact of hub capacity constraints. 

Mishra and Lamba [23] have introduced a dynamic 

multi-modal approach for global supply chain 

configuration, employing mixed-integer linear 

programming (MILP) to optimize facility activation, 

transportation mode selection, and inventory 

management while considering time-cost trade-offs. 

Meng et al. [6] have developed a two-stage 

stochastic programming model to enhance 

emergency logistics network resilience, integrating 

multimodal transport approaches for natural disaster 

response. Their study demonstrates the significance 

of dynamic uncertainty management in logistics. 

Similarly, Peng et al. [12] have proposed a multi-

objective optimization model for multimodal 

transportation using Monte Carlo simulations and 

data-driven ant colony algorithms. Their model, 

validated on China’s Belt and Road Initiative, 

improves computational efficiency and optimizes 

transit costs and travel time. 

For hazardous material (HAZMAT) 

transportation, Han et al. [13] have developed a 

multi-objective mixed-integer linear programming 

model that employs triangular fuzzy random 

numbers to handle demand fluctuations. The study 

highlights the influence of confidence levels on 

transportation risk and economic objectives. Postan 

et al. [14] have proposed a dynamic optimization 

model for multi-echelon logistics networks, 

addressing both deterministic and stochastic 

demand scenarios over a discrete time horizon. 

Sustainability-driven logistics optimization 

has also been explored in prior studies. 

Zarbakhshnia et al. [15] have introduced a 

sustainable multi-objective optimization model for 

forward and reverse logistics, integrating 

environmental, social, and economic criteria. 

Orozco-Fontalvo et al. [17] have examined a 

strategic inventory-location problem for multi-

commodity networks under stochastic demands, 

demonstrating significant cost reductions through 

genetic algorithms applied to mixed-integer 

programming models. 

Furthermore, Karimi et al. [18] have addressed 

multimodal logistics hub location problems by 

incorporating stochastic demand conditions and 

commodity splitting to enhance network efficiency. 

Their study employs discrete chance-constrained 

programming to improve demand fulfillment 

accuracy. Similarly, Li et al. [19] have developed a 

two-stage stochastic programming model for rail-

truck intermodal network design, validated on real-

world data to optimize cost efficiency under 

uncertain conditions. 

Routing optimization in multimodal logistics 

has also been widely studied. Desticioğlu Taşdemir 

and Özyörük [20] have introduced a mathematical 

model for the multi-depot simultaneous pick-up and 

delivery vehicle routing problem under stochastic 

demand, refining non-linear constraints to improve 

computational efficiency. Al-Ashhab [21] has 

proposed a stochastic mixed-integer linear 

programming model for multi-period, multi-product 

supply chain design, offering a robust framework for 

maximizing expected profits under stochastic 

demand. Yu et al. [22] have analyzed logistics 

distribution network optimization under random 

demand, integrating Lagrangian relaxation and sub-

gradient algorithms to enhance retail store location 

and distribution path selection. 

Lastly, Shahraki and Türkay [23] have 

presented a bi-level stochastic optimization model 

for urban logistics networks, incorporating 

multimodal passenger travel and freight logistics to 

minimize carbon emissions and traffic congestion. 

Their findings offer a sustainable framework for 

urban transportation planning. 

Despite rich work on multimodal network 

design, most studies still linearize flow dynamics 

and therefore overlook the long-memory effects that 

dominate real‐time freight movements under 

volatile demand. Existing fractional-order 

formulations, meanwhile, have been explored only 

on small, single-mode test beds and rarely integrated 

with scalable metaheuristic solvers. Consequently, a 

comprehensive framework that fuses fractional flow 

modelling with an adaptive optimization engine for 

large-scale, stochastic, multi-modal logistics 

networks remains an open research need. 
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3. Problem Formulation 

Logistics network optimization is the artwork 

of efficient transportation to ensure timely 

deliveries, lower operating costs, and resiliency to 

demand uncertainties. In this section, we establish a 

mathematical framework for modeling the dynamics 

in multi-modal logistics networks acting under 

stochastic demand using fractional differential 

equations. Such as the temporal evolution of 

logistics flows and the stochastic nature of demand 

processes, that is, the proposed model not only 

describes logistics processes in a fundamental form 

but is also significant for real life use. 

3.1 Dynamic Multi-Modal Logistics Network 

Representation 

   We represent the logistics network as a 

directed graph 𝐺 = (𝑉, 𝐸), where: 

𝑉 is the set of nodes, representing locations 

such as warehouses, transit hubs, and destinations. 

𝐸 is the set of edges, representing 

transportation links (e.g., roads, railways, or air 

routes) [23,3]. 

