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Abstract. Bipolar-valued hesitant fuzzy graphs (BVHFGs) provide a suitable framework for representing knowl-
edge in situations characterized by uncertainty, imprecision, and hesitations. Current research shows a lack of
studies on energy in contexts involving bipolarity, hesitations, and fuzzy data, motivating us to propose new defi-
nitions of energy in this area. In this study, we introduce innovative notions of graph energy and Laplacian energy
within the framework of a bipolar valued hesitant fuzzy setting and scrutinize certain characteristics and various
types of bounds of these concepts. Additionally, the investigation explores the interplay between the energy and
Laplacian energy of BVHFGs. Consequently, a numerical illustration is provided, encompassing the identification
of optimal alternatives to elucidate the pragmatic application of the proposed theoretical frameworks within the
realm of decision-making. This empirical demonstration underscores the efficacy and relevance of the developed
methodology in addressing real-world decision-making challenges.
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1 Introduction

1.1 Research background

Zadeh [1] introduced the fuzzy set theory in 1965, which comprises a set of concepts that address the type of
imprecisions that arise when the boundary of a class is not accurately defined. Following the emergence of
fuzzy sets, study on them has garnered significant attention as a prominent area of research across multiple
academic disciplines [2]. Numerous scholarly investigations have put up diverse expansions and applications
of fuzzy sets in the realm of academic research [3, 4]. One such example is the introduction of bipolar fuzzy
sets (BFSs) by Zhang [5]. This extension expands upon the notion of fuzzy sets, which are emphasized by
membership values within the range of [−1, 1]. The BFS assigns membership degrees to elements based on
their relevance according to specified criteria. We presume that BFS deals with the satisfaction exhibited
by elements that meet the relevant property as well as some intrinsic contrast property associated with the
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provided criteria. However, the BFS does not consider hesitation in achieving this degree of satisfaction. This
assertion remains impractical when applied to real-life scenarios. That is why it is important to continue
researching efficient and reliable approaches.

1.2 Motivation and Contribution

As far as current scholarly research indicates, there is a lack of literature pertaining to the subject matter of
energy in settings involving bipolarity, hesitations, and fuzzy data. On the other side, several studies have
been conducted in the literature to present the utility of bipolar-valued hesitant fuzzy sets [6], dual hesitant
fuzzy sets [7], and others. Notably, Pandey et al. [8] recently introduced the concept of the bipolar-valued
hesitant fuzzy graph (BVHFG) in 2022 and expounded upon its fundamental operations. In this study, our
main objective is to introduce the notion of bipolar-valued hesitant fuzzy graph energy and Laplacian energy
and establish the relation between them. Additionally, we present various lower and upper bounds of BVHFG
energy. Various methods and approaches are discussed in the literature related to decision-making issues [9].
To show the utility of the current study, we also discuss a problem related to group decision-making where
the weight of experts is completely unknown [10, 11].

1.3 Framework of this study

The present manuscript is structured in a subsequent form: Section 2 represents an overview of the literature
on fuzzy graphs, decision-making, and energy of different forms of graphs. Section 3 provides a brief summary
of the historical context and fundamental characteristics of BVHFSs and BVHFGs. The fourth section
primarily introduced the notion of the energy of BVHFGs and explored its characteristics. Section 5 presents
an analysis of the Laplacian energy of BVHFGs and establishes a correlation between energy and Laplacian
energy within the BVHF framework. Section 6 provides a quantitative illustration of the energy and Laplacian
energy associated with BVHFG’s in the context of decision-making considerations. The concluding part of
this scholarly manuscript is expounded upon in the seventh section.

2 Literature Review

Rosenfeld [12] proposed the utilization of a fuzzy graph in 1975, drawing inspiration from Kauffman’s [13]
fundamental concepts. Presently, a significant amount of research is being conducted in the area related to
fuzzy graphs. This includes the extensions and applications related to fuzzy graphs in various areas, such
as link prediction under social media networks, the coloring of regions affected by Coronavirus disease 2019
(COVID-19) [14], centrality in bipolar fuzzy social networks [15], bipolar fuzzy bunch graphs [16] and many
others. Akaram [17] presented the idea of bipolar fuzzy graphs (BFGs) as a means of addressing the bipolar
nature of real-world problems, building upon Zhang’s [5] bipolar fuzzy set theory. In 2015, Pathinathan et al.
[18] developed hesitancy fuzzy graphs outlining fundamental ideas. Although Pathinathan coined the term
hesitancy fuzzy graph, they didn’t assign hesitant fuzzy elements (HFEs) to the graph’s vertices and edges.
Instead, they employed intuitionistic fuzzy (IF) [19] values, represented by triples indicating membership
degree, hesitancy degree, and non-membership degree of vertices and edges. In 2019, Karaaslan [20] proposed
hesitant fuzzy graphs (HFG), aligning with Torra’s [21] original notion of heitant fuzzy set (HFS) by assigning
HFEs to vertices and edges. In 2022, Pandey et al. [8] extended this concept by introducing score based
bipolar-valued hesitant fuzzy graphs (BVHFGs), integrating bipolarity and defining fundamental properties.
BVHFG is the generalization of HFG, which considers not only the satisfaction degree of units in a network
but also the satisfaction degree to some implicit counter property of units with several bipolar fuzzy values.

The notion of energy has a close connection to the graph’s spectrum. The idea of the graph’s spectrum
was initially introduced in a scholarly article authored by Collatz and Sinogowitz in 1957. The nomenclature
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of the subject matter draws inspiration from the concept of energy in the field of chemistry. The investigation
of π-electron energy within the field of chemistry has a historical origin tracing back to the 1940’s [22]. In
1978, Gutman [23] proposed a mathematical formulation for the concept of energy applicable to graphs of any
nature. The investigation of specific limitations on energy is conducted in studies [24] and [25]. Gutman and
Zhou [26] presented the notion of the Laplacian energy associated with the graph in 2006, which is computed
by the summation for the absolute differences between the mean degree of the vertices in graph G and the
eigenvalues of its Laplacian matrix. Distinct categories of graphs, specifically hypoenergetic, hyperenergetic,
and equienergetic, have been classified based on their respective energy levels. Further information regarding
these categories can be obtained from sources [27] and [28]. The concept of energy has been established for
various types of graphs to solve the decision-making issues [29]. Specifically, it has been provided for weighted
graphs in [30], for signed graphs in [31], for fuzzy graphs in [22], and for BFGs by Naz et al. [32]. Sharbaf and
Fayazi [33] presented the definition of the Laplacian energy associated with the fuzzy graph in 2014. Energy
of the bipolar-valued intuitionistic fuzzy digraph used to choose the COVID-19 vaccines is presented in [34].
Although the precise physical interpretation of energy application in graphs remains unclear, its inherent
properties are of significant interest to mathematicians.

3 Preliminaries

This section provides an overview of fundamental concepts regarding BVHFS’s and BVHFG’s, which will aid
in comprehending subsequent sections.

