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 Object detection at the edge has gained considerable attention for enabling 

real-time, low-latency, and privacy-preserving solutions by processing data 

locally on resource-constrained devices. This paper explores using Tiny 

YOLO, a lightweight variant of the YOLO architecture, for object detection 

on embedded systems. Tiny YOLO is specifically designed for edge devices 

to run efficiently on constrained devices by utilizing a reduced architecture 

with fewer parameters while maintaining good performance for real-time 

object detection. The study examines the deployment of optimized Tiny 

YOLO models on embedded systems, incorporating techniques like 

quantization, pruning, and clustering to reduce model size, enhance speed, 

and lower power consumption. Optimization methods show significant 

improvements, with quantization speeding up inference, pruning eliminating 

redundant parameters, and clustering enhancing accuracy. Specifically, the 

study compares the performance of Tiny YOLO under these optimization 

techniques, presenting results for both Pascal VOC and COCO datasets. The 

results demonstrate that optimized Tiny YOLO models are effective for real-

time object detection on microcontrollers. These methods enable the efficient 

deployment of deep learning models for edge computing, without relying on 

cloud infrastructure. 
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1. Introduction 

In recent years, edge computing has emerged as a 

key technology for processing data closer to where 

it is generated, offering distinct advantages over 

traditional cloud-based computing. At its core, 

edge computing allows devices to process and 

analyze data locally rather than sending it to 

centralized servers or the cloud [1]. This localized 

processing significantly reduces latency, decreases 

reliance on network bandwidth, improves privacy, 

and increases overall system efficiency, making it 

particularly valuable for real-time applications 

such as image classification and object detection. 

Embedded systems, which are small, low-cost, and 

energy-efficient computing units, are a key enabler 

of edge computing and Internet of Things devices. 

They are commonly used in applications where 

space and power consumption are constrained, 

such as in smart home devices, wearable 

electronics, and industrial sensors. However, 

microcontrollers are typically limited in terms of 

computational power, memory, and storage, 

making it challenging to run complex machine 

learning models [2,3]. 

Traditional deep learning models require 

substantial computational resources, especially in 

terms of processing power and memory, which 

makes it difficult to deploy them on embedded 

systems. However, recent advancements in model 

optimization techniques, such as quantization, 

pruning, and the use of lightweight neural network 

architectures (e.g., Tiny YOLO), have made it 

possible to deploy deep learning-based object 

detection models even on microcontrollers. These 

optimization techniques help reduce the size of the 

models, increase their inference speed, and reduce 

power consumption, all while maintaining 

acceptable levels of accuracy. 
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Deploying deep learning models on embedded 

systems is a key step in bringing artificial 

intelligence to the edge, where real-time decision-

making is critical [4,5]. While challenges such as 

limited computational power, memory, and energy 

resources remain, advancements in model 

optimization techniques, lightweight architectures, 

and specialized hardware accelerators are making 

AI deployment on small devices more feasible 

[6,7]. For example, Tiny YOLO, a compact version 

of the well-known YOLO (You Only Look Once) 

object detection model, has proven to be effective 

for edge deployment due to its small size and 

efficient performance. This is especially valuable 

in applications such as autonomous systems, 

security surveillance, and robotics, where real-time 

object detection is needed on resource-constrained 

devices. One of the key hurdles in deploying deep 

learning on embedded systems is ensuring that 

these models can operate efficiently while 

maintaining a balance between performance and 

resource consumption [8-10].  

Model optimization methods like quantization, 

pruning, and clustering help in reducing the 

memory footprint, lowering computation 

requirements, and speeding up inference times, 

making these models more suitable for edge 

devices like ESP32 [11]. Tools such as TensorFlow 

Lite provide frameworks that make it easier to run 

AI models on these constrained platforms, 

optimizing them further for mobile and embedded 

applications [12]. 

The rise of AI-powered microcontrollers is 

transforming industries by enabling smarter, 

decentralized systems [13,14]. In smart homes, 

microcontrollers are being used for voice 

recognition in virtual assistants and object 

detection in security cameras. In healthcare, 

wearable devices equipped with AI can monitor 

vital signs and detect falls in real-time. In industrial 

IoT, microcontrollers power predictive 

maintenance systems that can analyze sensor data 

like vibration and temperature to prevent 

equipment failure. Additionally, environmental 

monitoring using microcontrollers allows for the 

processing of data to predict weather patterns, track 

pollution levels, and monitor wildlife. The 

agricultural sector benefits from AI-enabled 

microcontrollers by enabling crop health 

monitoring, soil condition analysis, and pest 

detection, ultimately advancing precision farming 

techniques [15,16]. These examples underscore the 

versatility of microcontroller-based AI, 

showcasing its potential to enhance various 

domains by making intelligent decisions at the 

edge [17,18]. 

