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Abstract 
This article examines new methods for solving fractional integral differential equations of Fredholm using 

wavelets. In this research, first, fractional integral differential equations and their special properties are 

introduced. Then, the importance of using wavelets as a tool for analyzing and solving these equations is 

explained.

Wavelet methods have many advantages due to their ability to display signals and analyze nonlinear and 

indirect data, especially in complex and dynamic problems. The article describes various algorithms and 

techniques that, by utilizing the properties of wavelets, can be used to achieve numerical and analytical 

solutions of the above equations.

Convergence results and error evaluation are also presented in this article using examples to demonstrate 

the effectiveness and high efficiency of wavelet methods in solving fractional integral differential 

equations of Fredholm. It also reduces the variable-order fractional derivative theorem to a system of 

algebraic equations by approximating the Haar wavelet and integrating it.
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1. Introduction

Solving partial differential equations has been of interest to scientists for a long time. Many researchers 

have proposed this method due to the applicability of fractional differential integral equations of singular 

type [19]. Recently, fractional integral differential equations have been used to model many physical 

phenomena in various fields of non-linear oscillation of earthquakes, fluid dynamics traffic, continuum, 

statistical mechanics of signal processing, control theory, dynamics, and the relationship between 

nanoparticles [9, 21]. Numerous numerical methods have been thoroughly researched to solve these 

equations, including Fourier transform, Laplace analysis, fractional differential transform, finite 

difference method, orthogonal functions, Adomian decomposition method, variable iteration method, and 

homotopy analysis method. They are used to obtain approximate solutions for fractional equations 

[10,12, 20]. Fractional integral differential equations are valuable in modeling many phenomena [13]. 

Over the past four decades, scientists have focused on the theory and applications of partial differential 

equations of fractional order, which generalize differential equations of the correct order. One such 

method that has gained attention is the modified homotopy analysis transformation method [15,17]. 

Shahsavaran and Babolian computed the numerical value of Fredholm's non-linear integral equations 



using Harr wavelets [4]. Islameh and Aziz also proposed a method for numerically solving one-

dimensional equations using wavelets [6]. 

In 1909, Haar was the first person to mention wavelets. Later, Jean Morelet discovered that Fourier bases 

were not ideal tools for underground exploration, which led to the discovery of wavelets. Mir and Mallet 

then laid the foundations of orthogonal wavelets and created algorithms for wavelet decomposition and 

reconstruction. In 1990, Morenzi and Antonie expanded wavelets to two dimensions [3]. Wavelet 

analysis has been used to analyze transient signals that change rapidly. It has various applications, 

including analyzing sound and audio signals, electrical activity in the brain, and underwater sounds. It is 

also used to control power plants through the NMR display of computer spectroscopic data [14,3]. 

Today, Wavelets have various applications, including brain tissue separation, CT scanning in medical 

imaging, magnetic resonance imaging of nuclear energy, industries, agriculture, and computer software 

and hardware [16]. Over the last two decades, there have been advancements in wavelet theory. As a 

result, several studies have been conducted on solving integro-differential equations using wavelet 

methods. For instance, in 2004, Hibbert-Taylor solved Fredholm integral equations using wavelet 

methods [7]. In 2012, the Legendre wavelet method was employed to solve second-type Fredholm 

integral equations [8]. Wavelets were also used to solve partial fractional equations. The solution for 

binary systems of fractional integral differential equations has been achieved by utilizing Haar and 

Legendre wavelets. These wavelets have been employed in solving partial fractional equations as well as 

binary systems of fractional integral differential equations. However, applying Haar wavelets in solving 

2D fractional differential integral equations is a new and unexplored phenomenon. Therefore, we aim to 

utilize the Haar wavelet method to solve the two-dimensional fractional Fredholm integrodifferential 

equations of the form,   
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Where   
 
 ( )is the fractional derivative and u(x, t) be a function defined over   [0, 1] × 

[0, 1], and  k(x, y, t,  ) be a continuous kernel; in addition, assume 0 <   < 1. This article 

is written as follows: The concepts of Harr wavelet and related theorems are presented in section 2. The 

proposed method is presented in section 3. And finally, the accuracy and efficiency of the proposed 

design are shown using numerical solutions with some examples with tables and graphs in section 4.      
                                                                                                                     

2. Haar Wavelets 
 

Harr basis wavelet ( j ,i (y))j∈N , i∈Z  is a constant family function and an 

orthogonal subfamily of Hilbert space L2
 (R), a group of functions that arise from 

a constant function ψ called the mother wavelet. In the wavelet family, the 

following relations are established: 

 

Ψi ,i ( ) = 2
j/2

ψ(     ). 