A graph, denoted as ζ = (V,E), constitutes the mathematical framework made up of nodes V and links
E. Each link is represented as an unordered combination of different nodes. An adjacency matrix, denoted
as M(ζ), for a graph named ζ having n nodes, typically a square matrix of size n×n. Each element within
the i-th row and j-th column of the matrix reflects the total amount of links connecting nodes i and j. The
eigenvalues for graph ζ correspond to as eigenvalues of its adjacency matrix, denoted as λi, where 1 ≤ i ≤ n.
The spectrum for a graph ζ denoted as Spec(ζ), is defined as an accumulation of eigenvalues {λ1, λ2, · · · , λn}
associated with the adjacency matrix underlying ζ.

Definition 3.1. [24] E(ζ) denotes the energy for the graph ζ, which is defined as the summation for the

absolute magnitude of ζ’s eigenvalues, i.e., E(ζ) =
n∑

i=1
|λi|. A graph that consists only of isolated vertices has

an energy of zero, whereas a complete graph has 2(n-1) energy.

Definition 3.2. [26] The Laplacian energy for the graph ζ, identified as EL(ζ), can be mathematically
expressed by the summation for the absolute differences between the Laplacian eigenvalues of ζ, denoted as
{µ1, µ2, · · · , µn}, and the average degree of ζ, denoted as 2m

n . Let γi be the auxiliary eigenvalues, we have,

EL(ζ) =
n∑

i=1

|γi|

where, γi = µi − 2m
n , m denote the total amount of links and n denote the total amount of nodes.

Definition 3.3. [35] Consider a real matrix P with dimensions m×n. The matrix PP T can be characterized
as a positive semi definite matrix with a size of m. The matrix PP T possesses eigenvalues that can be
represented as σ2

1, σ
2
2, · · · , σ2

m, where σi ≥ 0 for i = 1, 2, · · · ,m. These values have been commonly referred
to as the singular values for the matrix P. The sum σ1 + σ2 + · · · + σm is referred to as the singular energy
for matrix P as will as is symbolically represented as σ(P ) for the sake of convenience.
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Definition 3.4. [36] (Spanning Subgraph) A spanning subgraph is a graph that includes all the vertices of
the parent graph but may not include all the links.

Definition 3.5. [12] The notion regarding the fuzzy graph denoted as G∗ = (V, µ, ν), constitutes a mathe-
matical construct that builds upon the crisp graph ζ = (V,E). It is signified by the presence of membership
functions, represented as µ : V → [0, 1] and ν : V × V → [0, 1], which serve to define the characteristics of
the graph, such that ν(v1v2) ≤ µ(v1) ∧ µ(v2) for all v1, v2 ∈ V , where µ(v1) and ν(v1v2) represents the value
of membership of the node v1 and link v1v2 within G∗ correspondingly.

Definition 3.6. [37] Consider X = {x1, x2, · · · , xn} as a non empty finite universe of discourse. Let
U = (σU (xi), δU (xi)) and W = (σW (xi), δw(xi)) be two intuitionistic fuzzy sets on X. The CC (correlation
coefficient) between U and W can be expressed mathematically as,

K(U,W ) =

n∑
i=1

[σU (xi)σW (xi) + δU (xi)δW (xi)]√
n∑

i=1
[σ2

U (xi) + δ2U (xi)]

√
n∑

i=1
[σ2

V (xi) + δ2V (xi)]

.

In the present research article, the notation IP will be employed to represent the interval [0, 1], whereas
IN will denote the interval [−1, 0].

Definition 3.7. [6] Consider the universe of discourse denoted by X. A bipolar valued hesitant fuzzy set
(BVHFS) B on the set X has been formally described as:

B = {< x,H(x) > |x ∈ X},

here H(x) denote a collection containing values within IP × IN . For simplicity, we convey H(x) a bipolar
valued hesitant fuzzy element (BVHFE) defined by:

H(x) = {hx|hx ∈ IP × IN},

where the variable hx can be expressed as (hPx , h
N
x ) which is called a bipolar valued fuzzy number (BVFN).

We have, hPx ∈ IP and hNx ∈ IN .

Definition 3.8. [6] Consider hx = (hPx , h
N
x ) ∈ H(x) as a BVFN, where the Score of hx, S(hx) can be

computed as:

S(hx) =
1

2
(hPx − hNx ).

Definition 3.9. [6] consider H(x) as a BVHFE, score function associated with H(x), S(H(x)) can be com-
puted by:

S(H(x)) =
1

l(H(x))

∑
hx∈H(x)

S(hx),

here l(H(x)) represent the cardinality of the set of bipolar values in H(x). Furthermore, hx represent an
element in H(x), which is assumed to be in the form of a BVFN.

Definition 3.10. [8] Consider A and B denote two BVHFS’s defined over the universal set X. The function
A(x, y) is defined for any x and y belonging to X as follows: A(x, y) : X×X → P (IP ×IN ). Consider A as a
bipolar valued hesitant fuzzy relation over set X. The relation A is referred to as the score based bipolar valued
hesitant fuzzy relation on set B when, for all x and y in X, it holds that S(A(x, y)) ≤ S(B(x)) ∧ S(B(y)).
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Pandey et al. [8] established the notion of the BVHFG’s by bringing the concept of BVHFS’s into graph
theory. This paper will denote the link (x, y) as xy and the Cartesian product V ×V as V 2, unless otherwise
specified.

Definition 3.11. [8] A bipolar valued hesitant fuzzy graph (BVHFG) can be characterized by the pair Ĝ =
(A,B), with A and B represent BVHFS’s defined on the reference set V and V 2 correspondingly. The given
scenario involves two membership functions, namely A : V → P (IP × IN ) and B : V 2 → P (IP × IN ). It is
stated that the inequalities

S(B(xy)) ≤ S(A(x)) ∧ S(A(y)) for all xy ∈ V 2,

S(B(xy)) = 0 for all xy ∈ (V 2 − E),

holds. Where A(x) and B(xy) represent the BVHFE’s which is described as B(xy) = {(bPxy, bNxy) | (bPxy, bNxy) ∈
IP × IN} and A(x) = {(aPx , aNx ) | (aPx , aNx ) ∈ IP × IN}.

Definition 3.12. [8] Consider the BVHFG Ĝ = (A,B) over ζ. The score based degree associated with a vertex
vi ∈ V belonging to the BVHFG has been represented as deg(vi). It is specified by the total of score of all links
that are connected to the vertex vi. Mathematically, this may be expressed as deg(vi) =

∑
v ̸=vi∈V

S(B(viv)).

4 Energy of Bipolar valued hesitant fuzzy graph

In this following section, we introduce a comprehensive definition of energy of a BVHFG along with its
associated bounds. We illustrate these bounds through the use of examples. The energy of BVHFG has
broad applicability across diverse research domains.

Definition 4.1. Adjacency matrix M(Ĝ) of the BVHFG Ĝ = (V,A,B) is a square matrix with size n × n,
denoted as M(Ĝ) = [aij ]n×n. Each element aij in the matrix represents the bipolar valued hesitant membership
grades of the links vivj, specifically aij = H(vivj).

H(vivj) = {(hPij , hNij ) | (hPij , hNij ) ∈ IP × IN}.