This study conducted aimed to evaluate the 

performance of the Tiny YOLO model on various 

edge devices, including ESP32, ESP32-S3, Pico 

W, and Jetson Nano, across different optimization 

techniques such as quantization, weight pruning, 

and clustering. The experiment utilized the COCO 

[19] and Pascal VOC [20] datasets to assess the 

model's mean Average Precision (mAP), frames 

per second (FPS), model size, inference time. 

Results showed that while ESP32 and Pico W 

exhibited significant limitations in accuracy and 

real-time performance due to their limited 

computational power, applying optimizations did 

provide some improvements in terms of model size 

and inference speed. In contrast, Jetson Nano 

demonstrated superior performance, achieving 

high mAP values and fast inference times, even 

with optimized models. This highlighted the 

importance of hardware capabilities in achieving 

real-time object detection, with Jetson Nano 

proving to be the most suitable platform for 

running optimized models like Tiny YOLO 

efficiently on more complex datasets. 

In the following, the Edge-based object detection is 

presented in section 2, the YOLO and Tiny YOLO 

architectures are presented in sections 3 and 4. The 

optimization techniques of learning models are 

presented in section 5, which also refers to the 

proposed approach. In section 6, the 

implementation of different scenarios of Tiny 

YOLO model optimization are presented, and then 

in section 7, the results of evaluation are compared. 

Finally, the conclusion is presented in section 8. 

2. Edge-based object detection 

Deploying object detection models on embedded 

systems for edge computing is a promising solution 

for a wide range of real-time applications. As 

optimization techniques improve, the ability to run 

sophisticated object detection algorithms on 

embedded systems will continue to advance, 

opening up new possibilities in fields such as 

healthcare, security, autonomous systems, and 

environmental monitoring. The ability to perform 

local image processing without relying on cloud 

infrastructure is transforming industries and 

enabling more intelligent, responsive, and energy-

efficient systems. 

This breakthrough allows for real-time object 

detection on devices with limited resources. The 

ability to process images and classify objects at the 

edge, without the need for cloud computing, opens 

up a wide range of possibilities for various 
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applications [21-23]. Below are some key use cases 

where microcontroller-based image processing is 

particularly beneficial: 

 Smart Home Automation: 
o Object Detection: Embedded systems can be 

used to deploy object detection models to 

detect objects, faces, or gestures in smart home 

environments. For example, a security camera 

system could use a microcontroller to classify 

objects in real-time, identifying potential 

intruders or monitoring for specific actions. 

o Gesture Recognition: In a smart home, 

gesture recognition can be used to control 

lighting or appliances with simple hand 

movements, all processed on an embedded 

system. 

 Healthcare and Medical Devices: 
o Medical Imaging: Embedded systems can 

assist in analyzing medical images such as X-

rays, CT scans, or skin lesions directly on 

medical devices, facilitating faster diagnosis 

and reducing the need for data transmission to 

the cloud. 

o Wearable Health Devices: Image 

classification models deployed on wearable 

devices can monitor the health of individuals 

by identifying changes in skin tone, detecting 

the presence of medical conditions, or tracking 

movement patterns for rehabilitation purposes. 

 Industrial Automation and Monitoring: 

o Defect Detection in Manufacturing: 

Embedded systems with object detection 

capabilities can be used in automated 

inspection systems to identify defects in 

products on an assembly line, improving 

quality control and reducing human error. 

o Predictive Maintenance: By analyzing visual 

data from sensors, embedded systems can help 

detect signs of wear or malfunction in 

machinery, enabling predictive maintenance 

and preventing downtime. 

 Autonomous Systems: 
o Robotics: Autonomous robots, drones, and 

vehicles can leverage image classification at 

the edge to understand and interpret their 

environment, recognizing obstacles, people, or 

objects in real-time for navigation and 

decision-making. 

o Agriculture and Environmental 

Monitoring: Drones equipped with embedded 

systems can analyze images of crops or forests 

to monitor plant health, detect diseases, and 

evaluate environmental conditions without 

needing cloud-based processing. 

 Smart Cities and Surveillance: 

o Public Safety and Security: Microcontrollers 

embedded in surveillance cameras can perform 

face recognition or detect unusual behaviors, 

enabling automated security systems that 

operate in real-time without relying on cloud 

servers. 

o Traffic Monitoring: Embedded systems can 

be used in traffic cameras to analyze road 

conditions, detect traffic congestion, or 

recognize vehicle types, all processed locally 

for faster decision-making. 

 Environmental Monitoring: 
o Wildlife Monitoring: Edge devices equipped 

with embedded systems can monitor wildlife, 

detecting and identifying animals in remote 

areas through camera traps, without needing to 

transmit large image files to the cloud. 

o Pollution Detection: Image classification 

models can help detect pollution or other 

environmental hazards through cameras, 

enabling automated monitoring systems for air, 

water, or land quality. 

 Retail and Consumer Interaction: 
o Product Recognition: Embedded systems can 

be used in point-of-sale systems or vending 

machines to recognize products through image 

classification, enabling automatic stock 

tracking or facilitating seamless customer 

interactions. 

o Customer Behavior Analysis: In retail 

settings, embedded systems can process visual 

data from in-store cameras to track customer 

behavior, optimize store layouts, or improve 

marketing strategies based on customer 

interaction patterns. 