Each node 𝑖 ∈ 𝑉 has: 

𝑑𝑖(𝑡):The time-dependent demand (positive 

for demand, negative for supply) at node 𝑖 at time 𝑡. 
𝑤𝑖(𝑡): Node weight, representing storage or 

transfer costs, which may depend on 𝑡. 
Each edge (𝑖, 𝑗) ∈ 𝐸 has the following 

attributes: 

𝑥𝑖𝑗(𝑡): The flow of goods on edge (𝑖, 𝑗) at time 

𝑡. 
𝑐𝑖𝑗 : The unit transportation cost along the edge. 

𝐶𝑖𝑗: The maximum capacity of the edge, 

representing the upper limit of flow. 

𝑡𝑖𝑗 (𝑥𝑖𝑗(𝑡)):The time required to traverse edge 

(𝑖, 𝑗), which depends on the flow 𝑥𝑖𝑗(𝑡). It is given 

by the Bureau of Public Roads (BPR) function: 

 

𝑡𝑖𝑗 (𝑥𝑖𝑗(𝑡)) = 𝑡𝑖𝑗
0 (1 + 𝛽 (

𝑥𝑖𝑗(𝑡)

𝐶𝑖𝑗
)

𝛾

) 

 
(1) 

where 𝑡𝑖𝑗
0  is the free-flow travel time, 𝛽 and 𝛾 

are empirical constants [23]. 

 

3.2 Fractional Dynamics of Flows 

In dynamic multi-modal logistics networks, 

the flow on each edge evolves over time. To capture 

memory effects and time-dependent adjustments, 

we model the flow dynamics using fractional 

differential equations (FDEs) [9,24]. 

 

3.2.1 Fractional Flow Dynamics 

The flow 𝑥𝑖𝑗(𝑡) on edge (𝑖, 𝑗) satisfies: 

 
𝑑𝑎𝑥𝑖𝑗(𝑡)

𝑑𝑡𝑎
+ 𝑎𝑥𝑖𝑗(𝑡) = 𝑏𝑖𝑗(𝑡), 

 
(2) 

where: 
𝑑𝑎

𝑑𝑡𝑎
 is the fractional derivative of order 

α\alphaα (0 < 𝛼 ≤ 1), capturing memory effects. 

𝑎: Damping coefficient, which models 

dissipation or resistance in the system. 

𝑏𝑖𝑗(𝑡): External influence (e.g., stochastic 

demand shocks or system adjustments). 

The fractional derivative is defined using the 

𝐺𝑟ü𝑛𝑤𝑎𝑙𝑑 − 𝐿𝑒𝑡𝑛𝑖𝑘𝑜𝑣 approximation: 

 

𝑑𝑎𝑥𝑖𝑗(𝑡)

𝑑𝑡𝑎
≈

1

ℎ𝑎
∑(

𝑎

𝑘
)

𝑛

𝑘=0

(−1)𝑘𝑥𝑖𝑗(𝑡)(𝑡 − 𝑘ℎ), 

 
(3) 

where: 

ℎ: Discretized time step size. 

(𝑎
𝑘
) =

Γ(𝑎+1)

Γ(𝑘+1)Γ(𝑎−𝑘+1)
 is the binomial 

coefficient with Gamma functions. 

𝑛: Number of previous steps included in the 

approximation. 

𝑥𝑖𝑗(𝑡): Flow on edge (𝑖, 𝑗) at time 𝑡. 

3.2.2 Demand Dynamics 

The demand 𝑑𝑖(𝑡) at node 𝑖 evolves 

dynamically according to: 

 
𝑑𝑎𝑑𝑖(𝑡)

𝑑𝑡𝑎
= −∑𝑥𝑖𝑗(𝑡) +

𝑗∈𝑉

∑𝑥𝑗𝑖(𝑡) +

𝑗∈𝑉

𝜂𝑖(𝑡), 

 
(4) 

where: 

∑ 𝑥𝑖𝑗(𝑡)𝑗∈𝑉 :Total outflow from node 𝑖. 

∑ 𝑥𝑗𝑖(𝑡):𝑗∈𝑉 Total inflow to node 𝑖. 

𝜂𝑖(𝑡): Stochastic perturbation in demand, 

modeled as a Gaussian process 𝜂𝑖(𝑡)~Ν(0, 𝜎𝑖
2). 

3.3 Objective Function 

 Total Cost Function The optimization process 

to minimize the total cost 𝐽 uses the Fire Hawk 

Optimization Algorithm (FHOA) [1], which 

iteratively refines solutions through attraction and 

random exploration.  

3.3.1 Total Cost Function 

The total cost 𝐽 over a time horizon [0, 𝑇] is: 

𝐽 = ∫ ∑ [𝑐𝑖𝑗𝑥𝑖𝑗(𝑡)

(𝑖,𝑗)∈𝐸

+ 𝑡𝑖𝑗(𝑥𝑖𝑗(𝑡))𝑥𝑖𝑗(𝑡)]𝑑𝑡,
𝑇

0

 (5) 

 

Where 𝑐𝑖𝑗𝑥𝑖𝑗(𝑡) represents the transportation 

cost on edge(𝑖, 𝑗) and 𝑡𝑖𝑗 (𝑥𝑖𝑗(𝑡)) 𝑥𝑖𝑗(𝑡) penalizes 

congestion [9,24]. 

