

28

Journal of Optimization of Soft Computing (JOSC)

Vol. 2, Issue 4, pp: (28-39), Winter-2024

Journal homepage: https://sanad.iau.ir/journal/josc

 Paper Type (Research paper)

Edge-based Object Detection using Optimized Tiny YOLO

on Embedded Systems

Peyman Babaei
Department of Computer Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran.

Article Info Abstract

Article History:
Received: 2024/12/29

Revised: 2025/01/30

Accepted: 2025/03/05

DOI:

 Object detection at the edge has gained considerable attention for enabling

real-time, low-latency, and privacy-preserving solutions by processing data

locally on resource-constrained devices. This paper explores using Tiny

YOLO, a lightweight variant of the YOLO architecture, for object detection

on embedded systems. Tiny YOLO is specifically designed for edge devices

to run efficiently on constrained devices by utilizing a reduced architecture

with fewer parameters while maintaining good performance for real-time

object detection. The study examines the deployment of optimized Tiny

YOLO models on embedded systems, incorporating techniques like

quantization, pruning, and clustering to reduce model size, enhance speed,

and lower power consumption. Optimization methods show significant

improvements, with quantization speeding up inference, pruning eliminating

redundant parameters, and clustering enhancing accuracy. Specifically, the

study compares the performance of Tiny YOLO under these optimization

techniques, presenting results for both Pascal VOC and COCO datasets. The

results demonstrate that optimized Tiny YOLO models are effective for real-

time object detection on microcontrollers. These methods enable the efficient

deployment of deep learning models for edge computing, without relying on

cloud infrastructure.

Keywords:

Tiny YOLO, Model

optimization, Model

Deployment, Quantization,

Pruning, Weight Clustering,

Embedded Systems.

*Corresponding Author’s Email

Address: Peyman.Babaei@IAU.ac.ir

1. Introduction

In recent years, edge computing has emerged as a

key technology for processing data closer to where

it is generated, offering distinct advantages over

traditional cloud-based computing. At its core,

edge computing allows devices to process and

analyze data locally rather than sending it to

centralized servers or the cloud [1]. This localized

processing significantly reduces latency, decreases

reliance on network bandwidth, improves privacy,

and increases overall system efficiency, making it

particularly valuable for real-time applications

such as image classification and object detection.

Embedded systems, which are small, low-cost, and

energy-efficient computing units, are a key enabler

of edge computing and Internet of Things devices.

They are commonly used in applications where

space and power consumption are constrained,

such as in smart home devices, wearable

electronics, and industrial sensors. However,

microcontrollers are typically limited in terms of

computational power, memory, and storage,

making it challenging to run complex machine

learning models [2,3].

Traditional deep learning models require

substantial computational resources, especially in

terms of processing power and memory, which

makes it difficult to deploy them on embedded

systems. However, recent advancements in model

optimization techniques, such as quantization,

pruning, and the use of lightweight neural network

architectures (e.g., Tiny YOLO), have made it

possible to deploy deep learning-based object

detection models even on microcontrollers. These

optimization techniques help reduce the size of the

models, increase their inference speed, and reduce

power consumption, all while maintaining

acceptable levels of accuracy.

Edge-based Object Detection using Optimized Tiny YOLO on Embedded Systems

29

Deploying deep learning models on embedded

systems is a key step in bringing artificial

intelligence to the edge, where real-time decision-

making is critical [4,5]. While challenges such as

limited computational power, memory, and energy

resources remain, advancements in model

optimization techniques, lightweight architectures,

and specialized hardware accelerators are making

AI deployment on small devices more feasible

[6,7]. For example, Tiny YOLO, a compact version

of the well-known YOLO (You Only Look Once)

object detection model, has proven to be effective

for edge deployment due to its small size and

efficient performance. This is especially valuable

in applications such as autonomous systems,

security surveillance, and robotics, where real-time

object detection is needed on resource-constrained

devices. One of the key hurdles in deploying deep

learning on embedded systems is ensuring that

these models can operate efficiently while

maintaining a balance between performance and

resource consumption [8-10].

Model optimization methods like quantization,

pruning, and clustering help in reducing the

memory footprint, lowering computation

requirements, and speeding up inference times,

making these models more suitable for edge

devices like ESP32 [11]. Tools such as TensorFlow

Lite provide frameworks that make it easier to run

AI models on these constrained platforms,

optimizing them further for mobile and embedded

applications [12].

The rise of AI-powered microcontrollers is

transforming industries by enabling smarter,

decentralized systems [13,14]. In smart homes,

microcontrollers are being used for voice

recognition in virtual assistants and object

detection in security cameras. In healthcare,

wearable devices equipped with AI can monitor

vital signs and detect falls in real-time. In industrial

IoT, microcontrollers power predictive

maintenance systems that can analyze sensor data

like vibration and temperature to prevent

equipment failure. Additionally, environmental

monitoring using microcontrollers allows for the

processing of data to predict weather patterns, track

pollution levels, and monitor wildlife. The

agricultural sector benefits from AI-enabled

microcontrollers by enabling crop health

monitoring, soil condition analysis, and pest

detection, ultimately advancing precision farming

techniques [15,16]. These examples underscore the

versatility of microcontroller-based AI,

showcasing its potential to enhance various

domains by making intelligent decisions at the

edge [17,18].

This study conducted aimed to evaluate the

performance of the Tiny YOLO model on various

edge devices, including ESP32, ESP32-S3, Pico

W, and Jetson Nano, across different optimization

techniques such as quantization, weight pruning,

and clustering. The experiment utilized the COCO

[19] and Pascal VOC [20] datasets to assess the

model's mean Average Precision (mAP), frames

per second (FPS), model size, inference time.