 

3. YOLO architectures 

YOLO (You Only Look Once) is a popular series 

of deep learning models for object detection. It’s 

known for its speed and efficiency, making it a best 

choice for real-time object detection tasks. Over 

the years, different versions of YOLO have been 

released, each with improvements in accuracy, 

speed, and architecture [24,25]. The summary of 

YOLO’s evolution is shown in table 1. Below is an 

overview of the main versions and their key 

features: 

 YOLOv1, introduced the idea of using a single 

convolutional neural network to predict 

bounding boxes and class probabilities in one 

pass, making it incredibly fast for real-time 

detection.  

o Architecture: A single convolutional neural 

network that simultaneously predicts bounding 

boxes and class probabilities for all objects in 

the image in one evaluation. The network 
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divides the image into a grid and for each grid 

cell, it predicts: 

 Bounding boxes (x, y, width, height) 

 Confidence score (how likely the box 

contains an object) 

 Class probabilities (which object class the 

box belongs to). 

o Strengths: Very fast (real-time detection), 

unified approach (object localization and 

classification in one pass). 

o Weaknesses: Struggles with detecting small 

objects and handling overlapping objects, less 

accurate in comparison to other models like 

Faster R-CNN. 

 YOLOv2, released in 2017, brought 

significant improvements such as the 

introduction of anchor boxes, batch 

normalization, and multi-scale training, which 

increased both speed and accuracy, especially 

for larger objects.  

o Architecture: 

 Introduced improvements like a new 

backbone network, Darknet-19, which was 

more powerful than YOLOv1's architecture. 

 Added anchor boxes for better bounding box 

prediction, addressing the issue of poor 

localization seen in YOLOv1. 

 Used multi-scale training, where the model 

was trained on different image sizes to 

improve generalization. 

 Introduced batch normalization to stabilize 

and speed up training. 

o Strengths: Faster and more accurate than 

YOLOv1, improved handling of different 

object scales, better generalization, and more 

robust performance. 

o Weaknesses: Still struggles with small object 

detection. 

 YOLOv3, released in 2018, the model was 

further enhanced with a new backbone 

(Darknet-53), multi-label classification, and 

the use of three different scales for prediction, 

allowing it to better detect small objects. 

Despite these improvements, YOLOv3 still 

had limitations when compared to more 

complex models like Faster R-CNN.  

o Architecture: 

 YOLOv3 used a new backbone called 

Darknet-53, which improved accuracy and 

allowed for better feature extraction. 

 Used multi-label classification to improve 

the detection of objects with more than one 

class. 

 Introduced three different scales for 

prediction (small, medium, and large), 

allowing the network to detect objects at 

various sizes. 

 Introduced Residual Connections to help 

deeper networks train better and avoid 

vanishing gradients. 

 The output layer was redesigned to use 

logistic regression for bounding box 

prediction. 

o Strengths: Better detection of smaller objects, 

significant performance improvement over v2 

in terms of both speed and accuracy. 

o Weaknesses: Still not as accurate as more 

complex architectures like Faster R-CNN for 

certain tasks, especially in cases of very dense 

or small objects. 

 YOLOv4 released in 2020, focused on 

improving detection performance with a new 

backbone (CSPDarknet53) and techniques like 

Mosaic data augmentation and self-adversarial 

training, leading to better accuracy, especially 

for small and dense objects, while maintaining 

fast inference times.  

o Architecture: 

 Built on the YOLOv3 model but 

incorporated several new techniques for 

better performance, including: 

 CSPDarknet53 as the backbone network, 

which balances accuracy and speed. 

 Mosaic Data Augmentation to improve 

generalization by combining multiple 

images during training. 

 Self-adversarial training for improved 

robustness. 

 DropBlock regularization for better 

bounding box predictions. 

 Improved performance on smaller objects 

with better feature pyramids. 

o Strengths: Higher accuracy than YOLOv3, 

better at handling small and dense objects, 

faster inference times, state-of-the-art 

performance in real-time detection. 

o Weaknesses: Larger model size compared to 

earlier versions, requiring more computational 

resources. 

 YOLOv5, which was not developed by the 

original YOLO creators but became very 

popular due to its ease of use, modular design, 

and efficient performance on a range of 

hardware.  
o Architecture: 

 YOLOv5 is a separate project developed by 

Ultralytics, which is not an official 

continuation of the YOLO series but has 

become very popular in the community. 
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 It focuses on speed and ease of use, and its 

codebase is built in PyTorch (as opposed to 

Darknet for the official YOLO models). 

 YOLOv5 uses a modular design with 

different model sizes (small, medium, large, 

extra-large) to balance speed and accuracy. 

o Strengths: Very easy to use, with a lot of built-

in features like model training, testing, and 

deployment. Achieves state-of-the-art 

performance with relatively lightweight 

models. 

o Weaknesses: It is not an official release from 

the original YOLO authors, so it may differ in 

implementation or long-term support 

compared to the official YOLO versions. 