 

3.3.2 Constraints 

- Flow Conservation 

   At each node 𝑖, the sum of inflows and 

outflows must balance with the demand: 

∑𝑥𝑗𝑖(𝑡)

𝑗∈𝑉

−∑𝑥𝑖𝑗(𝑡)

𝑗∈𝑉

= 𝑑𝑖(𝑡),     ∀𝑖𝜖 𝑉 , ∀𝑡 𝜖 [0, 𝑇]. (6) 

 

- Capacity Constraints 
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    The flow on each edge (𝑖, 𝑗) must not exceed 

its capacity: 

𝑥𝑖𝑗(𝑡) ≤ 𝐶𝑖𝑗 , ∀(𝑖, 𝑗) 𝜖 𝐸, ∀𝑡 𝜖 [0, 𝑇].  

- Non-Negativity 

   The flows must be non-negative: 

𝑥𝑖𝑗(𝑡) ≥ 0, ∀(𝑖, 𝑗) 𝜖 𝐸, ∀𝑡 𝜖 [0, 𝑇].     

 

3.4 Numerical Solution of Fractional Dynamics 

      To solve the fractional differential 

equations (FDEs) for flow dynamics and demand 

evolution, we use numerical approximations. The 

𝐺𝑟ü𝑛𝑤𝑎𝑙𝑑 − 𝐿𝑒𝑡𝑛𝑖𝑘𝑜𝑣 Approximation provides a 

discrete-time approach to approximate fractional 

derivatives. 

 

3.4.1 Discrete-Time Flow Dynamics 

   The fractional derivative of the flow 𝑥𝑖𝑗(𝑡) is 

approximated in Equation (3). 

 

The discretized flow dynamics become: 

𝑥𝑖𝑗
(𝑛+1)

= 𝑥𝑖𝑗
(𝑛)

+ ℎ𝑎(𝑏𝑖𝑗
(𝑛)

− 𝑎𝑥𝑖𝑗
(𝑛)
), 

 

(7) 

where: 

𝑥𝑖𝑗
(𝑛)
: is the flow at the 𝑛 − 𝑡ℎ time step. 

𝑏𝑖𝑗
(𝑛)
: Time-dependent external influences at 

the 𝑛 − 𝑡ℎ step. 

𝑎: Damping coefficient. 

𝑑𝑖
(𝑛+1)

= 𝑑𝑖
(𝑛)

+ ℎ𝑎 (−∑𝑥𝑖𝑗(𝑡)
(𝑛) +

𝑗∈𝑉

∑𝑥𝑗𝑖(𝑡)
(𝑛)

𝑗∈𝑉

+𝜂𝑖
(𝑛)), 

 

 

(8) 

 

where:𝜂𝑖
(𝑛)~Ν(0, 𝜎𝑖

2). 

 

Stochastic perturbation at time step 𝑛. 

 
Algorithm 1: Fractional Dynamics Solver for Stochastic 

Demand in Logistics Networks 

Input: 

  Network data (nodes, edges, capacities, costs) 

  Fractional order 𝜶 

  Time step 𝒉, total time 𝑻 

  Initial conditions 𝒙𝒊𝒋(𝟎), 𝒅𝒊(𝟎) 

  Damping coefficient 𝒂 

  Number of scenarios 𝑺 

Output: 

  Time-evolved flow 𝒙𝒊𝒋(𝒕) and demand 𝒅𝒊(𝒕) for all 

time steps 

 

1. Initialize: 

   𝑵 ←  𝑻 / 𝒉                 # Number of time steps 

   𝒙 ←  𝒛𝒆𝒓𝒐𝒔(𝑬,𝑵)       # Flow matrix for edges 

   𝒅 ←  𝒛𝒆𝒓𝒐𝒔(𝑽,𝑵)      # Demand matrix for nodes 

2. For each scenario 𝒔 =  𝟏 𝒕𝒐 𝑺: 
   3. Generate stochastic demand perturbations 

𝜼𝒊(𝒕)~𝑵(𝟎, 𝝈𝒊
𝟐) 

   4. For time step 𝒏 =  𝟏 𝒕𝒐 𝑵: 
        For each edge (𝒊, 𝒋) ∈  𝑬: 
           Compute fractional derivative: 

              𝒅𝒙𝒊𝒋 = 𝒉𝒂 ∗ (𝒃𝒊𝒋 − 𝒂 × 𝒙[𝒊, 𝒋, 𝒏]) 

           Update flow: 