Example 4.2. Consider the BVHFG, suppose V represent the collection of three nodes {v1, v2, v3} and
E = {v1v2, v2v3, v3v1} represent the collection of links, then the BVHFG and BVHFSs, A and B across V
and V 2 are illustrated by Figure 1 and Table 1, accordingly. Additionally, the adjacency matrix M(Ĝ) is
specified according to:

A.jpg A.bb

Figure 1: Example of BVHFG
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Table 1: BVHF table

v1 v2 v3
A {(0.2,−0.7), (0.4,−0.6)} {(0.5,−0.3), (0.7,−0.4), (0.8,−0.1)} {(0.3,−0.8), (0.5,−0.6)}

Score 0.475 0.467 0.55

v1v2 v2v3 v3v1
B {(0.4,−0.3), (0.6,−0.2)} {(0.3,−0.5), (0.2,−0.7)} {(0.2,−0.6), (0.4,−0.5)}

Score 0.375 0.425 0.425

M(Ĝ) =

 (0, 0) {(0.4,−0.3), (0.6,−0.2)} {(0.2,-0.6),(0.4,-0.5)}
{(0.4,−0.3), (0.6,−0.2)} (0, 0) {(0.3,-0.5),(0.2,-0.7)}
{(0.2,-0.6),(0.4,-0.5)} {(0.3,-0.5),(0.2,-0.7)} (0, 0)


Score of the adjacency matrix M(Ĝ) is specified by

S(M(Ĝ)) =

 0 0.375 0.425
0.375 0 0.425
0.425 0.425 0


The eigenvalues associated with the adjacency matrix M(Ĝ) commonly denoted as eigenvalues of BVHFG

Ĝ. The collection of eigenvalues of M(Ĝ) frequently referred by the term spectrum of Ĝ and is represented
by Spec(Ĝ).

Definition 4.3. Let Ĝ be the BVHFG, M(Ĝ) be an n × n adjacency matrix, S(M(Ĝ)) be the score of the
adjacency matrix and λ′

is, i = 1, 2, · · · , n are associated eigenvalues of Ĝ. The energy of BVHFG, E(G∗) is

determined by E(Ĝ) =
n∑

i=1
|λi|.

Example 4.4. Regarding the graph depicted in Figure:1. Spec(Ĝ)={-0.4421, -0.3750, 0.8171}. The energy
associated with the graph Ĝ is mathematically expressed by the total on the absolute values for eigenvalues
of Ĝ. This can be represented as E(Ĝ) = 0.4421 + 0.3750 + 0.8171 = 1.6342.

Remark 4.5. It can be observed that the energy value associated with the non trivial simple graph has been
invariably higher than one [27]. However, it is noteworthy that this outcome does not hold true for the
BVHFG, as seen in Example 4.6.

Example 4.6. From, Figure 2, the adjacency matrix can be observed as

M(Ĝ) =

 (0, 0) {(0.82,−0.41), (0.21,−0.28)} {(0.37,-0.43),(0.44,-0.22)}
{(0.82,−0.41), (0.21,−0.28)} (0, 0) {(0.56,-0.08),(0.38,-0.21)}
{(0.37,-0.43),(0.44,-0.22)} {(0.56,-0.08),(0.38,-0.21)} (0, 0)


Score of the given adjacency matrix M(G∗) has been specified by

S(M(Ĝ)) =

 0 0.226 0.182
0.226 0 0.151
0.182 0.151 0


Spec(Ĝ) = {0.374,−0.231,−0.143}, E(G) = 0.748 < 1.
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B.jpg B.bb

Figure 2: BVHFG, E(Ĝ) < 1

Theorem 4.7. Let Ĝ = (V,A,B) be the BVHFG, where |V | = n and λi’s, i = 1, 2, · · · , n be the eigenvalues
of Ĝ. Consider {e1, e2 · · · , em} as the collection of links of Ĝ and M = [aij ]n×n is the adjacency matrix of

Ĝ, then
n∑

i=1
λi = 0 and

n∑
i=1

λ2
i = 2

m∑
i=1

(S(B(ei)))
2.

Proof. The total of the square matrix’s eigenvalues corresponds to its trace, and the adjacency matrix of Ĝ

has a trace of zero, it follows that
n∑

i=1
λi = 0.

Let P and P t be the square matrix and its transpose respectively, by the property of square matrix,

trace(PP t) =
n∑

i=1

n∑
j=1

aijaij .

Now, since M is the symmetric matrix so MM t = M2.

trace(M2) =

n∑
i=1

n∑
j=1

S(B(aij))S(B(aij)),

=

n∑
i=1

n∑
j=1

S(B(aij))
2,

= 2
m∑
i=1

S(B(ei))
2.

Thus,
n∑

i=1
λ2
i = trace(M2) = 2

m∑
i=1

S(B(ei))
2. □

Lemma 4.8. [35] (The Ky Fan inequality) Let us consider the matrices P , Q, and R that allows the equation
R = P +Q holds. In this context, σ(M) denotes the singular energy of matrix M . It can be stated that the
singular energy of matrix R is less than or equal to the total of singular energies of matrices P and Q, i.e.,
σ(R) ≤ σ(P ) + σ(Q).

Theorem 4.9. [38] Let ζ be a weighted network having n nodes in which each link possesses a non-zero
weight. Let ei, i = 1, 2, · · · ,m denote all of the links for ζ. Then, we have, the energy of ζ less than or equal

to the twice into total of the weights of all links in ζ, i.e., E(ζ) ≤ 2
m∑
i=1

|w(ei)|.

Proof. Let ζe be the spanning (weighted) subgraph of ζ containing a single link e, then M(ζ) =
m∑
i=1

M(ζei)
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and let σ(M) denote the singular energy of M. Now by the Ky Fan inequality,

E(ζ) = σ(M(ζ)),

≤
m∑
i=1

σ(M(ζei)),

= 2
m∑
i=1

|w(ei)|.

Therefore, E(ζ) ≤ 2
m∑
i=1

|w(ei)|. □

The previous theorem applies to weighted graphs. In this case, w(ei) stands for the weight of link ei. If
we consider a BVHFG to be the weighted graph having a weighted score within the range IP , one possible
rewording of Theorem 4.9 would be as:

Theorem 4.10. Consider Ĝ = (V,A,B) as the BVHFG having |V | = n and B∗ = {e1, e2, · · · , em}. Then,

we have, E(Ĝ) ≤ 2
m∑
i=1

S(B(ei)).

Example 4.11. According to the illustration of Theorem 4.10, it can be observed from Figure:1 that the

value of E(Ĝ) is 1.6342 and 2
3∑

i=1
S(B(ei)) is equal to 2.45. It is evident that 2

3∑
i=1

S(B(ei)) is greater than

E(Ĝ).

Theorem 4.12. Consider Ĝ = (V,A,B) as the BVHFG having |V | = n and eigenvalues λ′
is, i = 1, 2 · · · , n.

Suppose B∗ = {e1, e2, · · · , em} and M = [aij ]n×n is adjacency matrix associated with Ĝ. Then, we have,

2

√√√√ m∑
i=1

S(B(ei))2 ≤ E(Ĝ) ≤ 2

m∑
i=1

S(B(ei)).