 YOLOv6, released in 2022, continued the 

trend of optimization, especially for edge 

devices, by focusing on speed and efficiency.  

o Architecture: 

 YOLOv6 is optimized for both speed and 

accuracy with improvements over YOLOv5, 

particularly in handling dense and small 

objects. 

 Introduced a more efficient backbone 

(CSPResNet) and neck (PP-YOLO) to 

enhance detection performance. 

 Focused on optimizing inference speed for 

deployment on edge devices. 

o Strengths: Real-time performance, better 

accuracy with fewer resources. 

o Weaknesses: Like YOLOv5, it's not an 

official version, so community-driven 

development may lead to less consistency over 

time. 

 YOLOv7, also released in 2022, utilized more 

advanced techniques such as efficient 

transformers and heterogeneous module 

fusion, further enhancing both speed and 

accuracy.  

o Architecture: 

 YOLOv7 continues improving on YOLOv5 

and YOLOv6, focusing on both accuracy 

and inference speed. It utilizes the efficient 

transformer architecture for better handling 

of spatial relationships in images. 

 Improved backbone for better feature 

extraction and information flow. 

 Introduced Heterogeneous Module fusion 

for better performance in terms of both 

accuracy and speed. 

o Strengths: One of the fastest YOLO versions 

to date, highly optimized for real-time object 

detection. 

o Weaknesses: Complexity in tuning for 

specific tasks, requires careful hyperparameter 

tuning for optimal performance. 

 

 YOLOv8, introduced in 2023, offers cutting-

edge performance with improvements in 

backbone architectures, better handling of 

various object detection tasks, and 

optimization for real-time and embedded 

systems.  

o Architecture: 

 YOLOv8 aims to offer even better accuracy, 

speed, and efficiency than its predecessors. It 

is designed to perform well on various object 

detection tasks and includes newer backbone 

and neck architectures, as well as better loss 

functions for bounding box predictions. 

 It also focuses on fine-tuning for specific 

tasks like segmentation and key point 

detection. 

o Strengths: Cutting-edge performance, high 

accuracy, and optimized for both real-time and 

edge devices. 

o Weaknesses: Requires more computational 

resources than earlier versions but offers a 

significant boost in performance. 

Table 1: Summary of YOLO’s evolution. 

Version Key Features 

YOLOv1 
First release; groundbreaking for real-time object 
detection using a single CNN for bounding box and 

classification predictions. 

YOLOv2 
Improved accuracy and speed; introduced anchor 
boxes, batch normalization, and multi-scale 

training. Better at handling larger objects. 

YOLOv3 

Significant improvements in architecture with 
Darknet-53 backbone; better at detecting small 

objects with multi-scale predictions and multi-label 

classification. 

YOLOv4 
Focused on speed, accuracy, and robustness, 

especially for real-time applications; introduced 
Mosaic data augmentation and CSPDarknet53. 

YOLOv5 
A community-driven model; emphasizes ease of 

use, modular design, and optimized for both speed 
and accuracy, with multiple model sizes.  

YOLO 

v6 & v7 

Optimized for edge devices and real-time 

applications; further enhancements in speed, 
accuracy, and performance, especially in dense or 

small object detection. 

YOLOv8 
The latest version with cutting-edge performance 
and optimizations for real-time and embedded 

devices; handles various detection tasks.  

The YOLO family continues to evolve with a 

stronger emphasis on speed, accuracy, and 

resource efficiency, making it a top choice for real-

time object detection in areas like autonomous 

driving, surveillance and robotics. Each version of 

YOLO has brought improvements in terms of 

accuracy, speed, and efficiency, making it one of 

the top choices for real-time object detection in 
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fields such as autonomous driving, robotics, and 

surveillance. 

 

4. Tiny YOLO 

Tiny YOLO is a smaller, lighter version of the 

YOLO model, specifically designed for 

applications where computational resources are 

limited, such as on edge devices or in real-time 

systems that require fast processing speeds. It is a 

trade-off between performance and efficiency, 

sacrificing some accuracy for the sake of reduced 

size and faster inference time. Tiny YOLO 

simplifies the architecture of the original YOLO by 

reducing the number of layers and parameters. For 

example, in Tiny YOLO, the backbone network 

(typically Darknet) has fewer convolutional layers 

and a smaller number of filters. This results in 

faster processing speeds and reduced memory 

requirements, making it suitable for devices with 

limited computational power, such as embedded 

systems, mobile devices, and IoT applications. 

Faster Inference: Tiny YOLO is much faster than 

the standard YOLO models due to its smaller size 

and fewer parameters. This makes it ideal for real-

time object detection applications, especially on 

resource-constrained devices. 

Lower Computational Requirements: The 

reduced architecture allows Tiny YOLO to run 

efficiently on devices with limited GPU or CPU 

capabilities. It’s particularly useful for edge 

devices, mobile phones, and embedded systems 

where processing power is a concern. 