Results showed that while ESP32 and Pico W

exhibited significant limitations in accuracy and

real-time performance due to their limited

computational power, applying optimizations did

provide some improvements in terms of model size

and inference speed. In contrast, Jetson Nano

demonstrated superior performance, achieving

high mAP values and fast inference times, even

with optimized models. This highlighted the

importance of hardware capabilities in achieving

real-time object detection, with Jetson Nano

proving to be the most suitable platform for

running optimized models like Tiny YOLO

efficiently on more complex datasets.

In the following, the Edge-based object detection is

presented in section 2, the YOLO and Tiny YOLO

architectures are presented in sections 3 and 4. The

optimization techniques of learning models are

presented in section 5, which also refers to the

proposed approach. In section 6, the

implementation of different scenarios of Tiny

YOLO model optimization are presented, and then

in section 7, the results of evaluation are compared.

Finally, the conclusion is presented in section 8.

2. Edge-based object detection

Deploying object detection models on embedded

systems for edge computing is a promising solution

for a wide range of real-time applications. As

optimization techniques improve, the ability to run

sophisticated object detection algorithms on

embedded systems will continue to advance,

opening up new possibilities in fields such as

healthcare, security, autonomous systems, and

environmental monitoring. The ability to perform

local image processing without relying on cloud

infrastructure is transforming industries and

enabling more intelligent, responsive, and energy-

efficient systems.

This breakthrough allows for real-time object

detection on devices with limited resources. The

ability to process images and classify objects at the

edge, without the need for cloud computing, opens

up a wide range of possibilities for various

P. Babaei / Journal of Optimization of Soft Computing (JOSC), 2(4): 28-39, 2024

30

applications [21-23]. Below are some key use cases

where microcontroller-based image processing is

particularly beneficial:

 Smart Home Automation:
o Object Detection: Embedded systems can be

used to deploy object detection models to

detect objects, faces, or gestures in smart home

environments. For example, a security camera

system could use a microcontroller to classify

objects in real-time, identifying potential

intruders or monitoring for specific actions.

o Gesture Recognition: In a smart home,

gesture recognition can be used to control

lighting or appliances with simple hand

movements, all processed on an embedded

system.

 Healthcare and Medical Devices:
o Medical Imaging: Embedded systems can

assist in analyzing medical images such as X-

rays, CT scans, or skin lesions directly on

medical devices, facilitating faster diagnosis

and reducing the need for data transmission to

the cloud.

o Wearable Health Devices: Image

classification models deployed on wearable

devices can monitor the health of individuals

by identifying changes in skin tone, detecting

the presence of medical conditions, or tracking

movement patterns for rehabilitation purposes.

 Industrial Automation and Monitoring:

o Defect Detection in Manufacturing:

Embedded systems with object detection

capabilities can be used in automated

inspection systems to identify defects in

products on an assembly line, improving

quality control and reducing human error.

o Predictive Maintenance: By analyzing visual

data from sensors, embedded systems can help

detect signs of wear or malfunction in

machinery, enabling predictive maintenance

and preventing downtime.

 Autonomous Systems:
o Robotics: Autonomous robots, drones, and

vehicles can leverage image classification at

the edge to understand and interpret their

environment, recognizing obstacles, people, or

objects in real-time for navigation and

decision-making.

o Agriculture and Environmental

Monitoring: Drones equipped with embedded

systems can analyze images of crops or forests

to monitor plant health, detect diseases, and

evaluate environmental conditions without

needing cloud-based processing.

 Smart Cities and Surveillance:

o Public Safety and Security: Microcontrollers

embedded in surveillance cameras can perform

face recognition or detect unusual behaviors,

enabling automated security systems that

operate in real-time without relying on cloud

servers.

o Traffic Monitoring: Embedded systems can

be used in traffic cameras to analyze road

conditions, detect traffic congestion, or

recognize vehicle types, all processed locally

for faster decision-making.

 Environmental Monitoring:
o Wildlife Monitoring: Edge devices equipped

with embedded systems can monitor wildlife,

detecting and identifying animals in remote

areas through camera traps, without needing to

transmit large image files to the cloud.

o Pollution Detection: Image classification

models can help detect pollution or other

environmental hazards through cameras,

enabling automated monitoring systems for air,

water, or land quality.

 Retail and Consumer Interaction:
o Product Recognition: Embedded systems can

be used in point-of-sale systems or vending

machines to recognize products through image

classification, enabling automatic stock

tracking or facilitating seamless customer

interactions.

o Customer Behavior Analysis: In retail

settings, embedded systems can process visual

data from in-store cameras to track customer

behavior, optimize store layouts, or improve

marketing strategies based on customer

interaction patterns.

3. YOLO architectures

YOLO (You Only Look Once) is a popular series

of deep learning models for object detection. It’s

known for its speed and efficiency, making it a best

choice for real-time object detection tasks. Over

the years, different versions of YOLO have been

released, each with improvements in accuracy,

speed, and architecture [24,25]. The summary of

YOLO’s evolution is shown in table 1. Below is an

overview of the main versions and their key

features:

 YOLOv1, introduced the idea of using a single

convolutional neural network to predict

bounding boxes and class probabilities in one

pass, making it incredibly fast for real-time

detection.

o Architecture: A single convolutional neural

network that simultaneously predicts bounding

boxes and class probabilities for all objects in

the image in one evaluation. The network

Edge-based Object Detection using Optimized Tiny YOLO on Embedded Systems

31

divides the image into a grid and for each grid

cell, it predicts:

 Bounding boxes (x, y, width, height)

 Confidence score (how likely the box

contains an object)

 Class probabilities (which object class the

box belongs to).

o Strengths: Very fast (real-time detection),

unified approach (object localization and

classification in one pass).

o Weaknesses: Struggles with detecting small

objects and handling overlapping objects, less

accurate in comparison to other models like

Faster R-CNN.

 YOLOv2, released in 2017, brought

significant improvements such as the

introduction of anchor boxes, batch

normalization, and multi-scale training, which

increased both speed and accuracy, especially

for larger objects.

o Architecture:

 Introduced improvements like a new

backbone network, Darknet-19, which was

more powerful than YOLOv1's architecture.