Proof. For lower bound,

|E(Ĝ)|2 = (

n∑
i=1

|λi|)2,

=

n∑
i=1

|λi|2 + 2
∑

1≤i<j≤n

|λiλj |,

= 2

m∑
i=1

S(B(ei))
2 + 2

∑
1≤i<j≤n

|λiλj |. (1)

Now, while comparing the coefficient of λn−2 in the equation

n∏
i=1

(λ− λi) = |M − λI|.

We have, ∑
1=i<j=n

λiλj = −
m∑
i=1

S(B(ei))
2.
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Since
n∑

i<j
|λiλj | ≥ |

n∑
i<j

λiλj |, we get from Equation (1).

|E(Ĝ)|2 ≥ 2
m∑
i=1

S(B(ei))
2 + 2

m∑
i=1

S(B(ei))
2.

E(Ĝ) ≥ 2

√√√√ m∑
i=1

S(B(ei))2.

Also from Theorem 4.10, we have, E(Ĝ) ≤ 2
m∑
i=1

S(B(ei)).

Therefore, 2

√
m∑
i=1

S(B(ei))2 ≤ E(Ĝ) ≤ 2
m∑
i=1

S(B(ei)). □

Theorem 4.13. Consider Ĝ = (V,A,B) as the BVHFG, where V = A∗ = {v1, v2, · · · , vn} and B∗ =

{e1, e2, · · · , em}. Then, we have, E(Ĝ) ≤ (n− 1)
n∑

i=1
S(A(vi)).

Proof.

Since, E(Ĝ) ≤ 2

m∑
i=1

S(B(ei)),

≤ 2

n(n−1)
2∑

i=1

S(B(ei)),

where m ≤ n(n−1)
2 (maximum possible number of links). Now,

E(Ĝ) ≤

n(n−1)
2∑

i=1

S(B(ei)) + S(B(ei)),

=
∑

1≤i<j≤n

(S(B(vivj)) + S(B(vivj))).

Since, we have S(B(vivj)) ≤ min{S(A(vi)), S(A(vj))} for all vi, vj ∈ V . Hence,

E(Ĝ) ≤
∑

1≤i<j≤n

S(A(vi)) + S(A(vj)),

= (n− 1)

n∑
i=1

S(A(vi)).

Thus, E(Ĝ) ≤ (n− 1)
n∑

i=1
S(A(vi)). □

Subsequently, a finding is presented that provides an improved lower bound and upper bound on the
energy associated with the BVHFG. These bounds are expressed in relation to the total amount of nodes in
BVHFG and the determinant of its adjacency matrix.
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Theorem 4.14. Consider Ĝ = (V,A,B) as the BVHFG, where |V | = n and B∗ = {e1, e2, · · · , em}. Let
ki = B(ei) represent the membership grade for the ith link and |M | represent the determinant for adjacency
matrix underlying Ĝ, then, we have,

√√√√2

m∑
i=1

S(ki)2 + n(n− 1)|M |
2
n ≤ E(Ĝ) ≤

√√√√2n

m∑
i=1

S(ki)2.

Proof. Suppose (|λ1|, |λ2|, · · · , |λn|) is the modulus of eigenvalues of the adjacency matrix of Ĝ and (1,1,· · · ,1)
is the vector number.

For upper bound, using the Cauchy Schwarz inequality on the set of numbers (|λ1|, |λ2|, · · · , |λn|) and
(1,1,· · · ,1), we get,

n∑
i=1

|λi| ≤
√
n

√∑
i=1

|λi|2. (2)

Applying Theorem 4.7, we also get

n∑
i=1

|λi|2 = 2
m∑
i=1

S(ki)
2. (3)

From equation (3) and equation (2), we get

n∑
i=1

|λi| ≤
√
n

√√√√2

m∑
i=1

S(ki)2 =

√√√√2

m∑
i=1

S(ki)2n.

E(Ĝ) ≤

√√√√2
m∑
i=1

S(ki)2n.

Now, for lower bound,

|E(Ĝ)|2 = (
n∑

i=1

|λi|)2,

=

n∑
i=1

|λi|2 + 2
∑

1≤i<j≤n

|λiλj |,

= 2

m∑
i=1

S(ki)
2 + 2

n(n− 1)

2
AM{|λiλj |}.

Since, AM{|fifj |} ≥ GM{|fifj |}, 1 ≤ i < j ≤ n. Now,

E(Ĝ) ≥

√√√√2
m∑
i=1

S(ki)2 + n(n− 1)GM{|λiλj |},
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Where,

GM{λiλj} = (
∏

1≤i<j≤n

|λiλj |)
2

n(n−1) ,

= (

n∏
i=1

|λi|n−1)
2

n(n−1) ,

= (

n∏
i=1

|λi|)
2
n

= |M |
2
n .

E(Ĝ) ≥

√√√√2

m∑
i=1

S(ki)2 + n(n− 1)|M |
2
n .

Thus,

√
2

m∑
i=1

S(ki)2 + n(n− 1)|M |
2
n ≤ E(Ĝ) ≤

√
2

m∑
i=1

S(ki)2n. □

Example 4.15. Based on the depiction of Theorem 4.14, it is evident from Figure:1 that the numerical
value of E(Ĝ) is 1.6342, with the lower bound being 1.608 and the upper bound being 1.735. The inequality
1.608 < E(Ĝ) < 1.735 clearly holds.

Theorem 4.16. consider Ĝ = (V,A,B) denote the BVHFG, where |V | = n and B∗ = {e1, e2, · · · , em}.
Let ki = B(ei) denote the membership grade for the ith link and n ≤ 2

m∑
i=1

S(ki)
2. Let M(Ĝ) represent the

adjacency matrix underlying Ĝ, also {λ1 ≥ λ2 ≥ · · · ≥ λn} are the eigenvalues of M , then, we have,

E(Ĝ) ≤
2

m∑
i=1

S(ki)
2

n
+

√√√√√√(n− 1){2
m∑
i=1

S(ki)2 − (

2
m∑
i=1

S(ki)2

n
)2}.

Proof. By using the Gershgorin circle theorem and the property of the symmetric matrix, we have

λmax = λ1 ≥
2

m∑
i=1

S(ki)

n
,

where, λmax represents the maximum eigenvalues of M(Ĝ).

Now, since

n∑
i=1

λ2
i = 2

m∑
i=1

S(ki)
2. (4)

n∑
i=2

λ2
i = 2

m∑
i=1

S(ki)
2 − λ2

1. (5)

By utilising the Cauchy Schwarz inequality, we can apply it to the set of numbers (λ2, λ3, · · · , λn) and the
set (1,1,· · · ,1), resulting in the following expression:
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E(Ĝ)− λ1 =
n∑

i=2

|λi| ≤

√√√√(n− 1)
n∑

i=2

|λi|2. (6)

Based on equation (5) and equation (6), it can be inferred that

E(Ĝ)− λ1 ≤

√√√√(n− 1)(2

m∑
i=1

S(ki)2 − λ2
1),

E(Ĝ) ≤

√√√√(n− 1)(2
m∑
i=1

S(ki)2 − λ2
1) + λ1.