Smaller Model Size: The smaller model size 

makes it easier to deploy Tiny YOLO on devices 

with limited storage capacity. This is important for 

applications where storage space is constrained, 

such as drones or IoT devices. 

Good for Low-Latency Applications: Because of 

its faster processing, Tiny YOLO is suited for low-

latency tasks where quick decision-making is 

necessary, such as autonomous vehicles or real-

time video surveillance. 

Lower Accuracy: Because of the simplified 

architecture, Tiny YOLO generally achieves lower 

accuracy compared to full YOLO versions (like 

YOLOv3, YOLOv4, or YOLOv5). It may struggle 

with detecting small objects or complex scenes 

with a high degree of clutter. 

Limited Detection Capabilities: While Tiny 

YOLO is good for general object detection, its 

performance can degrade in challenging scenarios, 

such as detecting objects in high-density 

environments or cases where fine-grained 

classification is required. 

Less Robust in Difficult Conditions: Tiny YOLO 

might not perform as well under varying 

conditions, such as different lighting, weather, or 

occlusion, compared to more complex models. 

Tiny YOLO is a powerful tool when you need 

object detection on devices with limited resources, 

where speed and efficiency are more critical than 

achieving the highest possible accuracy. Its trade-

off between performance and resource usage 

makes it suitable for real-time applications like 

autonomous vehicles, drones, and mobile devices. 

Key Characteristics of Tiny YOLO's Architecture 

are: 

o Fewer layers and filters: The network has 

fewer layers and smaller filter sizes compared 

to the full YOLO versions, making it faster but 

less accurate. 

o Simplified structure: By reducing the depth of 

the network and the number of neurons in the 

fully connected layers, Tiny YOLO is 

optimized for speed and smaller model size. 

o Max Pooling: Max pooling layers help reduce 

the spatial resolution of feature maps, aiding in 

faster processing and reducing overfitting by 

discarding irrelevant details. 

o Lower resolution input: Tiny YOLO generally 

works with lower resolution input images, 

which reduces computation time but may 

decrease accuracy in detecting small objects. 

Tiny YOLO sacrifices some complexity and 

accuracy from the standard YOLO architecture in 

exchange for faster processing and reduced 

computational requirements. This makes it suitable 

for real-time applications on edge devices and 

embedded systems, where speed and low resource 

consumption are prioritized over the highest 

possible accuracy. The Tiny YOLO architecture 

table is shown in table 2. The layers of this 

architecture are described below: 

Input Layer: Takes images of size 224x224x3, 

commonly used for image classification and 

detection tasks. 

Convolutional Layers: These layers progressively 

extract more abstract features from the image by 

applying convolution with 3x3 filters. The number 

of filters increases as the network deepens, 

allowing for more complex representations. 

Max Pooling Layers: Reduce the spatial 

dimensions of the feature maps, making the model 

more efficient and helping to avoid overfitting. 

Fully Connected Layers: Compress the features 

extracted from the convolutional layers and map 

them to a higher-dimensional space, enabling the 

prediction of object classes and bounding boxes. 
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Output Layer: Predicts both the class probabilities 

and bounding box positions (class + 4 for bounding 

box coordinates). The final output is structured to 

handle N classes and the corresponding bounding 

box for each object detected. 

 
Table 2: Tiny YOLO architecture. 

Layer 
Number of 

Filters 

Filter 

Dimensions 

Output 

Dimensions 

Input Layer --- 224x224 224x224x3 

Convolutional 1 16 3x3 224x224x16 

MaxPooling 1 --- 2x2 112x112x16 

Convolutional 2 32 3x3 112x112x32 

MaxPooling 2 --- 2x2 56x56x32 

Convolutional 3 64 3x3 56x56x64 

MaxPooling 3 --- 2x2 28x28x64 

Convolutional 4 128 3x3 28x28x128 

MaxPooling 4 --- 2x2 14x14x128 

Convolutional 5 256 3x3 14x14x256 

MaxPooling 5 --- 2x2 7x7x256 

Fully Connected 1 4096 N/A 1x1x4096 

Fully Connected 2 Classes + 4 N/A 1x1x(N+4) 

Output N/A N/A 1x1x(N+4) 

This structure is a simplified version of the YOLO 

architecture, designed for efficient image 

classification and object detection with reduced 

computational resources. 

 

5. Model Optimization Techniques   

Model optimization techniques aim to reduce the 

size and computational demands of machine 

learning models without compromising their 

performance. This is crucial for deploying models 

on small, resource-limited devices. Methods such 

as pruning, quantization, and weight clustering are 

commonly used to achieve this goal [26]. The main 

objective is to enable large models to run smoothly 

on edge devices with limited memory, processing 

power, and battery life. These optimizations are 

especially useful for applications requiring 

continuous operation. The benefits of using 

optimization techniques include: 
Inference Speed: Large models take longer to 

make predictions, which can be problematic for 

real-time applications like video or audio 

processing. Optimization enhances inference 

speed, making models more suitable for time-

sensitive tasks. 