              𝒙[𝒊, 𝒋, 𝒏 + 𝟏]  =  𝒙[𝒊, 𝒋, 𝒏]  + 𝒅𝒙𝒊𝒋 

        For each node 𝒊 ∈  𝑽: 
           Compute demand update: 

              𝒅𝒅𝒊 = 𝒉𝒂 ∗  (−∑ 𝒙𝒋 [𝒊, 𝒋, 𝒏] +

−∑ 𝒙𝒋 [𝒋, 𝒊, 𝒏] + 𝜼𝒊[𝒏]) 

           Update demand: 

              𝒅[𝒊, 𝒏 + 𝟏]  =  𝒅[𝒊, 𝒏]  + 𝒅𝒅𝒊 

5. Return: 𝒙, 𝒅 

 

3.4.2 Integration of Stochastic Demand 

Stochastic demand introduces randomness into 

the system, requiring robust optimization techniques 

[4,10,2]. The demand 𝑑𝑖(𝑡) at node 𝑖 follows: 
𝑑𝑖(𝑡) = 𝑑̅𝑖(𝑡) + 𝜂𝑖(𝑡), (9) 

where: 

𝑑̅𝑖(𝑡): Deterministic component of demand. 

𝜂𝑖(𝑡): Stochastic component, modeled as a 

Gaussian process [22]. 

 

Scenario-Based Modeling 

      To handle stochasticity, we generate 

demand scenarios using Monte Carlo simulation. 

For each scenario 𝑠: 

𝑑𝑖
(𝑠)(𝑡) = 𝑑̅𝑖(𝑡) + 𝜂𝑖

(𝑠)(𝑡), (10) 

where 𝜂𝑖
(𝑠)(𝑡) is sampled from Ν(0, 𝜎𝑖

2) [5]. 

 
Algorithm 2: Scenario-Based Stochastic Demand Generation 

for Logistics Networks 

Input: 

  Mean demand matrix 𝒅  
  Variance vector 𝝈^𝟐 

  Number of scenarios 𝑺 

  Time step h, total time 𝑻 

Output: 

  Stochastic demand matrix for all scenarios 
1. Initialize: 

   𝑵 ←  𝑻 / 𝒉               # Number of time steps 

   𝒔𝒕𝒐𝒄𝒉𝒂𝒔𝒕𝒊𝒄_𝒅𝒆𝒎𝒂𝒏𝒅 ←  𝒛𝒆𝒓𝒐𝒔(𝑺, 𝑽, 𝑵) 
2. For each scenario 𝒔 =  𝟏 𝒕𝒐 𝑺: 
   For each node 𝒊 ∈  𝑽: 
      For each time step 𝒏 =  𝟏 𝒕𝒐 𝑵: 
         Generate perturbation: 

            𝜼𝒊(𝒕)~𝑵(𝟎, 𝝈𝒊
𝟐) 

         Compute demand: 

            𝒔𝒕𝒐𝒄𝒉𝒂𝒔𝒕𝒊𝒄_𝒅𝒆𝒎𝒂𝒏𝒅[𝒔, 𝒊, 𝒏]  =  𝒅 [𝒊]  +
𝜼𝒊[𝒏] 

3. Return: 𝒔𝒕𝒐𝒄𝒉𝒂𝒔𝒕𝒊𝒄_𝒅𝒆𝒎𝒂𝒏𝒅 

 

 

3.4.3 Optimization Framework 

Objective Function (Discrete-Time 

Formulation) 

The continuous-time cost function is 

discretized as: 

𝐽 =∑ ∑ [𝑐𝑖𝑗𝑥𝑖𝑗
(𝑛)

(𝑖,𝑗)∈𝐸

+ 𝑡𝑖𝑗(𝑥𝑖𝑗
(𝑛)
)𝑥𝑖𝑗

(𝑛)
]ℎ,

𝑁

𝑛=1

 
 

(11) 

where: 

𝑁 = 𝑇
ℎ⁄ : Number of time steps. 

𝑡𝑖𝑗(𝑥𝑖𝑗
(𝑛)
): Travel time at time step 𝑛, given by 

the BPR function [8,23]. 

 

Decision Variables 

The primary decision variables are: 
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𝑥𝑖𝑗
(𝑛)
: Flow on edge (𝑖, 𝑗) at time step 𝑛. 

𝑑𝑖
𝑛:  Demand at node 𝑖 at time step 𝑛. 

 

Flow Conservation (Discrete-Time) 

∑𝑥𝑗𝑖
(𝑛)

𝑗∈𝑉

−∑𝑥𝑖𝑗
(𝑛)

𝑗∈𝑉

= 𝑑𝑖
𝑛 ,     ∀𝑖𝜖 𝑉 , ∀𝑛.   

(11) 

Capacity Constraints 

 

𝑥𝑖𝑗
(𝑛)

≤ 𝐶𝑖𝑗 , ∀(𝑖, 𝑗) 𝜖 𝐸, ∀𝑛.  