Let f(x) =

√
(n− 1)(2

m∑
i=1

S(ki)2 − x2) + x. It is clear that f(x) is decreasing in the interval

[

√
2

m∑
i=1

s(ki)2

n ,

√
2

m∑
i=1

S(ki)2].

Now, since n ≤ 2
m∑
i=1

S(ki)
2, so 1 ≤

2
m∑
i=1

S(ki)
2

n , then we have,√√√√√2
m∑
i=1

S(ki)2

n
≤

2
m∑
i=1

S(ki)
2

n
≤

2
m∑
i=1

S(ki)

n
≤ λ1 ≤

m∑
i=1

|λi| =

√√√√2

m∑
i=1

S(ki)2. (7)

Therefore from Equation (7), f(x) satisfies the inequality

f(λ1) ≤

√√√√√√(n− 1){2
m∑
i=1

S(ki)2 − (

2
m∑
i=1

S(ki)2

n
)2}+

2
m∑
i=1

S(ki)
2

n
.

Finally, we get E(Ĝ) ≤

√√√√
(n− 1){2

m∑
i=1

S(ki)2 − (
2

m∑
i=1

S(ki)2

n )2}+
2

m∑
i=1

S(ki)
2

n . □

5 Laplacian energy concept of BVHFG

Our objective in this section is to formulate a BVHFG energy like quantity that is defined based on Laplacian
eigenvalues, while maintaining the key characteristics of the original BVHFG energy.

Definition 5.1. Degree matrix D(Ĝ) under the BVHFG Ĝ = (V,A,B) has been a diagonal matrix with size
n× n, denoted as D(Ĝ) = [dij ]n×n, and defined by

dij =

{
deg(vi), if i = j,

0, otherwise.
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The degree matrix for Figure 3 is provided by

D(Ĝ) =


0.867 0 0 0 0
0 0.860 0 0 0
0 0 0.905 0 0
0 0 0 0.837 0
0 0 0 0 0.885


Definition 5.2. consider M(Ĝ) and D(Ĝ) are the adjacency matrix and degree matrix of BVHFG Ĝ =
(V,A,B). The score based Laplacian matrix S(L(Ĝ)) = D(Ĝ) − S(M(Ĝ)) represent the square matrix with
size n× n, denoted as L(Ĝ) = [lij ]n×n.

Example 5.3. Consider the BVHFG, let V be a set of five vertices {v1, v2, v3, v4, v5} and E = {v1v3, v1v4, v2v4,
v3v5, v2v5} be the collection of links, then BVHFG and BVHFS’s, A and B over V and V 2 are given by Figure
3 and Table 2, respectively, also Laplacian matrix L(Ĝ) is defined as follows:

C.jpg C.bb

Figure 3: The BVHFG

Table 2: Bipolar valued hesitant fuzzy table

v1 v2 v3
A {(0.7,−0.5), (0.68,−0.47), (0.72,−0.49)} {(0.6,−0.3), (0.7,−0.23)} {(0.58,−0.27), (0.54,−0.61)}

Score 0.795 0.457 0.500

v4 v5
{(0.4,−0.5), (0.6,−0.53)} {(0.8,−0.3), (0.72,−0.25)}

0.508 0.517

v1v3 v1v4 v2v4
B {(0.46,−0.38), (0.55,−0.43)} {(0.4,−0.53), (0.44,−0.37)} {(0.6,−0.3), (0.5,−0.3)}

Score 0.455 0.412 0.425

v3v5 v2v5
{(0.5,−0.4), (0.6,−0.3)} {(0.4,−0.53), (0.44,−0.37)}

0.45 0.435
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The score based adjacency matrix and Laplacian matrix under the BVHFG depicted in Figure 3 have
been presented below.

S(M(Ĝ)) =


0 0 0.455 0.412 0
0 0 0 0.425 0.435

0.455 0 0 0 0.45
0.412 0.425 0 0 0
0 0.435 0.45 0 0



S(L(Ĝ)) =


0.867 0 −0.455 −0.412 0
0 0.860 0 −0.425 −0.435

−0.455 0 0.905 0 −0.45
−0.412 −0.425 0 0.837 0

0 −0.435 −0.45 0 0.885


Theorem 5.4. consider Ĝ = (V,A,B) is the BVHFG, where |V | = n. suppose {µ1, µ2, · · · , µn} and
{e1, e2 · · · , em} is the eigenvalues associated with Laplacian matrix and the collection of links underlying

Ĝ, respectively. Suppose L(Ĝ) = [lij ]n×n is the Laplacian matrix. Then, we have,
n∑

i=1
µi = 2

m∑
i=1

S(B(ei)) and

n∑
i=1

µ2
i = 2

m∑
i=1

S(B(ei))
2 +

n∑
i=1

deg2(vi).

Proof. (1) The trace associated with Laplacian matrix L(Ĝ) is given by

trace(L) =

n∑
i=1

S(B(lii)),

=
n∑

i=1

deg(vi),

= 2
m∑
i=1

S(B(ei)).

Also the trace associated with the square matrix has been equivalent of the total of its eigenvalues. Therefore,

trace(L) =
n∑
i
µi = 2

m∑
i=1

S(B(ei)).

(2) Now, since Laplacian matrix L(Ĝ) is the symmetric matrix, so

trace(LLt) = trace(L2) =

n∑
i=1

n∑
j=1

S(B(lij))S(B(lij)),

=

n∑
i=1

n∑
j=1

S(B(lij))
2,

= 2
∑

1=i<j=n

S(B(lij))
2 +

n∑
i=j=1

S(B(lii))
2,

= 2

m∑
i=1

S(B(ei))
2 +

n∑
i=1

deg2(vi).

Therefore, trace(L2) =
n∑

i=1
µ2
i = 2

m∑
i=1

S(B(ei))
2 +

n∑
i=1

deg2(vi). Hence the proof is completed. □
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Remark 5.5. In scenarios where the BVHFG Ĝ consists of k components (k ≥ 1), and assuming that
the Laplacian eigenvalues are ordered such that µ1 ≥ µ2, · · · ,≥ µn, it may be deduced that µn−i = 0 for
i = 0, · · · , k − 1 and µn−k > 0.

Definition 5.6. Consider Ĝ denote a BVHFG. Let L(Ĝ) be an n×n Laplacian matrix, S(L(Ĝ)) denote the
score of the Laplacian matrix and µ′

is, i = 1, 2, · · · , n are the Laplacian eigenvalues of Ĝ, then, we have, the
Laplacian energy associated with BVHFG is defined as

EL(Ĝ) =

n∑
i=1

|γi|,

where, γi = µi −
2

∑
1=i<j=n

S(B(lij))

n .

Remark 5.7. According to the analogy presented in theorem 4.7, it can be inferred that

n∑
i=1

γi = 0;
n∑

i=1

γ2i = 2M,

where, M =
∑

1=i<j=n
S(B(lij))

2 + 1
2

n∑
i=1

(deg(vi)−
2

∑
1=i<j=n

S(B(lij))

n )2.