Cost and Resource Efficiency: Training and 

deploying large models demand substantial 

computational resources, often resulting in high 

costs. Optimization reduces these needs, enabling 

faster and more efficient training and deployment. 

Deployment Flexibility: Large model sizes can 

hinder deployment on certain platforms or 

environments. Optimization makes models more 

portable and easier to deploy. 

Quantization is a technique that reduces the size 

and computational complexity of machine learning 

models by using fewer bits to represent weights 

and activations. It is particularly useful for devices 

with limited memory and computational power, 

like edge and IoT devices. The technique involves 

reducing the precision of model weights, such as 

converting 32-bit floating-point numbers to 8-bit 

integers, which reduces model size and improves 

inference speed but may slightly affect accuracy. 

Quantization can be applied during or after 

training, with post-training quantization being 

simpler but potentially introducing errors, while 

quantization-aware training simulates quantization 

effects during training to preserve accuracy and 

improve performance. The main benefits include 

faster inference, reduced memory use, and lower 

energy consumption, but balancing model size and 

accuracy requires careful calibration [27,28]. 

Pruning is a method used to reduce model size by 

removing unnecessary parameters, lowering 

computational and storage needs, and improving 

generalization. It involves setting certain weights 

to zero, thus removing them from the model. 

Pruning can be done before, during, or after 

training and is effective for various models like 

deep neural networks and decision trees. The 

benefits of pruning include reduced size, simpler 

interpretation, and easier deployment. Weight 

pruning is commonly used, where less important 

weights are set to zero, creating sparsity in the 

model and reducing memory usage. While it 

speeds up inference, excessive pruning may 

degrade performance, requiring a balance between 

model size and accuracy [29,30]. 

Weight clustering is another optimization 

technique that reduces the number of unique 

weight values in a model. Instead of storing each 

individual weight, only unique values are saved, 

minimizing memory usage. The technique groups 

similar weights into clusters, often using the cluster 

centroid as the representative value for all weights 

in that group. By reducing the number of clusters, 

the model becomes more compact, saving memory 

and improving efficiency [31]. 

 

6. Implementation of Optimized Models 

The objective of this experiment was to evaluate 

the deployment performance of the Tiny YOLO 

model on various embedded hardware platforms, 

including the ESP32, ESP32-S3, Pico W, and 

Jetson Nano. These platforms were chosen to 
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compare the feasibility of running a real-time 

object detection model like Tiny YOLO on 

resource-constrained devices, with a focus on the 

impact of optimization techniques such as 

quantization, weight pruning, and clustering. 

The ESP32 and Pico W are microcontroller-based 

platforms known for their low power consumption 

and small form factors, making them suitable for 

simple edge applications. However, their limited 

computational power and memory impose 

constraints when running more complex deep 

learning models like Tiny YOLO. The ESP32-S3 

variant was also included in the test, which offers 

enhanced AI capabilities compared to the basic 

ESP32 model, but still lacks the computational 

resources required for high-performance tasks. 

These microcontrollers were tested with 

optimizations to reduce the size of the model, 

improve inference time, and reduce latency. 

Quantization was used to reduce the precision of 

weights and activations, weight pruning removed 

less important parameters to decrease model size, 

and clustering grouped similar weights to further 

optimize the model. 

The Jetson Nano, a more powerful platform 

equipped with a GPU and designed specifically for 

AI applications, was also tested. It provides 

significant computational power, making it better 

suited for real-time deep learning tasks. The Jetson 

Nano was used as a benchmark to compare the 

performance of the microcontroller-based 

platforms and to see how well Tiny YOLO can 

perform with more robust hardware. The same 

optimization methods were applied to the Jetson 

Nano to assess their impact on performance, 

although the higher computational power of the 

device meant that the benefits of optimization were 

less significant than on the microcontrollers. 

The following metrics were measured across all 

devices: mean Average Precision, Frames Per 

Second, Model Size, Inference Time, and Latency. 

These metrics were used to evaluate the trade-offs 

between performance and computational 

efficiency after applying the optimization 

techniques. In the case of ESP32, ESP32-S3, and 

Pico W, the models were optimized to fit within the 

limited memory constraints of the devices. The 

resulting models were small in size but showed 

significant limitations in terms of accuracy, speed, 

and real-time performance, as the inference time 

remained high.  

Overall, this experiment demonstrated that while 

optimizations such as quantization, pruning, and 

clustering can help make deep learning models 

more feasible for microcontroller-based platforms, 

the limited computational power of devices like 

ESP32 and Pico W remains a major bottleneck for 

real-time object detection tasks. On the other hand, 

the Jetson Nano proved to be a much more capable 

platform for deploying Tiny YOLO in real-time 

applications. 