 Added anchor boxes for better bounding box

prediction, addressing the issue of poor

localization seen in YOLOv1.

 Used multi-scale training, where the model

was trained on different image sizes to

improve generalization.

 Introduced batch normalization to stabilize

and speed up training.

o Strengths: Faster and more accurate than

YOLOv1, improved handling of different

object scales, better generalization, and more

robust performance.

o Weaknesses: Still struggles with small object

detection.

 YOLOv3, released in 2018, the model was

further enhanced with a new backbone

(Darknet-53), multi-label classification, and

the use of three different scales for prediction,

allowing it to better detect small objects.

Despite these improvements, YOLOv3 still

had limitations when compared to more

complex models like Faster R-CNN.

o Architecture:

 YOLOv3 used a new backbone called

Darknet-53, which improved accuracy and

allowed for better feature extraction.

 Used multi-label classification to improve

the detection of objects with more than one

class.

 Introduced three different scales for

prediction (small, medium, and large),

allowing the network to detect objects at

various sizes.

 Introduced Residual Connections to help

deeper networks train better and avoid

vanishing gradients.

 The output layer was redesigned to use

logistic regression for bounding box

prediction.

o Strengths: Better detection of smaller objects,

significant performance improvement over v2

in terms of both speed and accuracy.

o Weaknesses: Still not as accurate as more

complex architectures like Faster R-CNN for

certain tasks, especially in cases of very dense

or small objects.

 YOLOv4 released in 2020, focused on

improving detection performance with a new

backbone (CSPDarknet53) and techniques like

Mosaic data augmentation and self-adversarial

training, leading to better accuracy, especially

for small and dense objects, while maintaining

fast inference times.

o Architecture:

 Built on the YOLOv3 model but

incorporated several new techniques for

better performance, including:

 CSPDarknet53 as the backbone network,

which balances accuracy and speed.

 Mosaic Data Augmentation to improve

generalization by combining multiple

images during training.

 Self-adversarial training for improved

robustness.

 DropBlock regularization for better

bounding box predictions.

 Improved performance on smaller objects

with better feature pyramids.

o Strengths: Higher accuracy than YOLOv3,

better at handling small and dense objects,

faster inference times, state-of-the-art

performance in real-time detection.

o Weaknesses: Larger model size compared to

earlier versions, requiring more computational

resources.

 YOLOv5, which was not developed by the

original YOLO creators but became very

popular due to its ease of use, modular design,

and efficient performance on a range of

hardware.
o Architecture:

 YOLOv5 is a separate project developed by

Ultralytics, which is not an official

continuation of the YOLO series but has

become very popular in the community.

P. Babaei / Journal of Optimization of Soft Computing (JOSC), 2(4): 28-39, 2024

32

 It focuses on speed and ease of use, and its

codebase is built in PyTorch (as opposed to

Darknet for the official YOLO models).

 YOLOv5 uses a modular design with

different model sizes (small, medium, large,

extra-large) to balance speed and accuracy.

o Strengths: Very easy to use, with a lot of built-

in features like model training, testing, and

deployment. Achieves state-of-the-art

performance with relatively lightweight

models.

o Weaknesses: It is not an official release from

the original YOLO authors, so it may differ in

implementation or long-term support

compared to the official YOLO versions.

 YOLOv6, released in 2022, continued the

trend of optimization, especially for edge

devices, by focusing on speed and efficiency.

o Architecture:

 YOLOv6 is optimized for both speed and

accuracy with improvements over YOLOv5,

particularly in handling dense and small

objects.

 Introduced a more efficient backbone

(CSPResNet) and neck (PP-YOLO) to

enhance detection performance.

 Focused on optimizing inference speed for

deployment on edge devices.

o Strengths: Real-time performance, better

accuracy with fewer resources.

o Weaknesses: Like YOLOv5, it's not an

official version, so community-driven

development may lead to less consistency over

time.

 YOLOv7, also released in 2022, utilized more

advanced techniques such as efficient

transformers and heterogeneous module

fusion, further enhancing both speed and

accuracy.

o Architecture:

 YOLOv7 continues improving on YOLOv5

and YOLOv6, focusing on both accuracy

and inference speed. It utilizes the efficient

transformer architecture for better handling

of spatial relationships in images.

 Improved backbone for better feature

extraction and information flow.

 Introduced Heterogeneous Module fusion

for better performance in terms of both

accuracy and speed.

o Strengths: One of the fastest YOLO versions

to date, highly optimized for real-time object

detection.

o Weaknesses: Complexity in tuning for

specific tasks, requires careful hyperparameter

tuning for optimal performance.

 YOLOv8, introduced in 2023, offers cutting-

edge performance with improvements in

backbone architectures, better handling of

various object detection tasks, and

optimization for real-time and embedded

systems.

o Architecture:

 YOLOv8 aims to offer even better accuracy,

speed, and efficiency than its predecessors. It

is designed to perform well on various object

detection tasks and includes newer backbone

and neck architectures, as well as better loss

functions for bounding box predictions.

 It also focuses on fine-tuning for specific

tasks like segmentation and key point

detection.

o Strengths: Cutting-edge performance, high

accuracy, and optimized for both real-time and

edge devices.

o Weaknesses: Requires more computational

resources than earlier versions but offers a

significant boost in performance.

Table 1: Summary of YOLO’s evolution.

Version Key Features

YOLOv1
First release; groundbreaking for real-time object
detection using a single CNN for bounding box and

classification predictions.

YOLOv2
Improved accuracy and speed; introduced anchor
boxes, batch normalization, and multi-scale

training. Better at handling larger objects.

YOLOv3

Significant improvements in architecture with
Darknet-53 backbone; better at detecting small

objects with multi-scale predictions and multi-label

classification.