Example 5.8. The Laplacian eigenvalues and Laplacian energy associated with the BVHFG, as presented
in Figure 3, are provided below.
Laplacian Spec(Ĝ)={1.61154, 1.54033, 0.608674, 0.593459, 0}
γ1 = 0.74074, γ2 = 0.66953, γ3 = −0.262126, γ4 = −0.277341, γ5 = −0.8708. Therefore, EL(Ĝ) = 2.820537.

Moreover, according to Remark 5.7, we have
n∑

i=1
γi = 0 and

n∑
i=1

γ2i = 2(0.949119 + 0.0013224) = 1.90088

Remark 5.9. The Laplacian matrices have non-negative eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn = 0 with

EL(Ĝ) =

n∑
i=1

|µi −
2

n∑
i<j

S(B(lij))

n
| = 2

α∑
i=1

µi −
4

n∑
i<j

S(B(lij))α

n
,

where α is the greatest positive integer satisfying the condition µα ≥
2

n∑
i<j

S(B(lij))

n .

5.1 BVHFG Energy and Laplacian energy relationship

Lemma 5.10. [39] Let P and Q denote the real symmetric matrices with order n× n. For any 1≤ k ≤ n,

k∑
i=1

λi(P +Q) ≤
k∑

i=1

λi(P ) +

k∑
i=1

λi(Q),

holds. Where λi(R) represents the ith largest eigenvalue underlying matrix R.

Theorem 5.11. Let Ĝ = (V,A,B) denote the BVHFG and |V | = n. Let {µ1, µ2, · · · , µn} and {e1, e2 · · · , em}
denote the eigenvalues associated with Laplacian matrix and the collection of links of Ĝ, respectively. Then,

EL(Ĝ) ≤ E(Ĝ) + 2
α∑

i=1

(deg(vi)−
2

n∑
i<j

S(B(lij))

n
),

where α is the greatest positive integer satisfying the condition in Remark 5.9.
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Proof. Consider L, D, M denote the Laplacian matrix, Degree matrix and Adjacency matrix of Ĝ, respec-
tively. From Lemma 5.10 for every 1≤ k ≤ n, we have,

k∑
i=1

λi(D −M) ≤
k∑

i=1

λi(D) +

k∑
i=1

λi(−M).

k∑
i=1

µi ≤
k∑

i=1

deg(vi)−
k∑

i=1

λn−i+1, (8)

because,
k∑

i=1
λi(−M) = −

k∑
i=1

λn−i+1(M).

Now,

E(Ĝ) =

n∑
i=1

|λi|,

= −2
∑
λi<0

λi,

= 2max{−
k∑

i=1

λn−i+1 : 1 ≤ k ≤ n},

≥ −2

k∑
i=1

λn−i+1 for any 1 ≤ k ≤ n.

putting in Equation (8). We have,

k∑
i=1

µi ≤
k∑

i=1

deg(vi) +
E(Ĝ)

2
.

2

k∑
i=1

µi ≤ 2

k∑
i=1

deg(vi) + E(Ĝ).

Since, α is the greatest positive integer satisfying the condition µα ≥
2

n∑
i<j

S(B(lij))

n , so we can write here,

2

α∑
i=1

µi −
4α

n∑
i<j

S(B(lij))

n
≤ 2

α∑
i=1

deg(vi) + E(Ĝ)−
4α

n∑
i<j

S(B(lij))

n
.

Therefore, by using Remark 5.9, we get, EL(Ĝ) ≤ E(Ĝ) + 2
α∑

i=1
(deg(vi)−

2
n∑

i<j
S(B(lij))

n ). □

Theorem 5.12. Assuming the BVHFG Ĝ constitutes a regular graph, then EL(Ĝ) = E(Ĝ).

Proof. Given that Ĝ is a regular BVHFG with degree k. Let λ1, λ2, · · · , λn and µ1, µ2, · · · , µn denote the
eigenvalues of adjacency and Laplacian matrix of Ĝ, respectively.
BVHFG is k-regular so the degree matrix associated with Ĝ denote the scalar (k) multiple of the identity
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matrix. We have, µi = k − λi.
Now,

EL(Ĝ) =
n∑

i=1

|µi −
2

n∑
i≤j

S(B(lij))

n
|,

=
n∑

i=1

|k − λi −
2

n∑
i≤j

S(B(lij))

n
|,

=

n∑
i=1

|k − λi − k|,

since Ĝ is k-regular so
2

n∑
i≤j

S(B(lij))

n = k.

Therefore, EL(Ĝ) =
n∑

i=1
|λi| = E(Ĝ). □

6 Numerical illustration and discussion of BVHFG energy and Laplacian
energy to a decision-making issue

Table 3: An algorithm for choosing the best facade dressing option for covering building surfaces.

Input: A set of surface covering alternatives x1, x2, · · · , xn; a group of experts
E1, E2, · · · , Em; and BVHF preference relations from each expert
(Mk = (rkij)n×n).

Output: Best alternative for facade dressing.

1. Begin.
2. Compute the energy and correlation coefficient of each BVHFG Gk

for k = 1, 2, · · · ,m.
3. Determine the weight vector for each expert using energy and correlation:

wa
k =

E(Gk)∑m
k=1E(Gk)

,

wb
k =

K(Gk)∑m
i=1K(Gi)

.

4. Compute the objective weight for each expert:
wk = γwa

k + (1− γ)wb
k, γ ∈ IP .

5. Determine net preference degree for each alternative:

θ(xi) =
∑m

k=1wk

(∑
i̸=j≤n

(
S(rkij)

2 − S(rkji)
2
))

,

for i = 1, 2, · · · , n.
6. Rank all alternatives based on θ(xi).
7. Repeat the decision-making process using Laplacian matrices.
8. Select the best alternative.
9. End.
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6.1 Illustration of the proposed approach

A committee of decision-makers evaluates several facade dressing alternatives for a building’s surface covering
based on their practical qualities. For 1 ≤ k ≤ 5, consider the five experts Ek are in the group: E1 is a
civil engineer, E2 is a builder, E3 is an architect, E4 is a contractor, and E5 is a decorator. The specialists
contrast three different alternatives: x1 = plastic painting, x2 = compact laminate clothing, and x3 = wood
clothing. The following bipolar valued hesitant fuzzy preference relations Mk = (rkij)3×3 are developed after
each expert compares each set of criteria (alternatives) xi and xj individually and provides his or her bipolar
valued hesitant fuzzy preference value rij = {(rPij , rNij )| rPij ∈ IP and rNij ∈ IN}, which is made up of a certainty

degree rpij in which xi has preference over xj as well as a certainty degree rNij in which xi has not preference
over xj :

M1 =

 (0.5,−0.5) {(0.51,−0.41), (0.48,−0.40)} {(0.37,-0.43),(0.44,-0.42)}
{(0.49,−0.59), (0.52,−0.60)} (0.5,−0.5) {(0.56,-0.28),(0.61,-0.26)}
{(0.63,-0.57),(0.56,-0.58)} {(0.44,-0.72),(0.39,-0.74)} (0.5,−0.5)