Quantization is first applied by converting the 

model’s 32-bit floating-point weights and 

activations to 8-bit integers. This reduces the 

model's size and boosts inference speed. The model 

is then assessed for memory savings, 

computational efficiency, and any slight loss in 

accuracy due to the reduction in numerical 

precision. Next, pruning is performed by 

eliminating weights that have little impact on the 

model’s performance during training, thus 

reducing both the model size and computational 

load. The pruned model is tested to evaluate the 

balance between efficiency improvements and any 

potential accuracy loss, which depends on the 

extent of pruning. Lastly, weight clustering is 

implemented, grouping similar weights into a 

predefined number of clusters and replacing them 

with shared centroids. This technique reduces 

memory usage without affecting numerical 

precision, and the clustered model is assessed for 

memory savings and any accuracy degradation 

caused by reduced weight granularity. 

Deploying optimized models on hardware 

platforms like ESP32, ESP32-S3, Pico W, and 

Jetson Nano offers a range of possibilities, each 

suited to different use cases based on the 

computational power and application 

requirements. By applying techniques like 

quantization and pruning, the model's size and 

inference time can be reduced, making it more 

feasible for deployment on edge devices. Overall, 

selecting the appropriate platform depends on the 

balance between performance, power 

consumption, and the complexity of the task at 

hand. 

 

7. Evaluation Results 

Performance of each optimized model is compared 

to the base model to evaluate the benefits and trade-

offs of each technique. The results of the combined 

optimization methods are also analyzed to find the 

best strategy for balancing performance and 

efficiency. This evaluation provides valuable 

insights for deploying Tiny YOLO in real-world 

scenarios with limited resources. The evaluation 

focuses on key metrics such as mean Average 

Precision (mAP), Frames Per Second (FPS), and 

Inference Time (ms), which collectively assess the 

models' performance and suitability for resource-
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constrained environments. When deploying Tiny 

YOLO on embedded systems, it's essential to 

consider various metrics. These metrics help 

understand the trade-offs between efficiency and 

accuracy, guiding the optimization process.  

Table 3 focuses only on the Pascal VOC dataset for 

the Tiny YOLO models deployed on ESP32, 

ESP32-S3, Pico W, and Jetson Nano, providing a 

comprehensive framework for evaluating the 

optimized Tiny YOLO models. The models 

balance high accuracy with smaller size, improved 

efficiency, and reduced inference time, making 

them suitable for image classification tasks in 

resource-limited environments. 

Table 3: Evaluation results for Pascal VOC dataset. 

optimization 

Method 
Device 

mAP 

(%) 
FPS 

Inference  

Time (ms) 

Base  

Model 

ESP32 35.2 1.5 2750 

ESP32-S3 27.3 2.5 1879 

Pico W 35.0 1.0 2940 

Jetson Nano 77.0 17.0 279 

Quantization 

ESP32 34.9 1.5 947 

ESP32-S3 27.1 2.5 738 

Pico W 33.8 1.0 1095 

Jetson Nano  76.7 17.0 127 

Pruning 

ESP32 34.5 1.5 1030 

ESP32-S3 26.8 2.5 712 

Pico W 33.6 1.0 1240 

Jetson Nano 76.5 17.0 145 

Clustering 

ESP32 34.2 1.5 968 

ESP32-S3 26.6 2.5 780 

Pico W 33.2 1.0 1155 

Jetson Nano  76.2 17.0 132 

In terms of mean Average Precision (figure 1), 

ESP32 and Pico W show relatively low values, 

ranging from 34.2% to 35.2%, even after applying 

optimization techniques like quantization, pruning, 

and clustering. These platforms struggle to achieve 

high accuracy due to their limited processing 

power. On the other hand, Jetson Nano 

demonstrates significantly higher mAP values, 

ranging from 76.2% to 77%, which is a clear 

reflection of its superior computational 

capabilities. Despite optimizations, the Jetson 

Nano consistently maintains strong accuracy, 

making it a better choice for tasks requiring higher 

precision. 
For inference time (figure 2), ESP32, ESP32-S3, 

and Pico W have high values, ranging from 712ms 

to 2940ms, due to their hardware constraints. This 

long inference time is detrimental to real-time 

object detection, as it introduces delays in 

processing. Conversely, Jetson Nano achieves 

much faster inference times, ranging from 127ms 

to 145ms, depending on the optimization method 

applied. This makes Jetson Nano an ideal platform 

for real-time object detection. 

Jetson Nano outperforms ESP32 and Pico W across 

all evaluation metrics, including mAP, FPS, 

inference time, and latency, making it the best 

choice for real-time object detection tasks using 

Tiny YOLO. While ESP32 and Pico W offer low-

cost and power-efficient solutions, their 

performance for complex models like Tiny YOLO 

is limited, making them unsuitable for real-time 

applications that require high accuracy and speed. 

Despite the modest improvements offered by 

optimization techniques such as quantization, 

pruning, and clustering, the hardware constraints of 

the microcontroller-based platforms continue to 

limit their ability to perform effectively for more 

demanding tasks. 