YOLOv4
Focused on speed, accuracy, and robustness,

especially for real-time applications; introduced
Mosaic data augmentation and CSPDarknet53.

YOLOv5
A community-driven model; emphasizes ease of

use, modular design, and optimized for both speed
and accuracy, with multiple model sizes.

YOLO

v6 & v7

Optimized for edge devices and real-time

applications; further enhancements in speed,
accuracy, and performance, especially in dense or

small object detection.

YOLOv8
The latest version with cutting-edge performance
and optimizations for real-time and embedded

devices; handles various detection tasks.

The YOLO family continues to evolve with a

stronger emphasis on speed, accuracy, and

resource efficiency, making it a top choice for real-

time object detection in areas like autonomous

driving, surveillance and robotics. Each version of

YOLO has brought improvements in terms of

accuracy, speed, and efficiency, making it one of

the top choices for real-time object detection in

Edge-based Object Detection using Optimized Tiny YOLO on Embedded Systems

33

fields such as autonomous driving, robotics, and

surveillance.

4. Tiny YOLO

Tiny YOLO is a smaller, lighter version of the

YOLO model, specifically designed for

applications where computational resources are

limited, such as on edge devices or in real-time

systems that require fast processing speeds. It is a

trade-off between performance and efficiency,

sacrificing some accuracy for the sake of reduced

size and faster inference time. Tiny YOLO

simplifies the architecture of the original YOLO by

reducing the number of layers and parameters. For

example, in Tiny YOLO, the backbone network

(typically Darknet) has fewer convolutional layers

and a smaller number of filters. This results in

faster processing speeds and reduced memory

requirements, making it suitable for devices with

limited computational power, such as embedded

systems, mobile devices, and IoT applications.

Faster Inference: Tiny YOLO is much faster than

the standard YOLO models due to its smaller size

and fewer parameters. This makes it ideal for real-

time object detection applications, especially on

resource-constrained devices.

Lower Computational Requirements: The

reduced architecture allows Tiny YOLO to run

efficiently on devices with limited GPU or CPU

capabilities. It’s particularly useful for edge

devices, mobile phones, and embedded systems

where processing power is a concern.

Smaller Model Size: The smaller model size

makes it easier to deploy Tiny YOLO on devices

with limited storage capacity. This is important for

applications where storage space is constrained,

such as drones or IoT devices.

Good for Low-Latency Applications: Because of

its faster processing, Tiny YOLO is suited for low-

latency tasks where quick decision-making is

necessary, such as autonomous vehicles or real-

time video surveillance.

Lower Accuracy: Because of the simplified

architecture, Tiny YOLO generally achieves lower

accuracy compared to full YOLO versions (like

YOLOv3, YOLOv4, or YOLOv5). It may struggle

with detecting small objects or complex scenes

with a high degree of clutter.

Limited Detection Capabilities: While Tiny

YOLO is good for general object detection, its

performance can degrade in challenging scenarios,

such as detecting objects in high-density

environments or cases where fine-grained

classification is required.

Less Robust in Difficult Conditions: Tiny YOLO

might not perform as well under varying

conditions, such as different lighting, weather, or

occlusion, compared to more complex models.

Tiny YOLO is a powerful tool when you need

object detection on devices with limited resources,

where speed and efficiency are more critical than

achieving the highest possible accuracy. Its trade-

off between performance and resource usage

makes it suitable for real-time applications like

autonomous vehicles, drones, and mobile devices.

Key Characteristics of Tiny YOLO's Architecture

are:

o Fewer layers and filters: The network has

fewer layers and smaller filter sizes compared

to the full YOLO versions, making it faster but

less accurate.

o Simplified structure: By reducing the depth of

the network and the number of neurons in the

fully connected layers, Tiny YOLO is

optimized for speed and smaller model size.

o Max Pooling: Max pooling layers help reduce

the spatial resolution of feature maps, aiding in

faster processing and reducing overfitting by

discarding irrelevant details.

o Lower resolution input: Tiny YOLO generally

works with lower resolution input images,

which reduces computation time but may

decrease accuracy in detecting small objects.

Tiny YOLO sacrifices some complexity and

accuracy from the standard YOLO architecture in

exchange for faster processing and reduced

computational requirements. This makes it suitable

for real-time applications on edge devices and

embedded systems, where speed and low resource

consumption are prioritized over the highest

possible accuracy. The Tiny YOLO architecture

table is shown in table 2. The layers of this

architecture are described below:

Input Layer: Takes images of size 224x224x3,

commonly used for image classification and

detection tasks.

Convolutional Layers: These layers progressively

extract more abstract features from the image by

applying convolution with 3x3 filters. The number

of filters increases as the network deepens,

allowing for more complex representations.

Max Pooling Layers: Reduce the spatial

dimensions of the feature maps, making the model

more efficient and helping to avoid overfitting.

Fully Connected Layers: Compress the features

extracted from the convolutional layers and map

them to a higher-dimensional space, enabling the

prediction of object classes and bounding boxes.

P. Babaei / Journal of Optimization of Soft Computing (JOSC), 2(4): 28-39, 2024

34

Output Layer: Predicts both the class probabilities

and bounding box positions (class + 4 for bounding

box coordinates). The final output is structured to

handle N classes and the corresponding bounding

box for each object detected.

Table 2: Tiny YOLO architecture.

Layer
Number of

Filters

Filter

Dimensions

Output

Dimensions

Input Layer --- 224x224 224x224x3

Convolutional 1 16 3x3 224x224x16

MaxPooling 1 --- 2x2 112x112x16

Convolutional 2 32 3x3 112x112x32

MaxPooling 2 --- 2x2 56x56x32

Convolutional 3 64 3x3 56x56x64

MaxPooling 3 --- 2x2 28x28x64

Convolutional 4 128 3x3 28x28x128

MaxPooling 4 --- 2x2 14x14x128

Convolutional 5 256 3x3 14x14x256

MaxPooling 5 --- 2x2 7x7x256

Fully Connected 1 4096 N/A 1x1x4096

Fully Connected 2 Classes + 4 N/A 1x1x(N+4)

Output N/A N/A 1x1x(N+4)

This structure is a simplified version of the YOLO

architecture, designed for efficient image

classification and object detection with reduced

computational resources.