M2 =

 (0.5,−0.5) {(0.65,−0.56), (0.52,−0.41)} {(0.48,-0.36),(0.51,-0.46)}
{(0.42,−0.44), (0.48,−0.52)} (0.5,−0.5) {(0.72,-0.57),(0.55,-0.49)}
{(0.52,-0.64),(0.49,-0.54)} {(0.28,-0.63),(0.45,-0.79)} (0.5,−0.5)



M3 =

 (0.5,−0.5) {(0.63,−0.54), (0.59,−0.51)} {(0.65,-0.48),(0.57,-0.55)}
{(0.37,−0.66), (0.41,−0.69)} (0.5,−0.5) {(0.66,-0.31),(0.61,-0.49)}
{(0.55,-0.77),(0.59,-0.78)} {(0.44,-0.69),(0.39,-0.71)} (0.5,−0.5)



M4 =

 (0.5,−0.5) {(0.71,−0.47), (0.63,−0.48)} {(0.49,-0.51),(0.47,-0.39)}
{(0.53,−0.41), (0.55,−0.38)} (0.5,−0.5) {(0.52,-0.39),(0.69,-0.54)}
{(0.39,-0.28),(0.46,-0.31)} {(0.37,-0.39),(0.41,-0.59)} (0.5,−0.5)



M5 =

 (0.5,−0.5) {(0.56,−0.51), (0.59,−0.33)} {(0.61,-0.59),(0.67,-0.58)}
{(0.51,−0.38), (0.44,−0.39)} (0.5,−0.5) {(0.54,-0.49),(0.59,-0.44)}
{(0.38,-0.42),(0.34,-0.41)} {(0.65,-0.48),(0.71,-0.47)} (0.5,−0.5)


Now, we find the score of the preference relations:

S(M1) =

 0.5 0.451 0.414
0.553 0.5 0.43
0.59 0.572 0.5



S(M2) =

 0.5 0.533 0.453
0.465 0.5 0.583
0.548 0.538 0.5



S(M3) =

 0.5 0.568 0.563
0.533 0.5 0.414
0.673 0.558 0.5


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S(M4) =

 0.5 0.573 0.465
0.468 0.5 0.535
0.36 0.428 0.5



S(M5) =

 0.5 0.498 0.613
0.43 0.5 0.515
0.388 0.578 0.5



D.jpg D.bb

Figure 4: BVHFG of preference relations M1,M2,M3,M4 and M5

The BVHFGs denoted as Gk, which correspond to the bipolar valued hesitant fuzzy preference relations
presented in matrices Mks, are illustrated in Figure 4. In order to determine the objective weight of each
expert, we compute the energy and correlation coefficient of BVHFG’s.

The energy values of the BVHFG’s are as follows: E(G1) = 1.5321, E(G2) = 1.6389, E(G3) = 1.7543,
E(G4) = 1.5581, and E(G5) = 1.5744. Subsequently, the weight of each expert through energy may be
computed in the following manner:

wa
k =

E(Gk)
m∑
k=1

E(Gk)

(9)

The values of wa
1 , w

a
2 , w

a
3 , w

a
4 and wa

5 are 0.1901, 0.2034, 0.2177, 0.1934, and 0.1954, respectively.

Now, we compute the score base correlation coefficients K(Gs, Gt) between Gs and Gt for s ̸= t =
1, 2, · · · , 5, using the following equation.

K(Gs, Gt) = K(S(M s), S(M t)) =

n∑
i=1

n∑
j=1

rsijr
t
ij√

n∑
i=1

n∑
j=1

(rsij)
2

√
n∑

i=1

n∑
j=1

(rtij)
2

(10)
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The values are given by K(G1, G2) = 0.9911, K(G1, G3) = 0.9977, K(G1, G4) = 0.9760, K(G1, G5) = 0.9772,
K(G2, G3) = 0.9885, K(G2, G4) = 0.9903, K(G2, G5) = 0.9874, K(G3, G4) = 0.9695, K(G3, G5) = 0.9795,
K(G4, G5) = 0.9891.

Moreover, the average correlation coefficient K(Gt) is calculated as follows:

K(Gt) =
1

m− 1

m∑
s ̸=t=1

K(Gt, Gs) (11)

The values are given by K(G1) = 0.9855, K(G2) = 0.9893, K(G3) = 0.9838, K(G4) = 0.9812, K(G5) =
0.9833. Consequently, the determination of the weight of each expert based on the correlation coefficient can
be calculated in the following way:

wb
k =

K(Gk)
m∑
i=1

K(Gi)

(12)

The values of wb
1, w

b
2, w

b
3, w

b
4 and wb

5 are 0.2002, 0.2020, 0.1998, 0.1993, and 0.1997, respectively.
Ultimately, the objective weight of each expert is determined through the utilization of the subsequent

equation:
wk = γwa

k + (1− γ)wb
k, γ ∈ IP . (13)

Consider the values of γ as γ = 0, 0.5, and 1. When γ = 0, the objective weight is solely determined by
the correlation coefficient. When γ = 0.5, the objective weight is equally influenced by both the weight
determined by energy and the correlation coefficient. When γ = 1, the objective weight is solely influenced
by the weight determined by energy.

In order to ascertain the appropriate alternative, i.e., the overall degree of precedence of xi compared to
the remaining alternatives, the following definition can be utilized:

θ(xi) =

m∑
k=1

wk(
∑

i̸=j≤n

(S(rkij)
2 − S(rkji)

2)), i = 1, 2, · · · , n. (14)

The respective net flows of the three alternatives for various degrees of γ are presented in Table 4.

Table 4: The net degree of alternatives for different values of γ

γ weight θ

w1 = 0.2002, w2 = 0.2020, x1 = 0.01589
0 w3 = 0.1998, w4 = 0.1993, x2 = −0.0747

w5 = 0.1997 x3 = 0.0590

w1 = 0.1952, w2 = 0.2027, x1 = 0.015109
0.5 w3 = 0.2088, w4 = 0.1964, x2 = −0.075892

w5 = 0.1976 x3 = 0.060782

w1 = 0.1901, w2 = 0.2034, x1 = 0.01424
1 w3 = 0.2177, w4 = 0.1934, x2 = −0.08109

w5 = 0.1954 x3 = 0.06272

Based on these values presented in Table 4, the alternatives can be ranked accordingly, x3 > x1 > x2.
The ranking order remains consistent across all values of γ. Therefore, x3 is considered the optimal choice.
Next, we follow the above procedure of decision-making through Laplacian matrices.
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The following bipolar valued hesitant fuzzy Laplacian matrices correspond to the BVHFG’s (Figure 4) is
given by Lk = (lkij)3×3, where,

lkij =

{
deg(xi)

k, if i = j,

−rkij , if i ̸= j,

The score based Laplacian matrices of the BVHFG’s depicted in Figure 4 are presented below.