 

For t h e  group o f  raging Haar wavelet in the interval [0, 1) we have, 
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The connection between i, k, and m is given by i = k +m + 1. k is the transmission 
parameter. 
In table 1, we calculate the correct values for i, j, and k up to level j=3  

 

 

Table1. Calculation for Haar wavelet bases at j=3 

 
k       0      0      1     0     1     2     3      0        1         2        3       4     ….     7         
j      0      1      1     2     2     2     2      3        3          3        3       3     ….     3 
i=k+m+1           2      3      4     5     6     7     8      9       10        11       12    13    ….   16   

                 
The value of the number j denotes the maximum resolution level of the wavelet. 

Any specific integrable function f (x) in the space [0, 1) can be considered as a 

linear combination of the grades of the  Harr wavelet, such as, 
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Here, ci is the real coefficient in the function. The upside series concludes at 

confined intervals if f (x) is a piece fixed [1]. 

According to the above explanation, We get a linear device from the following 

equations: 
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In the above text, the linear system of equations is a 2M×2M, which can be 

calculated using the following theorem to find the unknown coefficients     . 

Theorem2.1. The answer to the system (3) is as follows :  
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Proof .  See [11]  
 

Theorem2.2 . With the variables x and y, a very good and real function F(x, y) can be estimated by two 

dimensional wavelets in an approximate form as, 
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Substituting the collocation point: 

   
     

  
                                   

And  

   
     

  
                                   

We get  the following system of linear equations: 
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For each value of x, y ∈ [0, 1], the answer of this system is obtained as the following equation: 
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And  also       
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Proof  .  [2] 

Consider the parameters t, y, x, and s from the function F(x, y, s, t). Let's 

assumption that the function F(x, y, s, t) is estimated by used to of a 2- 

dimensional Haar wavelet as follows: 
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We achieved the consequent system of linear equations. 

 

Corollary.2.3. Consider F(x, y) that includes two parameters y and x, which is 

estimated via the Harr wavelet access presented in Equation (1). Further suppose 

such F(x, y) at the points (x m, y n), n= 1, 2,  …, 2N , m= 1, 2, . . . , 2M,. Therefore, 

at any point of the domain of the function F(x, y), its approximate value can be 

obtained as tracks: 
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Where α1,  β1, γ1 and  1 are defined as in Eq. (4) and α2 , β2 , γ2 and ρ2 are defined as in Eq. (5) 

   3. Solution method 

When dealing with both u(x) and its derivative    ( )  in differential integral equations of Haar wavelet 

in relation (2) is introduced as follows: 
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Which if approximated       ( )   ∑     ( )     

     as a result  ( )   ( )  ∑     ( )    

    

First, we detect the level of clarity j to proximate   U(x, t), then we assume, 
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Wherever  *    +  are to be found. From the initial condition u (x, 0) =0  and the composition t in ,    - , 

can be written, 
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The following integral expression can be written as a result, 
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To evaluate the phrase     
 
 (    )   we connection relation (7) into the    
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With the help of nodes with equal distance      
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    to create the   system, 
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Where n, m=1, 2, 3, … ,       

By solving the system of equations               in the above relation, the value of wavelet coefficients 

     is obtained.  

4. Numerical tests 

In this section, we demonstrate the effectiveness, precision, application, and efficiency of the proposed 

method by providing several examples of a single weak PIDE. To do this, we utilize the definition of 

absolute error, denoted as   . It is defined as, 
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Here, u (x, y) shows the approximate answer, and u(x,y) shows the exact result 

achieved using the suggested method . 

Let us consider the mesh nodes on the square and the asymptotic spread powers of 

the step size h as, 
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Here G (0) is the unknown correct value, G(h) means the quantity achieved with 

any numeric procedure with level range h, k is the theoretical order of exactness, 

and β is an unknown fixed independent of h . 

Mean two numerical solutions established on the nested grid as follows, 

      (    )         (  )  Applying (8) for these explanations, the following 

equality, 
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The error value can be obtained by combining these two relations. So, the value 

becomes an error as, 

 

 

 
 

Or another approximation of the value G (0) as, 

 

 

 

 

This simplified formula is known as the Richardson analogy formula. In essence, the approximate 

solutions    have more error than h of   . Therefore, if the numerical solutions for two grids and the 

theoretical order of accuracy k are known from the numerical method, as a simple analogical formula 

(11), it removes the preceding term from the error of the expansion equation (8) and leads us to an  

acceptable solution[11].   

In this study, we employed Richardson's extrapolation method to assess the error in finite difference 

methods for various mathematical issues. 

From solving the real value of G (0) in  (9), provide a simple method for assessing the convergence rate 

of the numerical approach as, 
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It is possible to guess and estimate the accuracy of visionary content using three paths on a 
series of nested networks, 

 

  
 

The beneath  relation can be achieved from three relationships a like to parity(  ), 

 
 

 

With the help of relationship (18), the order of accuracy k can be evaluated and 

specified [16],  

 

      

 

Here     is an amount of discovered degree of precision, and relation (14) grants 

the pilot procedure for determinative or evident relation (14) can be used only for 

  >0. 