5. Model Optimization Techniques

Model optimization techniques aim to reduce the

size and computational demands of machine

learning models without compromising their

performance. This is crucial for deploying models

on small, resource-limited devices. Methods such

as pruning, quantization, and weight clustering are

commonly used to achieve this goal [26]. The main

objective is to enable large models to run smoothly

on edge devices with limited memory, processing

power, and battery life. These optimizations are

especially useful for applications requiring

continuous operation. The benefits of using

optimization techniques include:
Inference Speed: Large models take longer to

make predictions, which can be problematic for

real-time applications like video or audio

processing. Optimization enhances inference

speed, making models more suitable for time-

sensitive tasks.

Cost and Resource Efficiency: Training and

deploying large models demand substantial

computational resources, often resulting in high

costs. Optimization reduces these needs, enabling

faster and more efficient training and deployment.

Deployment Flexibility: Large model sizes can

hinder deployment on certain platforms or

environments. Optimization makes models more

portable and easier to deploy.

Quantization is a technique that reduces the size

and computational complexity of machine learning

models by using fewer bits to represent weights

and activations. It is particularly useful for devices

with limited memory and computational power,

like edge and IoT devices. The technique involves

reducing the precision of model weights, such as

converting 32-bit floating-point numbers to 8-bit

integers, which reduces model size and improves

inference speed but may slightly affect accuracy.

Quantization can be applied during or after

training, with post-training quantization being

simpler but potentially introducing errors, while

quantization-aware training simulates quantization

effects during training to preserve accuracy and

improve performance. The main benefits include

faster inference, reduced memory use, and lower

energy consumption, but balancing model size and

accuracy requires careful calibration [27,28].

Pruning is a method used to reduce model size by

removing unnecessary parameters, lowering

computational and storage needs, and improving

generalization. It involves setting certain weights

to zero, thus removing them from the model.

Pruning can be done before, during, or after

training and is effective for various models like

deep neural networks and decision trees. The

benefits of pruning include reduced size, simpler

interpretation, and easier deployment. Weight

pruning is commonly used, where less important

weights are set to zero, creating sparsity in the

model and reducing memory usage. While it

speeds up inference, excessive pruning may

degrade performance, requiring a balance between

model size and accuracy [29,30].

Weight clustering is another optimization

technique that reduces the number of unique

weight values in a model. Instead of storing each

individual weight, only unique values are saved,

minimizing memory usage. The technique groups

similar weights into clusters, often using the cluster

centroid as the representative value for all weights

in that group. By reducing the number of clusters,

the model becomes more compact, saving memory

and improving efficiency [31].

6. Implementation of Optimized Models

The objective of this experiment was to evaluate

the deployment performance of the Tiny YOLO

model on various embedded hardware platforms,

including the ESP32, ESP32-S3, Pico W, and

Jetson Nano. These platforms were chosen to

Edge-based Object Detection using Optimized Tiny YOLO on Embedded Systems

35

compare the feasibility of running a real-time

object detection model like Tiny YOLO on

resource-constrained devices, with a focus on the

impact of optimization techniques such as

quantization, weight pruning, and clustering.

The ESP32 and Pico W are microcontroller-based

platforms known for their low power consumption

and small form factors, making them suitable for

simple edge applications. However, their limited

computational power and memory impose

constraints when running more complex deep

learning models like Tiny YOLO. The ESP32-S3

variant was also included in the test, which offers

enhanced AI capabilities compared to the basic

ESP32 model, but still lacks the computational

resources required for high-performance tasks.

These microcontrollers were tested with

optimizations to reduce the size of the model,

improve inference time, and reduce latency.

Quantization was used to reduce the precision of

weights and activations, weight pruning removed

less important parameters to decrease model size,

and clustering grouped similar weights to further

optimize the model.

The Jetson Nano, a more powerful platform

equipped with a GPU and designed specifically for

AI applications, was also tested. It provides

significant computational power, making it better

suited for real-time deep learning tasks. The Jetson

Nano was used as a benchmark to compare the

performance of the microcontroller-based

platforms and to see how well Tiny YOLO can

perform with more robust hardware. The same

optimization methods were applied to the Jetson

Nano to assess their impact on performance,

although the higher computational power of the

device meant that the benefits of optimization were

less significant than on the microcontrollers.

The following metrics were measured across all

devices: mean Average Precision, Frames Per

Second, Model Size, Inference Time, and Latency.

These metrics were used to evaluate the trade-offs

between performance and computational

efficiency after applying the optimization

techniques. In the case of ESP32, ESP32-S3, and

Pico W, the models were optimized to fit within the

limited memory constraints of the devices. The

resulting models were small in size but showed

significant limitations in terms of accuracy, speed,

and real-time performance, as the inference time

remained high.

Overall, this experiment demonstrated that while

optimizations such as quantization, pruning, and

clustering can help make deep learning models

more feasible for microcontroller-based platforms,

the limited computational power of devices like

ESP32 and Pico W remains a major bottleneck for

real-time object detection tasks. On the other hand,

the Jetson Nano proved to be a much more capable

platform for deploying Tiny YOLO in real-time

applications.