Non-Negativity 

    The flows must be non-negative: 

𝑥𝑖𝑗
(𝑛)

≥ 0, ∀(𝑖, 𝑗) 𝜖 𝐸, ∀𝑛.    

 

Algorithm 3: Fire Hawk Optimization of Flows in Dynamic 

Logistics Networks 

Input: 

Objective function: Total cost 𝑱 
Variable bounds: Capacity of edges 

Number of fire hawks 𝑵𝒉 

Maximum iterations 𝑻𝒎𝒂𝒙 

Attraction coefficient 𝜶 

Explosion radius coefficient 𝜷 

Output: 

Optimized flow 𝒙𝒊𝒋(𝒕) 

Procedure: 

1. Initialize Fire Hawks: 

Randomly generate 𝑵𝒉 solutions 

(hawks) within bounds [𝟎, 𝑪𝒊𝒋]. 

2. Evaluate Objective: 

Compute the total cost 𝑱 for each hawk. 

3. Iterative Improvement: 

For each iteration up to 𝑻𝒎𝒂𝒙: 

Update each hawk 𝒙𝒊 using: 

 

𝒙𝒊 ← 𝒙𝒊 + 𝒂(𝒙𝒃𝒆𝒔𝒕 − 𝒙𝒊) + 𝜷. 𝒓𝒂𝒏𝒅(−𝟏, 𝟏). 
                                    where 𝒙𝒃𝒆𝒔𝒕 is the position of the 

best hawk. 

Ensure 𝒙𝒊 satisfies bounds: 

 

𝒙𝒊 = 𝒄𝒍𝒊𝒑(𝒙𝒊, 𝒍𝒃, 𝒖𝒃) 
Where 𝒍𝒃 and 𝒖𝒃 are the lower and upper bounds. 

4. Update Best Solution: 

If a hawk achieves a better cost 𝑱, update 

𝒙𝒃𝒆𝒔𝒕 and 𝑱𝒃𝒆𝒔𝒕. 
5. Return Best Solution: 

Optimized flows 𝒙𝒊𝒋
(𝒏)

 and corresponding cost 

𝑱. 
 

 

3.5 Validation of the Model Using the Barcelona 

Dataset 

The dataset from Barcelona serves as an 

experimental workbench to confirm the applicability 

of the proposed model and the efficiency of Fire 

Hawk Optimization Algorithm (FHOA). Dataset 

contains information regarding the entire transport 

network including the nodes, edges, capacities and 

demands [4,10]. 

Network Representation 

Nodes: Locations such as hubs or transit points (e.g., 

origin and destination nodes from  

𝐵𝑎𝑟𝑐𝑒𝑙𝑜𝑛𝑎_𝑛𝑒𝑡. 𝑡𝑛𝑡𝑝). 

Edges: Directed links between nodes, 

characterized by: 

𝐶𝑖𝑗: Capacity of the edge. 

𝑐𝑖𝑗 : Unit transportation cost on the edge. 

𝑡𝑖𝑗
0 : Free-flow travel time. 

The network graph 𝐺 = (𝑉, 𝐸) is constructed as: 

𝑉: Set of nodes. 

𝐸: Set of edges, each defined by the tuple 

(𝑖, 𝑗, 𝐶𝑖𝑗 , 𝑐𝑖𝑗 , 𝑡𝑖𝑗
0 ). 

Stochastic Demand 

Trips Data (𝐵𝑎𝑟𝑐𝑒𝑙𝑜𝑛𝑎𝑡𝑟𝑖𝑝𝑠 . 𝑡𝑛𝑡𝑝): Provides the 

origin-destination (OD) flows, 𝑑̅𝑖(𝑡), representing 

mean demand. 

Stochastic Component: The Gaussian perturbations 

𝜂𝑖
(𝑠)(𝑡)~Ν(0, 𝜎𝑖

2) are added to simulate demand 

variability [5]. 

Flow Initialization 

 The initial flows 𝑥𝑖𝑗(0) are either derived from the 

𝐵𝑎𝑟𝑐𝑒𝑙𝑜𝑛𝑎_𝑓𝑙𝑜𝑤. 𝑡𝑛𝑡𝑝 file, within edge capacity 

constraints to initialize the Fire Hawk Optimization 

Algorithm. 

     The traditional metrics of cost and flow 

efficiency remain crucial for evaluating logistics 

networks. However, integrating the Fire Hawk 

Optimization Algorithm (FHOA) introduces 

additional considerations, such as convergence 

behavior and diversity in exploration. These aspects, 

combined with the stochastic and fractional 

dynamics modeling, expand the evaluation 

framework to include computational and 

algorithmic metrics. 