S(L1) =

 0.865 −0.451 −0.414
−0.553 0.983 −0.43
−0.59 −0.572 1.162



S(L2) =

 0.986 −0.533 −0.453
−0.465 1.048 −0.583
−0.548 −0.538 1.086



S(L3) =

 1.131 −0.568 −0.563
−0.533 0.947 −0.414
−0.673 −0.558 1.231



S(L4) =

 1.038 −0.573 −0.465
−0.468 1.003 −0.535
−0.36 −0.428 0.788



S(L5) =

 1.111 −0.498 −0.613
−0.43 0.945 −0.515
−0.388 −0.578 0.966


The Laplacian energy values of the BVHFG’s Gk(Figure 4) are as follows: EL(G1) = 2.5083, EL(G2) =

2.6, EL(G3) = 2.757, EL(G4) = 2.3575, and EL(G5) = 2.5247. Subsequently, the Laplacian weight of each
experts may be computed in the following manner:

L(wk) =
EL(Gk)

m∑
k=1

EL(Gk)

(15)

The values of L(wa
1), L(w

a
2), L(w

a
3), L(w

a
4) and L(wa

5) are 0.1968, 0.2040, 0.2162, 0.1849, and 0.1981, respec-
tively. Now, we compute the score base Laplacian correlation coefficients KL(Gs, Gt) between Gs and Gt for
s ̸= t, using the following equation.

KL(Gs, Gt) = K(S(Ls), S(Lt)) =

n∑
i=1

n∑
j=1

lsijl
t
ij√

n∑
i=1

n∑
j=1

(lsij)
2

√
n∑

i=1

n∑
j=1

(ltij)
2

(16)

The values are given by KL(G1, G2) = 0.9934, KL(G1, G3) = 1.1828, KL(G1, G4) = 0.9696, KL(G1, G5) =
0.9777,KL(G2, G3) = 0.9910,KL(G2, G4) = 0.9950,KL(G2, G5) = 0.9898,KL(G3, G4) = 0.9751,KL(G3, G5) =
0.9864, KL(G4, G5) = 1.2204.
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Moreover, the average correlation coefficient KL(Gt) is calculated as follows:

KL(Gt) =
1

m− 1

m∑
t ̸=s=1

KL(Gt, Gs) (17)

The values are given by KL(G1) = 1.0309, KL(G2) = 0.9923, KL(G3) = 1.0338, KL(G4) = 1.0400, KL(G5) =
1.0436. Consequently, the determination of the Laplacian weight of each expert based on the correlation
coefficient can be calculated in the following way:

L(wb
k) =

KL(Gk)
m∑
i=1

KL(Gi)

(18)

The values of L(wb
1), L(w

b
2), L(w

b
3), L(w

b
4) and L(wb

5) are 0.2005, 0.1930, 0.2011, 0.2023, and 0.2030, respec-
tively.

Ultimately, the objective weight of each expert is determined through the utilization of the subsequent
equation:

L(wk) = γL(wa
k) + (1− γ)L(wb

k), γ ∈ IP . (19)

In order to ascertain the appropriate alternative through Laplacian matrices, the following definition can
be utilized:

θL(xi) =
m∑
k=1

L(wk)(
∑

i̸=j≤n

(S(lkij)
2 − S(lkji)

2)), i = 1, 2, · · · , n. (20)

The respective net flows of the three alternatives through Laplacian matrices for various degrees of γ have
been presented in Table 5.

Table 5: The Laplacian degree of alternatives

γ Laplacian weight θL
w1 = 0.2005, w2 = 0.1930, x1 = 0.0173577

0 w3 = 0.2011, w4 = 0.2023, x2 = −0.0796645
w5 = 0.2030 x3 = 0.0579519

w1 = 0.1987, w2 = 0.1985, x1 = 0.0146
0.5 w3 = 0.2087, w4 = 0.1936, x2 = −0.0806

w5 = 0.2006 x3 = 0.0617

w1 = 0.1968, w2 = 0.2040, x1 = 0.01175
1 w3 = 0.2162, w4 = 0.1849, x2 = −0.08136

w5 = 0.1981 x3 = 0.06550

These values, which are shown in Table 5, allow the alternatives to be rated as follows: x3 > x1 > x2.
The ranking order remains consistent across all values of γ. Therefore, x3 is considered the optimal choice.

The entire process of selecting the best alternative is illustrated in Figure 5.

Note: The time complexity of the algorithm represented in Table 3 is O(kn2), where k is the number of
experts and n is the number of alternatives. This is because the algorithm has two nested loops that iterate
over the alternatives (lines 5 and 6), and each iteration involves a summation over the experts (line 5). The
rest of the steps are either constant or linear in terms of time complexity.
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Figure 5: Flowchart of the whole procedure

6.2 Discussion

The bipolar-valued hesitant fuzzy graphs (BVHFGs) have an edge over existing fuzzy graphs like hesitant
fuzzy graphs and bipolar fuzzy graphs, which are discussed in [8]. In this study, based on the above numerical
illustration it can be seen that, both the energy and correlation coefficient of BVHFG’s effectively rank
the alternatives in practical applications. Additionally, the evaluation values obtained from the formula in
both procedures can be utilized for further analysis. However, other methods do not provide this specific
information as they offer hesitant fuzzy values or interval values instead of crisp values. The selection of
parameter γ can be made in practical scenarios, taking into consideration the decision-maker’s inclination
towards either subjective or objective weighted information provided by experts. In addition, this approach
demonstrates improved efficiency compared to the method described in [40], because the above research
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work [40] has been done in the framework of hesitancy fuzzy graphs [18]. Despite bringing the concept of
hesitant fuzzy elements (HFEs) to the vertices and edges of the graph, they did not implement it. Instead of
using HFEs, they employ Intuitionistic fuzzy (IF) values [19], which are represented by triplets including the
membership, hesitancy and non-membership degree of vertices and edges. The present study has been done
in the framework of BVHFGs which considers fuzziness, bipolarity as well as hesitation of the elements.

7 Conclusion

The utilization of a bipolar valued hesitant fuzzy model offers enhanced adaptability, coherence, and accuracy
to the system in comparison to alternative fuzzy models. This paper provides the definitions of the adjacency
matrix, energy, correlation coefficient, and Laplacian energy for bipolar valued hesitant fuzzy graphs. The
article also presents derived outcomes concerning energy and Laplacian energy bounds for BVHFG’s. In
addition, we establish the energy and Laplacian energy relationship within the context of a BVHF background.
Furthermore, we make reference to numerical examples pertaining to the energy and Laplacian energy of
BVHFG’s.

In decision making tasks, this study introduces a methodology for evaluating the relative significance of
an expert’s weights that incorporates both subjective and objective factors. This research demonstrates the
utilization of correlation coefficient and energy as effective tools for addressing group decision making issues
in scenarios where the experts’ weights are entirely unknown. This paper also presents an algorithm that
aims to comprehensively analyse the process of identifying the optimal alternative.

Nonetheless, our work has some limitations, we assume a modest-size network here, but manually calcu-
lating the whole procedure for complex or big networks is quite tough. For this computation, we must devise
an appropriate pseudo code. Subsequent investigation into the energy and Laplacian energy of BVHFG’s
may yield additional comparable outcomes of this nature and will be expounded upon in forthcoming papers.
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