Quantization is first applied by converting the

model’s 32-bit floating-point weights and

activations to 8-bit integers. This reduces the

model's size and boosts inference speed. The model

is then assessed for memory savings,

computational efficiency, and any slight loss in

accuracy due to the reduction in numerical

precision. Next, pruning is performed by

eliminating weights that have little impact on the

model’s performance during training, thus

reducing both the model size and computational

load. The pruned model is tested to evaluate the

balance between efficiency improvements and any

potential accuracy loss, which depends on the

extent of pruning. Lastly, weight clustering is

implemented, grouping similar weights into a

predefined number of clusters and replacing them

with shared centroids. This technique reduces

memory usage without affecting numerical

precision, and the clustered model is assessed for

memory savings and any accuracy degradation

caused by reduced weight granularity.

Deploying optimized models on hardware

platforms like ESP32, ESP32-S3, Pico W, and

Jetson Nano offers a range of possibilities, each

suited to different use cases based on the

computational power and application

requirements. By applying techniques like

quantization and pruning, the model's size and

inference time can be reduced, making it more

feasible for deployment on edge devices. Overall,

selecting the appropriate platform depends on the

balance between performance, power

consumption, and the complexity of the task at

hand.

7. Evaluation Results

Performance of each optimized model is compared

to the base model to evaluate the benefits and trade-

offs of each technique. The results of the combined

optimization methods are also analyzed to find the

best strategy for balancing performance and

efficiency. This evaluation provides valuable

insights for deploying Tiny YOLO in real-world

scenarios with limited resources. The evaluation

focuses on key metrics such as mean Average

Precision (mAP), Frames Per Second (FPS), and

Inference Time (ms), which collectively assess the

models' performance and suitability for resource-

P. Babaei / Journal of Optimization of Soft Computing (JOSC), 2(4): 28-39, 2024

36

constrained environments. When deploying Tiny

YOLO on embedded systems, it's essential to

consider various metrics. These metrics help

understand the trade-offs between efficiency and

accuracy, guiding the optimization process.

Table 3 focuses only on the Pascal VOC dataset for

the Tiny YOLO models deployed on ESP32,

ESP32-S3, Pico W, and Jetson Nano, providing a

comprehensive framework for evaluating the

optimized Tiny YOLO models. The models

balance high accuracy with smaller size, improved

efficiency, and reduced inference time, making

them suitable for image classification tasks in

resource-limited environments.

Table 3: Evaluation results for Pascal VOC dataset.

optimization

Method
Device

mAP

(%)
FPS

Inference

Time (ms)

Base

Model

ESP32 35.2 1.5 2750

ESP32-S3 27.3 2.5 1879

Pico W 35.0 1.0 2940

Jetson Nano 77.0 17.0 279

Quantization

ESP32 34.9 1.5 947

ESP32-S3 27.1 2.5 738

Pico W 33.8 1.0 1095

Jetson Nano 76.7 17.0 127

Pruning

ESP32 34.5 1.5 1030

ESP32-S3 26.8 2.5 712

Pico W 33.6 1.0 1240

Jetson Nano 76.5 17.0 145

Clustering

ESP32 34.2 1.5 968

ESP32-S3 26.6 2.5 780

Pico W 33.2 1.0 1155

Jetson Nano 76.2 17.0 132

In terms of mean Average Precision (figure 1),

ESP32 and Pico W show relatively low values,

ranging from 34.2% to 35.2%, even after applying

optimization techniques like quantization, pruning,

and clustering. These platforms struggle to achieve

high accuracy due to their limited processing

power. On the other hand, Jetson Nano

demonstrates significantly higher mAP values,

ranging from 76.2% to 77%, which is a clear

reflection of its superior computational

capabilities. Despite optimizations, the Jetson

Nano consistently maintains strong accuracy,

making it a better choice for tasks requiring higher

precision.
For inference time (figure 2), ESP32, ESP32-S3,

and Pico W have high values, ranging from 712ms

to 2940ms, due to their hardware constraints. This

long inference time is detrimental to real-time

object detection, as it introduces delays in

processing. Conversely, Jetson Nano achieves

much faster inference times, ranging from 127ms

to 145ms, depending on the optimization method

applied. This makes Jetson Nano an ideal platform

for real-time object detection.

Jetson Nano outperforms ESP32 and Pico W across

all evaluation metrics, including mAP, FPS,

inference time, and latency, making it the best

choice for real-time object detection tasks using

Tiny YOLO. While ESP32 and Pico W offer low-

cost and power-efficient solutions, their

performance for complex models like Tiny YOLO

is limited, making them unsuitable for real-time

applications that require high accuracy and speed.

Despite the modest improvements offered by

optimization techniques such as quantization,

pruning, and clustering, the hardware constraints of

the microcontroller-based platforms continue to

limit their ability to perform effectively for more

demanding tasks.

Figure 1: The mAP for Pascal VOC.

Figure 2: Inference time for Pascal VOC.

Table 4 focuses only on the COCO dataset for the

Tiny YOLO models deployed on ESP32, ESP32-

S3, Pico W, and Jetson Nano, providing a

comprehensive framework for evaluating the

optimized Tiny YOLO models. The models

balance high accuracy with smaller size, improved

efficiency, and reduced inference time, making

them suitable for image classification tasks in

resource-limited environments.

35
.2

27
.3 35

77

34
.9

27
.1 33

.8

76
.7

34
.5

26
.8 33

.6

76
.5

34
.2

26
.6 33

.2

76
.2

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

B A S E M O D E L Q U A N T I Z A T I O N P R U N I N G C L U S T E R I N G

M E A N A V E R A G E P R E C I S I O N

27
50

18
79

29
40

27
9

94
7

73
8 10

95

12
7

10
30

71
2 12

40

14
5

96
8

78
0 11

55

13
2

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

B A S E M O D E L Q U A N T I Z A T I O N P R U N I N G C L U S T E R I N G

I N F E R E N C E T I M E

Edge-based Object Detection using Optimized Tiny YOLO on Embedded Systems

37

In terms of mean Average Precision (figure 3),

ESP32 and Pico W show relatively low values,

with the highest mAP reaching around 27.5% even

after applying optimization techniques. The limited

computational resources on these microcontrollers

result in lower accuracy, which is a significant

challenge despite the optimizations. In contrast,

Jetson Nano consistently achieves much higher

mAP values, ranging from 66.9% to 67.7%,

demonstrating the platform’s ability to handle

more complex models like Tiny YOLO with

greater precision due to its superior hardware

capabilities.