Table.1. 
Metrics for Evaluating Performance of the Proposed Logistics 

Model [4,10] 

Metric Formula 

 

Total Cost 

𝐽

= ∫ ∑ [𝑐𝑖𝑗𝑥𝑖𝑗(𝑡)

(𝑖,𝑗)∈𝐸

+ 𝑡𝑖𝑗(𝑥𝑖𝑗(𝑡))𝑥𝑖𝑗(𝑡)]𝑑𝑡.
𝑇

0

 

 

Flow 
Efficiency 

𝐹𝑙𝑜𝑤 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡

=
∑ 𝑥𝑖𝑗(𝑡) − 𝑥𝑖𝑗(0)(𝑖,𝑗)∈𝐸

∑ 𝑥𝑖𝑗(0)(𝑖,𝑗)∈𝐸

 

 
Robustness 𝐶𝑜𝑠𝑡 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

1

𝑆
∑(𝐽𝑠 − 𝐽)̅2
𝑆

𝑠=1

, 

Resilience 

𝑅 =
1

|𝐷|
∑

1 −
𝐽𝑑
𝐽𝑏𝑎𝑠𝑒
𝑡𝑑

𝑑∈𝐷

 

 
Environmental 

Impact 𝐸 = ∫ ∑ 𝑒𝑖𝑗𝑥𝑖𝑗(𝑡)𝑑𝑡
(𝑖,𝑗)∈𝐸

𝑇

0

 

 

Convergence 
Rate 

 

𝑅𝑐𝑜𝑛𝑣 = 
∆𝐽
∆𝑖𝑡𝑒𝑟

  

 

Figure 1 distils the proposed workflow. an 

outer loop samples stochastic-demand scenarios and 

integrates fractional-order flow dynamics, while an 

inner loop applies the Fire Hawk Optimizer to 

iteratively update edge flows. This two-tier scheme 

jointly minimizes total logistics cost and congestion 
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penalties under capacity and balance constraints. By 

coupling long-memory dynamics with a meta-

heuristic search, the algorithm systematically 

navigates demand variability, ensuring rapid 

convergence and robust network performance. 

The analysis of the Barcelona dataset, 

summarized in Table 2, highlights its rich structure 

and diverse attributes, making it ideal for validating 

the proposed optimization model. With 2,522 edges 

and detailed attributes such as capacity, free-flow 

time, and travel costs, the dataset captures the 

dynamic behavior of logistics networks, identifying 

bottlenecks and underutilized edges. The trips data, 

containing 110 origin-destination pairs, provides 

granular insights into demand patterns, enabling 

accurate stochastic demand modeling. The flow data 

reflects real-time variations in volumes and costs, 

demonstrating the model's ability to simulate 

dynamic scenarios and optimize network efficiency. 

This combination of network, trips, and flow data 

validates the proposed model's capability to 

minimize costs, adapt to stochastic demand changes, 

and address capacity constraints effectively. Figure 

2 provides a detailed representation of nodes and 

edges, highlighting the complex connectivity 

between various locations such as hubs and transit 

points. 

 
Fig. 1. Workflow of Fractional Dynamics and Stochastic 

Optimization for Logistics Networks 

4. Simulation and Results 

4.1 Insights from the Barcelona Dataset 

Dynamic Behavior: The model captures the time-

dependent evolution of flows and demands, 

highlighting bottlenecks and underutilized edges. 

Cost Optimization: By incorporating fractional 

dynamics, the model achieves lower total costs 

compared to static or deterministic approaches. 

Real-World Applicability: The dataset 

validates the model's capability to handle complex, 

real-world networks with stochastic demand 

patterns [4,10,2]. The results in Table 3 indicate a 

total transportation cost of 8,835.78 units over the 

time horizon. The flow distribution variance (2.53) 

shows a degree of congestion fluctuations among 

edges, while the demand variance (52.32) signifies 

substantial stochastic demand variability across 

network nodes [8,5]. 

Table.2. 
Consolidated Summary of Network, Trips, and Flow Data from 

the Barcelona Dataset 

Type Details/ Values 

 
Network 

Data 

𝐼𝑛𝑖𝑡𝑛𝑜𝑑𝑒: 1, 𝑇𝑒𝑟𝑚𝑛𝑜𝑑𝑒: 290, 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦: 1, 
 𝐿𝑒𝑛𝑔𝑡ℎ: 1.083,𝐹𝑟𝑒𝑒𝑓𝑙𝑜𝑤𝑡𝑖𝑚𝑒

: 

 1.083, 𝐿𝑖𝑛𝑘_𝑡𝑦𝑝𝑒: 9 

𝐵𝑃𝑅 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝐵, 𝑃𝑜𝑤𝑒𝑟): 0.0, 𝑆𝑝𝑒𝑒𝑑: 0,  
𝑇𝑜𝑙𝑙: 0, 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦: 1 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑑𝑔𝑒𝑠: 2522, 𝑇𝑜𝑡𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑝𝑒𝑟 