 

 
Figure 1: The mAP for Pascal VOC. 

 
Figure 2: Inference time for Pascal VOC. 

Table 4 focuses only on the COCO dataset for the 

Tiny YOLO models deployed on ESP32, ESP32-

S3, Pico W, and Jetson Nano, providing a 

comprehensive framework for evaluating the 

optimized Tiny YOLO models. The models 

balance high accuracy with smaller size, improved 

efficiency, and reduced inference time, making 

them suitable for image classification tasks in 

resource-limited environments. 
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In terms of mean Average Precision (figure 3), 

ESP32 and Pico W show relatively low values, 

with the highest mAP reaching around 27.5% even 

after applying optimization techniques. The limited 

computational resources on these microcontrollers 

result in lower accuracy, which is a significant 

challenge despite the optimizations. In contrast, 

Jetson Nano consistently achieves much higher 

mAP values, ranging from 66.9% to 67.7%, 

demonstrating the platform’s ability to handle 

more complex models like Tiny YOLO with 

greater precision due to its superior hardware 

capabilities. 

Table 4: Evaluation results for COCO dataset. 

Optimization 

Method 
Device 

mAP 

(%) 
FPS 

Inference  

Time (ms) 

Base  
Model 

ESP32 29.1 1.5 3142 

ESP32-S3 35.5 2.5 2057 

Pico W 27.2 1.0 3260 

Jetson Nano 67.7 17.0 325 

Quantization 

ESP32 28.6 1.5 1180 

ESP32-S3 34.6 2.5 875 

Pico W 26.4 1.0 1308 

Jetson Nano  67.5 17.0 117 

Pruning 

ESP32 28.2 1.5 1270 

ESP32-S3 33.9 2.5 913 

Pico W 25.8 1.0 1382 

Jetson Nano 66.9 17.0 166 

Clustering 

ESP32 28.9 1.5 1195 

ESP32-S3 35.1 2.5 897 

Pico W 26.8 1.0 1336 

Jetson Nano  67.6 17.0 132 

 

 
Figure 3: The mAP for COCO. 

 
Figure 4: Inference time for COCO. 

In terms of inference time (figure 4), ESP32, 

ESP32-S3, and Pico W exhibit high inference 

times ranging from 875ms to 3260ms, which 

makes these platforms unsuitable for real-time 

applications where speed is crucial. In contrast, 

Jetson Nano achieves much lower inference times, 

between 117ms and 166ms, making it well-suited 

for real-time tasks that demand faster processing. 

Jetson Nano clearly outperforms both ESP32 and 

Pico W across all evaluation metrics, making it the 

optimal choice for real-time object detection with 

Tiny YOLO on the COCO dataset. The ESP32 and 

Pico W show significant limitations due to their 

hardware constraints, even after optimization, and 

are better suited for tasks of lower complexity or 

for applications where real-time performance is not 

as critical. These platforms can still be useful for 

simpler AI tasks, but when it comes to real-time 

detection requiring high accuracy, Jetson Nano is 

the clear leader. 

 

8. Conclusion 

The experiment conducted to evaluate the 

deployment of Tiny YOLO on a range of 

embedded systems, including ESP32, ESP32-S3, 

Pico W, and Jetson Nano, reveals key insights into 

the feasibility of running optimized deep learning 

models on resource-constrained devices. The 

evaluation was carried out on two popular object 

detection datasets, COCO and Pascal VOC, with 

the focus on the performance impact of three model 

optimization techniques: quantization, weight 

pruning, and clustering. The results, detailed in the 

tables, provide a comprehensive analysis of the 

trade-offs between mean Average Precision, 

frames per second, and inference time across 

different hardware platforms. 

Jetson Nano, with its powerful GPU and higher 

computational resources, consistently 

outperformed the other platforms in terms of both 
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mAP and real-time performance. This was 

expected, as the Jetson Nano is designed for AI 

applications, offering substantial processing power 

and memory to handle complex models like Tiny 

YOLO. It demonstrated an impressive mAP of 

around 66.9% to 67.7% on the COCO dataset, 

which is a significant advantage for more 

computationally intensive tasks. The inference 

time was also much lower compared to the 

microcontroller-based platforms, further 

emphasizing its suitability for real-time 

applications. However, optimizations like 

quantization, pruning, and clustering did lead to 

slight improvements in inference time and latency, 

showing that resource-efficient techniques can 

make these platforms viable for simpler tasks. 

One notable aspect of the experiment is the 

importance of model optimization. While the 

optimizations did not dramatically increase the 

mAP on these low-power platforms, they did make 

the models more feasible for deployment, 

balancing the trade-off between computational 

efficiency and accuracy. 

The results underscore the importance of selecting 

the right hardware for edge AI deployment, where 

a balance between computational power, model 

size, inference time, and energy consumption must 

be considered. Future work could focus on further 

optimizing the Tiny YOLO model for even smaller 

and more power-efficient devices while 

maintaining reasonable accuracy for a broader 

range of real-world applications. 
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