Table 4: Evaluation results for COCO dataset.

Optimization

Method
Device

mAP

(%)
FPS

Inference

Time (ms)

Base
Model

ESP32 29.1 1.5 3142

ESP32-S3 35.5 2.5 2057

Pico W 27.2 1.0 3260

Jetson Nano 67.7 17.0 325

Quantization

ESP32 28.6 1.5 1180

ESP32-S3 34.6 2.5 875

Pico W 26.4 1.0 1308

Jetson Nano 67.5 17.0 117

Pruning

ESP32 28.2 1.5 1270

ESP32-S3 33.9 2.5 913

Pico W 25.8 1.0 1382

Jetson Nano 66.9 17.0 166

Clustering

ESP32 28.9 1.5 1195

ESP32-S3 35.1 2.5 897

Pico W 26.8 1.0 1336

Jetson Nano 67.6 17.0 132

Figure 3: The mAP for COCO.

Figure 4: Inference time for COCO.

In terms of inference time (figure 4), ESP32,

ESP32-S3, and Pico W exhibit high inference

times ranging from 875ms to 3260ms, which

makes these platforms unsuitable for real-time

applications where speed is crucial. In contrast,

Jetson Nano achieves much lower inference times,

between 117ms and 166ms, making it well-suited

for real-time tasks that demand faster processing.

Jetson Nano clearly outperforms both ESP32 and

Pico W across all evaluation metrics, making it the

optimal choice for real-time object detection with

Tiny YOLO on the COCO dataset. The ESP32 and

Pico W show significant limitations due to their

hardware constraints, even after optimization, and

are better suited for tasks of lower complexity or

for applications where real-time performance is not

as critical. These platforms can still be useful for

simpler AI tasks, but when it comes to real-time

detection requiring high accuracy, Jetson Nano is

the clear leader.

8. Conclusion

The experiment conducted to evaluate the

deployment of Tiny YOLO on a range of

embedded systems, including ESP32, ESP32-S3,

Pico W, and Jetson Nano, reveals key insights into

the feasibility of running optimized deep learning

models on resource-constrained devices. The

evaluation was carried out on two popular object

detection datasets, COCO and Pascal VOC, with

the focus on the performance impact of three model

optimization techniques: quantization, weight

pruning, and clustering. The results, detailed in the

tables, provide a comprehensive analysis of the

trade-offs between mean Average Precision,

frames per second, and inference time across

different hardware platforms.

Jetson Nano, with its powerful GPU and higher

computational resources, consistently

outperformed the other platforms in terms of both

29
.1 35

.5

27
.2

67
.7

28
.6 34

.6

26
.4

67
.5

28
.2 33

.9

25
.8

66
.9

28
.9 35

.1

26
.8

67
.6

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

B A S E M O D E L Q U A N T I Z A T I O N P R U N I N G C L U S T E R I N G

M E A N A V E R A G E P R E C I S I O N

31
42

20
57

32
60

32
5

11
80

87
5

13
08

11
7

12
70

91
3

13
82

16
6

11
95

89
7

13
36

13
2

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

E
S

P
3

2

E
S

P
3

2
-

S
3

P
IC

O
 W

J
E

T
S

O
N

 N
A

N
O

B A S E M O D E L Q U A N T I Z A T I O N P R U N I N G C L U S T E R I N G

I N F E R E N C E T I M E

P. Babaei / Journal of Optimization of Soft Computing (JOSC), 2(4): 28-39, 2024

38

mAP and real-time performance. This was

expected, as the Jetson Nano is designed for AI

applications, offering substantial processing power

and memory to handle complex models like Tiny

YOLO. It demonstrated an impressive mAP of

around 66.9% to 67.7% on the COCO dataset,

which is a significant advantage for more

computationally intensive tasks. The inference

time was also much lower compared to the

microcontroller-based platforms, further

emphasizing its suitability for real-time

applications. However, optimizations like

quantization, pruning, and clustering did lead to

slight improvements in inference time and latency,

showing that resource-efficient techniques can

make these platforms viable for simpler tasks.

One notable aspect of the experiment is the

importance of model optimization. While the

optimizations did not dramatically increase the

mAP on these low-power platforms, they did make

the models more feasible for deployment,

balancing the trade-off between computational

efficiency and accuracy.

The results underscore the importance of selecting

the right hardware for edge AI deployment, where

a balance between computational power, model

size, inference time, and energy consumption must

be considered. Future work could focus on further

optimizing the Tiny YOLO model for even smaller

and more power-efficient devices while

maintaining reasonable accuracy for a broader

range of real-world applications.

References
[1] Kotha, H.D. and Gupta, V.M., 2018. IoT application: a

survey. Int. J. Eng. Technol, 7(2.7), pp.891-896.

[2] Dian, F.J., Vahidnia, R. and Rahmati, A., 2020. Wearables

and the Internet of Things (IoT), applications, opportunities,

and challenges: A Survey. IEEE access, 8, pp.69200-69211.

[3] Asghari, P., Rahmani, A.M. and Javadi, H.H.S., 2019.

Internet of Things applications: A systematic

review. Computer Networks, 148, pp.241-261.

[4] Li, H., Ota, K. and Dong, M., 2018. Learning IoT in edge:

Deep learning for the Internet of Things with edge

computing. IEEE network, 32(1), pp.96-101.

[5] Liangzhen Lai and Naveen Suda. 2018. Enabling Deep

Learning at the IoT Edge. In Proceedings of the International

Conference on Computer-Aided Design (San Diego,

California) (ICCAD ’18). ACM, New York, NY, USA, Article

135, 6 pages.