 𝑒𝑑𝑔𝑒: 12 

Trips 
Data 

𝑂𝑟𝑖𝑔𝑖𝑛: 1, 2, 3, 4, 5 

Demand flows are structured from origin nodes 

to destination nodes in 110 trips 

Total rows: 110, Total columns: 1 

 
Flow 

Data 

𝐼𝑛𝑖𝑡𝑛𝑜𝑑𝑒: 𝐹𝑟𝑜𝑚, 𝑇𝑒𝑟𝑚𝑛𝑜𝑑𝑒: 𝑇𝑜 

, 𝑉𝑜𝑙𝑢𝑚𝑒: 1151.99 

 (𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝑓𝑜𝑟 𝑁𝑜𝑑𝑒 1 𝑡𝑜 290),  
𝐶𝑜𝑠𝑡: 1.083 

Reflects real-time flow variations under 

stochastic conditions with travel times derived 

using the BPR function 

Total rows: 2523, Total columns: 4 

 
Fig. 2. Visualization of the Barcelona Transportation 

Network with Nodes and Edges 

Table.3. 
Network Performance Metrics 

Metric Value 

Total Cost 8835.780438 

Max Flow 5.428838 

Average Flow 3.057847 

Flow Variance 2.534649 

Demand Variance 52.325277 

 

Yes 

NO 

NO 

Begin the program 

Step 1. Initialization: 

Set algorithm parameters: 𝛼, ℎ, 𝑇, 𝑆. 

Initialize network state: 𝑥𝑖𝑗(0), 𝑑𝑖(0). 

Set counters: 𝑛 =  0,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 =  𝑁. 

Step 2. Generate Stochastic Demand: 

Sample  𝜂𝑖(𝑡)~𝑁(0, 𝜎
2). 

Calculate: 𝑑𝑖(𝑡) = 𝑑̅𝑖(𝑡) + 𝜂𝑖(𝑡) . 

Step 3. Solve Fractional Dynamics: 

• Use fractional differential equations for flows:  
𝑑𝑎𝑥𝑖𝑗(𝑡)

𝑑𝑡𝑎
+ 𝛽𝑥𝑖𝑗(𝑡) = 𝑏𝑖𝑗(𝑡) 

 

• Update flow and demand: 

𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + ℎ𝑎(𝑏𝑖𝑗 − 𝑎𝑥𝑖𝑗(𝑡)). 

Step 4. Optimize Objective: 

Minimize total cost: 

𝐽 = ∑ ∑ [𝑐𝑖𝑗𝑥𝑖𝑗(𝑡)

(𝑖,𝑗)∈𝐸

+ 𝑡𝑖𝑗(𝑥𝑖𝑗(𝑡))𝑥𝑖𝑗(𝑡)]

𝑁

𝑛=1

ℎ 

Update fire hawk positions based on the objective 

function. 

Step 5. Check 

FOHA 

Convergence 

Return Optimal flows 𝑥𝑖𝑗(𝑡), demands 𝑑𝑖(𝑡), performance 

metrics. 

Step 2.1. Calculate Link and Node 

Costs: 

Use BPR function to compute 

travel times. 

 

Step 2.2. Adjust Flows: 

adjust flows using Fire Hawk 

Optimization Algorithm 

Step 2.3. Check FHO convergence: 

Monitor changes in the best solution 

among fire hawks. 

If changes are below a threshold or 

max iterations are reached, terminate. 

 

Step 2.4 

Convergence 

Check for 

Inner Loop 

Step 2.5. Return the inner loop 

Return updated flows, costs, and 

other results to the outer loop for 

further optimization. 

End the program 

Yes 
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Compared to traditional static optimization models, 

the fractional-order differential approach 

demonstrates higher adaptability to random demand 

fluctuations, ensuring a more resilient network 

performance [23,24]. 

Table.4. 
Top 10 Edges with Highest Flow and Costs 

Init Node Term 

Node 

Flow Cost 

1 290 5.428838 5.881241 
733 689 5.428838 0.940999 

729 696 5.428838 1.013383 

730 731 5.428838 0.940999 

730 733 5.428838 0.940999 

731 686 5.428838 1.013383 

731 727 5.428838 1.013383 
732 731 5.428838 0.940999 

732 733 5.428838 0.940999 

733 736 5.428838 0.940999 

 

The edges with the highest flow values (Table 

4) identify critical network routes where demand 

concentration is prominent. The variation in 

transportation costs across edges suggests 

differences in route efficiency, emphasizing the 

importance of network flow optimization to reduce 

congestion and increase throughput balance [2]. 