Further, the following formula can be applied to evaluate the order of convergence 

for the advanced value      

  

 

 

Example4. 1 

Notice the following two-dimensional fractional integro-differential equation:  
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The exact solution of Equation (16) is  (   )  √       (  )  

We use the Haar   wavelet   method  the level of resolution  J=4.  The following discrete  system is given 

by the proposed method. 
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 By  approximate  solution,  
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Table 2 .  Approximate, absolute error and exact for distinct of       and      in example 4.1 with J=4. 

   

 
        approximate value                      exact value                         absolute error                                                

 
0.00010996                              0.000113795                      3.83569           0.984375                      

0.734375                                            0.00171454                              0.00171838                                      
                                           0.00231636                             0.00231252           0.484375                       

0.359375                                            0.00209265                              0.00209649                                   
0.234375          0.109375                   0.00155361                              0.00155745                                    

0.109375                                            0.000777463                            0.000781299                                   

0.00033645                              0.00034029                                        0.046875                        

0.015625                                            0.00109392                              0.00111971                                   

0.046875                                            0.00332255                              0.00334834                                   

0.234375            0.234375                 0.015299                                  0.0153247                                    

0.484375                                            0.0227664                                0.0227922                                       

0.734375                                            0.0168825                                0.0169082                                        
0.984375                                            0.00109392                              0.00111971                                  

 

 

 

 



The  chart  approximate and exact solution for example 4.2.  with   purpose  J=4. 

 

   

Figure 1.  The   approximate  (to the  left ) and the exact (to the right) solutions for example 4.1 with J=4  using 

Haar wavelet method. 

Example4. 2 

Notice the following 2-D linear fractional integro-differntial equation: 
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The precise solution of Equation (17) is u ( x, t)=√    . We solve this example 

differently using the Haar wavelet.  

To estimate the value of    
     (   )   , we use, 
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Considering the condition u (x ,0)=0 ,to find that, 
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By using the estimates in (18, (19) and nods     
     

  
         

     

  
  , following system is obtained, 
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Where,                                        
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Table 3.   Approximate, absolute error and exact for distinct of       and      in example 4.2 with J=4. 

   

 
        approximate value                 exact value                     absolute error                                                    

 
1.86251                          1.86228                                       0.984375                      

0.734375                                                            1.45053                          1.45029                                         
1.12967                                                                    1.12943                              0.48437                            

0.234375          0.484375                                    0.879551                        0.879789                                     
0.109375                                                             0.776173                        0.776411                                       

   0.706692                        0.70693                                       0.015625                        
0. 984375                                                            1.29551                          1.29558                                      

0.734375                                                             1.00893                          1.009                                          

0.234375            0.234375                                  0.611913                        0.611989                                    

0.484375                                                             0.785734                        0785809                                      
0.109375                                                             0.540002                        0.540078                                     
0.015625                                                             0.49157                          0.491747                                    

 

The   chart   approximate and exact solution for example   4.2   with  purpose  J=4. 

 

 

 

 

 

 

 

 

 

 

Figure2. The approximate (to the left) and the exact (to the right) solutions for example 4.2 with J=4  using  Haar 

wavelet method. 



   Example4. 3 

Notice the following 2-D linear fractional integro-differntial equation: 
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The accurate solution of relation (20) is  (   )   √    
     

  
   

We use Haar wavelet method at J=4. 
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For m, n = 1, 2, 3, …, 32.  And       
     

  
     

     

  
. 

 

Table4. Approximate, absolute error and exact for distinct of       and      in example 4.3 with J=4 

 

 
        approximate value                 exact value                     absolute error                                                    

 
0.984375                                                   0.0054642                            0.00463451                                    

0.734375                                                    0.0941176                            0.0938081                                        

0.484375                                                    0.191455                              0.191718                                         

0.359375                    0.234375                 0.233365                              0.233875                                      

0.234375                                                    0.265705                              0.266405                                        
0.109375                                                    0.285561                              0.286377                                       

0. 984375                                                   0.0834443                            0.0817527                                     

0.734375                                                    1.65523                                1.65473                                          

0.484375                                                    3.38101                                3.38101                                          

0.359375                    0.984375                 4.12407                                4.12556                                           
0.234375                                                     5.04948                               5.0517                                             
0.015625                                                     5.14813                               5.15042                                          

 

  The   chart   approximate and exact solution for example   4.3   with   purpose   J=4. 



 

 

 

 

  

 

 

 

 

Figure3. The approximate (to the left) and the exact (to the right) solutions for example 4.2 with J=4   using  Haar 

wavelet method. 

  5. Conclusions 

In this article, Fredholm's two-dimensional partial differential integral equations were solved using the 

Haar wavelet. The proposed technique results in high accuracy. Theoretical discussions about 

convergence and approximation error estimation have also been presented, and the experimental results 

obtained from some illustrative examples prove this issue well. Finally, the reliability and simplicity of 

the method are shown using numerical examples, graphs, and tables. 
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