[6] Singh, R. and Gill, S.S., 2023. Edge AI: a survey. Internet

of Things and Cyber-Physical Systems, 3, pp.71-92.

[7] Wang, X., Han, Y., Leung, V.C., Niyato, D., Yan, X. and

Chen, X., 2020. Edge AI: Convergence of edge computing and

artificial intelligence (pp. 3-149). Singapore: Springer.

[8] David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N.,

Li, J., Kreeger, N., Nappier, I., Natraj, M., Wang, T. and

Warden, P., 2021. Tensorflow lite micro: Embedded machine

learning for tinyml systems. Proceedings of Machine Learning

and Systems, 3, pp.800-811.

[9] Rashidi, M., 2022. Application of TensorFlow lite on

embedded devices: A hands-on practice of TensorFlow model

conversion to TensorFlow Lite model and its deployment on

Smartphone to compare model’s performance.

[10] Mamtha, G.N., Sharma, S. and Sing, N., 2023, December.

Embedded Machine Learning with Tensorflow Lite Micro.

In 2023 International Conference on Power Energy,

Environment & Intelligent Control (PEEIC) (pp. 1480-1483).

[11] Berthelier, A., Chateau, T., Duffner, S., Garcia, C. and

Blanc, C., 2021. Deep model compression and architecture

optimization for embedded systems: A survey. Journal of

Signal Processing Systems, 93(8), pp.863-878.

[12] TensorFlow Lite, TensorFlow, 2021. Available online:

https://www.tensorflow.org/lite

[13] Hua, H., Li, Y., Dong, N., Li, W. and Cao, J., 2023. Edge

computing with artificial intelligence: A machine learning

perspective. ACM Computing Surveys, 55(9), pp.1-35.

[14] Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S. and

Zomaya, A.Y., 2020. Edge intelligence: The confluence of

edge computing and artificial intelligence. IEEE Internet of

Things Journal, 7(8), pp.7457-7469.

[15] Grzesik, P. and Mrozek, D., 2024. Combining Machine

Learning and Edge Computing: Opportunities, Challenges,

Platforms, Frameworks, and Use Cases. Electronics, 13(3),

p.640.

[16] Li, H., Ota, K. and Dong, M., 2018. Learning IoT in edge:

Deep learning for the Internet of Things with edge

computing. IEEE network, 32(1), pp.96-101.

[17] Chang, Z., Liu, S., Xiong, X., Cai, Z. and Tu, G., 2021. A

survey of recent advances in edge-computing-powered

artificial intelligence of things. IEEE Internet of Things

Journal, 8(18), pp.13849-13875.

[18] Sivaganesan, D., 2019. Design and development ai-

enabled edge computing for intelligent-iot

applications. Journal of trends in Computer Science and Smart

technology (TCSST), 1(02), pp.84-94.

[19] Jain, S., Dash, S. and Deorari, R., 2022, October. Object

detection using coco dataset. In 2022 International Conference

on Cyber Resilience (ICCR) (pp. 1-4). IEEE.

[20] Shetty, S., 2016. Application of convolutional neural

network for image classification on Pascal VOC challenge

2012 dataset. arXiv preprint arXiv:1607.03785.

[21] Li, C., Wang, J., Wang, S. and Zhang, Y., 2024. A review

of IoT applications in healthcare. Neurocomputing, 565,

p.127017.

[22] Afzal, B., Umair, M., Shah, G.A. and Ahmed, E., 2019.

Enabling IoT platforms for social IoT applications: Vision,

feature mapping, and challenges. Future Generation Computer

Systems, 92, pp.718-731.

[23] Dian, F.J., Vahidnia, R. and Rahmati, A., 2020.

Wearables and the Internet of Things (IoT), applications,

opportunities, and challenges: A Survey. IEEE access, 8,

pp.69200-69211.

[24] Tripathi, A., Gupta, M.K., Srivastava, C., Dixit, P. and

Pandey, S.K., 2022, December. Object detection using YOLO:

A survey. In 2022 5th International Conference on

Contemporary Computing and Informatics (IC3I) (pp. 747-

752). IEEE.

[25] Hussain, M., 2024. Yolov1 to v8: Unveiling each variant–

a comprehensive review of yolo. IEEE Access, 12, pp.42816-

42833.

[26] Babaei, P., 2024, March. Convergence of Deep Learning

and Edge Computing using Model Optimization. In 2024 13th

Iranian/3rd International Machine Vision and Image

Processing Conference (MVIP) (pp. 1-6). IEEE.

[27] Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W.

and Keutzer, K., 2022. A survey of quantization methods for

Edge-based Object Detection using Optimized Tiny YOLO on Embedded Systems

39

efficient neural network inference. In Low-Power Computer

Vision (pp. 291-326). Chapman and Hall/CRC.

[28] Rokh, B., Azarpeyvand, A. and Khanteymoori, A., 2023.

A comprehensive survey on model quantization for deep

neural networks in image classification. ACM Transactions on

Intelligent Systems and Technology, 14(6), pp.1-50.

[29] Liang, T., Glossner, J., Wang, L., Shi, S. and Zhang, X.,

2021. Pruning and quantization for deep neural network

acceleration: A survey. Neurocomputing, 461, pp.370-403.

[30] Madnur, P.V., Dabade, S.H., Khanapure, A., Rodrigues,

S., Hegde, S. and Kulkarni, U., 2023, November. Enhancing

Deep Neural Networks through Pruning followed by

Quantization Pipeline: A Comprehensive Review. In 2023 2nd

International Conference on Futuristic Technologies

(INCOFT) (pp. 1-8). IEEE.

[31] Choudhary, T., Mishra, V., Goswami, A. and

Sarangapani, J., 2020. A comprehensive survey on model

compression and acceleration. Artificial Intelligence

Review, 53, pp.5113-5155.