 
Fig. 3. Flow Dynamics Over Time in the Barcelona 

Transportation Network (Left), Demand Evolution Over Time in 

the Barcelona Transportation Network 

The heatmap in Figure 3 (Left) represents the 

temporal evolution of flow dynamics across all 

edges in the Barcelona transportation network. The 

gradient, ranging from blue to red, signifies 

increasing flow intensities, with red indicating peak 

flow values observed in later time steps. This trend 

demonstrates the network’s ability to dynamically 

adapt and converge flows under varying conditions, 

effectively balancing utilization across edges. Key 

bottlenecks and heavily utilized edges are identified 

through consistently high flow values over time. 

Conversely, Figure 3 (Right) depicts the demand 

dynamics across nodes, with the gradient 

transitioning from yellow to purple, representing 

varying demand levels, where purple highlights high 

negative demand (supply). Significant demand 

fluctuations occur during early time steps, 

stabilizing as time progresses, reflecting the 

system’s resilience in redistributing resources under 

stochastic demand shocks. These visualizations 

collectively highlight the network’s adaptive 

capacity and provide critical insights into 

performance under dynamic conditions.  

The flows generated in each node of the Barcelona 

logistics network are represented in Figure 4. There 

are some very high values, where peak usages 

exceed 10K units in certain nodes, which shows 

their importance within the network. But many 

nodes maintain moderate to low flows, indicating 

latent network capacity. This distribution indicates 

where bottlenecks may exist and potential 

opportunities for load balancing by improving flow. 

Figure 5 illustrates the natural flow dynamics over 

time for the first few edges in the network. The 

curves exhibit fluctuating trends, reflecting the 

system's response to stochastic demand variations 

and temporal dependencies. The variability in flow 

emphasizes the need for robust optimization 

methods to handle such dynamic scenarios 

effectively [9]. Figure 6 depicts the optimized flow 

dynamics using the Fire Hawk Optimization 

algorithm. The dashed lines show smoother 

transitions compared to the unoptimized flows, 

indicating improved stability and efficiency in 

network operations.  

 

 
Fig. 4. Flow Distribution Over Time in the Barcelona 

Transportation Network 

 
Fig. 5. Flow Dynamics Over Time in modeling Approach 

 
Fig. 6. Flow Dynamics Over Time with Fire Hawk 

Optimization 
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The alignment between optimized flows 

suggests better synchronization across the network 

under varying demand conditions. The temporal 

evolution of the optimized flows on all edges for 

different time steps is plotted in Fig. 7. It reflects the 

dynamic changes in flow, driven by stochastic 

demand scenarios: dense and shifting color 

variations. This visualization pinpoints the 

frequency, duration and intensity of high flow over 

individual network edges. Figure 8 illustrates the 

distribution of optimized flows across different 

edges in the logistics network. High variability in 

flow values indicates heterogeneous edge 

utilization, with some edges handling significantly 

higher traffic than others. Such insights highlight 

key edges for capacity optimization and potential 

bottlenecks requiring strategic interventions. 

The total cost across scenarios, as presented in 

Table 5 and Figure 9, shows minimal variation, 

indicating stable network operations despite 

stochastic demand. Flow variance remains within a 

consistent range (0.15–0.16), reflecting the robust 

modeling of flow dynamics under varying 

conditions. Slight fluctuations in average flow 

suggest potential bottlenecks or imbalances in 

supply-demand dynamics in specific scenarios. 

Overall, the model effectively handles stochastic 

variability while maintaining operational 

consistency [4,5]. 

 

 
Fig. 7. Heatmap of Optimized Flows 

 
Fig. 8. Optimized Flow Distribution Across Edges 

 
Fig. 9. Average Flow Dynamics Across Scenarios 

Table.5. 
Scenario Analysis Table 

Scenario Total 

Cost 

Average Flow Flow Variance 

0 5714.2997 0.003162 0.151582 
1 5723.3704 0.019112 0.152768 

2 5727.7431 -0.026585 0.160567 

3 5723.0888 -0.000138 0.156519 
4 5723.2130 -0.005253 0.158258 

5. Conclusion 

The results confirm that the proposed 

optimization framework effectively stabilizes 

logistics network performance under stochastic 

demand fluctuations. By incorporating fractional-

order modeling, the approach enhances cost-

efficiency and outperforms conventional integer-

order methods in real-world logistics applications 

[10,3]. The model demonstrates its effectiveness in 

reducing total logistics costs compared to static or 

deterministic frameworks, ensuring a more balanced 

flow distribution and network adaptability under 

varying demand conditions. The integration of the 

Fire Hawk Optimization Algorithm (FHOA) 

successfully identifies and optimizes key transport 

routes, mitigating congestion bottlenecks and 

enhancing overall network efficiency [4,8]. 

Furthermore, the stochastic scenario-based analysis 

validates the robustness of the model in handling 

real-world uncertainty, making it a reliable tool for 

large-scale logistics network planning. Future 

research may explore the integration of hybrid AI-

based heuristics to further enhance computational 

efficiency and improve adaptability to dynamic 

logistics challenges [2,9]. 
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